Addendum

The diameter of an orientation of a complete multipartite graph

[Discrete Math. 149 (1996) 131–139]¹

K.M. Koh*, B.P. Tan

Department of Mathematics, National University of Singapore, Lower Kent Road,
Singapore 119260, Singapore

Given a bridgeless connected graph G, let $\mathcal{D}(G)$ denote the family of strong orientations of G. Define

$$\varepsilon(G) = \min \{\text{diam } D | D \in \mathcal{D}(G)\},$$

where diam D is the diameter of the digraph D. Let $K(p_1, p_2, \ldots, p_n)$ denote the complete n-partite graph having p_i vertices in the ith partite set. Assume that $n \geq 3$.

Koh and Tan proved in [2] the following results:

1. $2 \leq \varepsilon(K(p_1, p_2, \ldots, p_n)) \leq 3$;
2. Let $h = p_1 + p_2 + \cdots + p_n$. If $p_i > \left(\frac{h - p_i}{\frac{p_i}{2}}\right)$ for some $i = 1, 2, \ldots, n$, then $\varepsilon(K(p_1, p_2, \ldots, p_n)) = 3$;
3. $\varepsilon(K(p_1, p_2, \ldots, p_n)) = 2$ if $p_1 = p_2 = \cdots = p_n \geq 2$; and
4. for $1 \leq q \leq 2p$, $r \geq 3$ and $p \geq 3$, $\varepsilon(K(p, p, \ldots, p, q)) = 2$.

While [2] was in press, we learned that results (1) and (3) had also been proved by Gutin [1]. Indeed, we have just been informed by Professor Plesnik that these two results had been obtained much earlier by him in [4]. We would like to express our sincere thanks to him for this information.

Finally, we would like to add that results (3) and (4) have been extended very recently. A pair of integers p and q is a co-pair if

$$1 \leq p \leq q \leq \left(\frac{p}{\left\lfloor \frac{p}{2} \right\rfloor}\right).$$

¹SSDI of original article: SSDI 0012-365X(94)00315-7.
*Corresponding author. E-mail: matkohkm@leonis.nus.sg.

0012-365X/97/$17.00 Copyright © 1997 Published by Elsevier Science B.V. All rights reserved

PII S0012-365X(97)00054-X
A multiset \(\{p, q, r\} \) of positive integers is a **co-triple** if \(\{p, q\} \) and \(\{p, r\} \) are co-pairs. Koh and Tan established in [3] that if \(\{p_1, p_2, \ldots, p_n\} \) can be partitioned into co-pairs when \(n \) is even, and into co-pairs and a co-triple when \(n \) is odd, then \(e(K(p_1, p_2, \ldots, p_n)) = 2 \) provided that \((n, p_1, p_2, p_3, p_4) \neq (4, 1, 1, 1, 1) \).

References

