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Haarmeasure, has no eigenvalueswithin an arc (η, θ) of the unit circle.We show that these
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the sense of Adler, Shiota and vanMoerbeke. As an application, we obtain a new derivation
of a differential equation due to Tracy and Widom, satisfied by these probabilities, linking
it to the Painlevé VI equation.
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1. Introduction

Consider the groupU(n) of n×n unitarymatrices, with the normalized Haarmeasure as a probabilitymeasure. TheWeyl
integral formula gives the induced density distribution on the eigenvalues of the matrices on the unit circle in the complex
plane, and is given by

1
n!

|∆n(z)|2
n∏

k=1

dzk
2π izk

; zk = eiϕk and ∆n(z) =

∏
1≤k<l≤n

(zk − zl).

Thus, for η, θ ∈] − π, π[, with η ≤ θ , the probability that a randomly chosen matrix from U(n) has no eigenvalues within
an arc of circle (η, θ) = {z ∈ S1|η < arg(z) < θ} is given by

τn(η, θ) =
1

(2π)nn!

∫ 2π+η

θ

· · ·

∫ 2π+η

θ

∏
1≤k<l≤n

|eiϕk − eiϕl |
2dϕ1, . . . , dϕn.

Obviously, this probability depends only on the length θ − η. All of this is well known and we refer the reader to [1] for
details. We shall denote by

R(θ) = −
1
2

d
dθ

log τn(−θ, θ), (1.1)

the logarithmic derivative of the probability that an arc of circle of length 2θ contains no eigenvalues of a randomly chosen
unitary matrix.
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The starting motivation for our work was to understand a differential equation satisfied by the function R(θ)

R(θ)2 + 2 sin θ cos θR(θ)R′(θ) + sin2 θR′(θ)2

=
1
2


1
4
sin2 θ

R′′(θ)2

R′(θ)
+ sin θ cos θR′′(θ) +


cos2 θ + n2 sin2 θ


R′(θ)


, (1.2)

obtained in [2], from the point of view of the Adler–Shiota–van Moerbeke [3] approach, in terms of Virasoro constraints.
Introducing the 2-Toda time-dependent tau functions

τn(t, s; η, θ) =
1
n!

∫
[θ,2π+η]n

|∆n(z)|2
n∏

k=1

e

∞∑
j=1

(tjz
j
k+sjz

−j
k ) dzk

2π izk

 , (1.3)

with zk = eiϕk , deforming the probabilities τn(η, θ) = τn(0, 0; η, θ), we discover that they satisfy a set of Virasoro con-
straints indexed by all integers, decoupling into a boundary-part and a time-part

1
i


eikθ

∂

∂θ
+ eikη

∂

∂η


τn(t, s; η, θ) = L(n)

k τn(t, s; η, θ), k ∈ Z, i =
√

−1,

with the time-dependent operators L(n)
k providing a centerless representation of the full Virasoro algebra, see Section 2

(Theorem 2.2) for a precise statement and the proof of the result.
In their study of Painlevé equations satisfied (as functions of x) by integrals of Gessel’s type EU(n)ex tr(M+M), where the

expectation EU(n) refers to integration with respect to the Haar measure over the whole of U(n), Adler and vanMoerbeke [4]
found the sl2 subalgebra corresponding to k = −1, 0, 1, without boundary terms. The appearance of boundary terms and
of a full centerless Virasoro algebra is to the best of our knowledge new. From this result, it is easy to obtain Eq. (1.2), using
the algorithmic method of [3]. Finally, similarly to a result by the first author and Semengue [5] on the Jacobi polynomial
ensemble, we show that R(θ) is the restriction to the unit circle of a function r(z) defined in the complex plane, so that
σ(z) = −i(z − 1)r(z) − n2z/4 satisfies a special case of the Okamoto–Jimbo–Miwa form of the Painlevé VI equation. This
will be explained in Section 3 of the paper.

2. A centerless representation of the Virasoro algebra

The proof of the Virasoro constraints satisfied by the integral (1.3) is a non-trivial adaptation of the self-similarity
argument exploited in the case of the Gaussian ensembles, based on the invariance of the integrals with respect to
translations, see [6] and references therein. Here, we replace translations by appropriate rotations. More precisely, setting

dIn(t, s, z) = |∆n(z)|2
n∏

α=1

e

∞∑
j=1

(tjz
j
α+sjz

−j
α ) dzα

2π izα

 , (2.1)

with zα = eiϕα and |∆n(z)|2 =
∏

1≤α<β≤n |zα − zβ |
2, we have the fundamental next proposition.

Proposition 2.1. The following variational formulas hold

d
dε

dIn

zα → zαeε(zkα−z−k

α )


ε=0
=


L(n)
k − L(n)

−k


dIn, (2.2)

d
dε

dIn

zα → zαeiε(z

k
α+z−k

α )


ε=0
= i


L(n)
k + L(n)

−k


dIn, (2.3)

for all k ≥ 0, with

L(n)
k =

k−1−
j=1

∂2

∂tj∂tk−j
+ n

∂

∂tk
+

∞−
j=1

jtj
∂

∂tj+k
−

∞−
j=k+1

jsj
∂

∂sj−k
−

k−1−
j=1

jsj
∂

∂tk−j
− nksk, k ≥ 1, (2.4)

L(n)
0 =

∞−
j=1

jtj
∂

∂tj
−

∞−
j=1

jsj
∂

∂sj
, (2.5)

L(n)
−k = −

k−1−
j=1

∂2

∂sj∂sk−j
− n

∂

∂sk
−

∞−
j=1

jsj
∂

∂sj+k
+

∞−
j=k+1

jtj
∂

∂tj−k
+

k−1−
j=1

jtj
∂

∂sk−j
+ nktk, k ≥ 1. (2.6)
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Proof. We shall only give the proof of (2.2), the proof of (2.3) is similar. Upon setting

E =

n∏
α=1

e

∞∑
j=1

(tjz
j
α+sjz

−j
α )

,

the following four relations hold, for k ≥ 0,
∂

∂tk
+ nδk,0


E =


n−

α=1

zkα


E


∂

∂sk
+ nδk,0


E =


n−

α=1

z−k
α


E, (2.7)

1
2

−
i+j=k
i,j>0

∂2

∂ti∂tj
−

n
2
δk,0

 E =

 −
1≤α<β≤n

i+j=k
i,j>0

z iαz
j
β +

k − 1
2

n−
α=1

zkα

 E

1
2

−
i+j=k
i,j>0

∂2

∂si∂sj
−

n
2
δk,0

 E =

 −
1≤α<β≤n

i+j=k
i,j>0

z−i
α z−j

β +
k − 1
2

n−
α=1

z−k
α

 E. (2.8)

We split the computation into four contributions, corresponding to various factors in (2.1).
Contribution 1: For k > 0, we have

∂

∂ε

∆n


zeε(zk−z−k)

2
ε=0

= |∆n(z)|2
−

1≤α<β≤n

(zα + zβ)(zkα − zkβ − (z−k
α − z−k

β ))

zα − zβ

= |∆n(z)|2
−

1≤α<β≤n

(zα + zβ)


k−1−
i=0

z iαz
k−1−i
β +

k−1−
i=0

z−i−1
α z i−k

β



= |∆n(z)|2E−1

2
−

1≤α<β≤n
i+j=k
i,j>0

(z iαz
j
β + z−i

α z−j
β ) + (n − 1)

n−
α=1

(zkα + z−k
α )

 E.

Using the four relations (2.7) and (2.8), we obtain

∂

∂ε

∆n


zeε(zk−z−k)

2
ε=0

= 2|∆n(z)|2E−1

1
2

−
i+j=k
i,j>0

∂2

∂ti∂tj
+

1
2

−
i+j=k
i,j>0

∂2

∂si∂sj
+

n − k
2

∂

∂tk
+

n − k
2

∂

∂sk

 E, (2.9)

which is also trivially satisfied for k = 0.
Contribution 2: For k ≥ 0, using the relations (2.7), we have

∂

∂ε

n∏
α=1

d

zαeε(zkα−z−k

α )


ε=0
= E−1

n−
α=1


(k + 1)zkα + (k − 1)z−k

α


E

n∏
α=1

dzα

= E−1
[
(k + 1)

∂

∂tk
+ (k − 1)

∂

∂sk

]
E

n∏
α=1

dzα. (2.10)

Contribution 3: For k ≥ 0, using the relations (2.7), we have

∂

∂ε

n∏
α=1

e

∞∑
j=1


tj


zαeε(z

k
α−z−k

α )

j
+sj


zαeε(z

k
α−z−k

α )

−j


ε=0

=

n−
α=1


∞−
j=1

jtjz jα(zkα − z−k
α ) −

∞−
j=1

jsjz−j
α (zkα − z−k

α )


E

=


∞−
j=1

jtj
n−

α=1

z j+k
α −

k−1−
j=1

jtj
n−

α=1

z j−k
α −

∞−
j=k

jtj
n−

α=1

z j−k
α −

k−1−
j=1

jsj
n−

α=1

zk−j
α −

∞−
j=k

jsj
n−

α=1

zk−j
α +

∞−
j=1

jsj
n−

α=1

z−k−j
α


E
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=


∞−
j=1

jtj
∂

∂tk+j
−

k−1−
j=1

jtj
∂

∂sk−j
−

∞−
j=k+1

jtj
∂

∂tj−k
− nktk −

k−1−
j=1

jsj
∂

∂tk−j
−

∞−
j=k+1

jsj
∂

∂sj−k
− nksk +

∞−
j=1

jsj
∂

∂sk+j


E.

(2.11)

Contribution 4: For k ≥ 0, using the relations (2.7), we have

∂

∂ε

n∏
α=1

1

2π izαeε(zkα−z−k
α )


ε=0

= E−1


−

n−
α=1

zkα +

n−
α=1

z−k
α


E

n∏
α=1

1
2π izα

= E−1
[
−

∂

∂tk
+

∂

∂sk

]
E

n∏
α=1

1
2π izα

. (2.12)

Adding up (2.9)–(2.12) gives (2.2). This concludes the proof of Proposition 2.1. �

We are now able to state our main result.

Theorem 2.2. (i) The tau functions1 τn(t, s; η, θ), n ≥ 1, defined in (1.3), satisfy

Bk(η, θ)τn(t, s; η, θ) = L(n)
k τn(t, s; η, θ), k ∈ Z, (2.13)

with L(n)
k , k ∈ Z, defined as in (2.4)–(2.6), and

Bk(η, θ) =
1
i


eikθ

∂

∂θ
+ eikη

∂

∂η


; i =

√
−1. (2.14)

(ii) The operators L(n)
k , k ∈ Z, satisfy the commutation relations of the centerless Virasoro algebra, that is

L(n)
k , L(n)

l


= (k − l)L(n)

k+l, k, l ∈ Z. (2.15)

Proof. (i) Denoting zα = eiϕα , the change of variable zα → zαeε(zkα−z−k
α ) in the integral (1.3) gives the following

transformation on the angle ϕα → ϕα +2ε sin(kϕα), inducing a change in the limits of integration given by the inverse map

ϕα → ϕα − 2ε sin(kϕα) + O(ε2), (2.16)

for ε small enough. Making the change of variable in the integral (1.3), with the corresponding change in the limits of inte-
gration, leaves it invariant. Thus, by differentiating the result with respect to ε and evaluating it at ε = 0, using the chain
rule together with (2.2) and (2.16), we obtain

0 =


−2 sin(kθ)

∂

∂θ
− 2 sin(kη)

∂

∂η
+ L(n)

k − L(n)
−k


τn(t, s; η, θ). (2.17)

Similarly, the change of variable zα → zαeiε(z
k
α+z−k

α ) corresponds to the transformation ϕα → ϕα +2ε cos(kϕα), with inverse

ϕα → ϕα − 2ε cos(kϕα) + O(ε2),

which, using (2.3), leads to

0 =


−

2
i
cos(kθ)

∂

∂θ
−

2
i
cos(kη)

∂

∂η
+ L(n)

k + L(n)
−k


τn(t, s; η, θ). (2.18)

Adding and subtracting (2.17) and (2.18) gives the constraints (2.13), with Bk(η, θ) defined as in (2.14).
(ii) Consider the complex Lie algebra A given by the direct sum of two commuting copies of the Heisenberg algebra with
bases {h̄a, aj|j ∈ Z} and {h̄b, bj|j ∈ Z} and defining commutation relations

[h̄a, aj] = 0, [aj, ak] = jδj,−k h̄a,

[h̄b, bj] = 0, [bj, bk] = jδj,−k h̄b, (2.19)
[h̄a, h̄b] = 0, [aj, bk] = 0, [h̄a, bj] = 0, [h̄b, aj] = 0,

1 See the beginning of Section 3, for a justification of the terminology.
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with j, k ∈ Z. Let B be the space of formal power series in the variables t1, t2, . . . and s1, s2, . . . , and consider the following
representation of A in B:

aj =
∂

∂tj
, a−j = jtj, bj =

∂

∂sj
, b−j = jsj,

a0 = b0 = µ, h̄a = h̄b = 1, (2.20)

for j > 0, and µ ∈ C. Define the operators

A(n)
k =

1
2

−
j∈Z

: a−jaj+k :, B(n)
k =

1
2

−
j∈Z

: b−jbj+k :,

where k ∈ Z, aj, bj are as in (2.20) with µ = n, and where the colons indicate normal ordering, defined by

: ajak :=


ajak if j ≤ k,
akaj if j > k,

and a similar definition for : bjbk :, obtained by changing the a’s in b’s in the former. Using these notations, we can rewrite
(2.4)–(2.6) as follows

L(n)
k = A(n)

k − B(n)
−k +

1
2

k−1−
j=1

(aj − b−j)(ak−j − bj−k), k ≥ 1

L(n)
0 = A(n)

0 − B(n)
0 ,

L(n)
−k = A(n)

−k − B(n)
k −

1
2

k−1−
j=1

(a−j − bj)(aj−k − bk−j), k ≥ 1.

As shown in [7] (see Lecture 2) the operators A(n)
k , k ∈ Z, provide a representation of the Virasoro algebra in B with central

charge c = 1, that is

[A(n)
k , A(n)

l ] = (k − l)A(n)
k+l + δk,−l

k3 − k
12

, (2.21)

for k, l ∈ Z. Similarly, the operators B(n)
k satisfy the commutation relations

[B(n)
k , B(n)

l ] = (k − l)B(n)
k+l + δk,−l

k3 − k
12

, (2.22)

for k, l ∈ Z. Furthermore we have for k, l ∈ Z

[ak, A
(n)
l ] = kak+l, [bk, B

(n)
l ] = kbk+l,

[ak, B
(n)
l ] = 0, [bk, A

(n)
l ] = 0. (2.23)

Let us now establish the commutation relations (2.15). We give the proof for k, l ≥ 0, the other cases being similar. As
[A(n)

i , B(n)
j ] = 0, i, j ∈ Z, we have using (2.19), (2.21), (2.22) and (2.23)

[L(n)
k , L(n)

l ] = (k − l)

A(n)
k+l − B(n)

−k−l


−

1
2

l−1−
j=1

j(aj+k − b−j−k)(al−j − bj−l) −
1
2

l−1−
j=1

(l − j)(aj − b−j)(ak+l−j − bj−k−l)

+
1
2

k−1−
j=1

j(aj+l − b−j−l)(ak−j − bj−k) +
1
2

k−1−
j=1

(k − j)(aj − b−j)(ak+l−j − bj−k−l).

Relabeling the indices in the sums, we have

[L(n)
k , L(n)

l ] = (k − l)

A(n)
k+l − B(n)

−k−l


−

1
2

k+l−1−
j=k+1

(j − k)(aj − b−j)(ak+l−j − bj−k−l)

−
1
2

l−1−
j=1

(l − j)(aj − b−j)(ak+l−j − bj−k−l) +
1
2

k+l−1−
j=l+1

(j − l)(aj − b−j)(ak+l−j − bj−k−l)
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+
1
2

k−1−
j=1

(k − j)(aj − b−j)(ak+l−j − bj−k−l)

= (k − l)L(n)
k+l.

This concludes the proof of Theorem 2.2. �

3. The unitary circular ensemble and the Painlevé VI equation

It is well known, see for instance [1], that the integral τn(t, s; η, θ) defined in (1.3) can be represented as a Toeplitz
determinant

τn(t, s; η, θ) = det (µk−l(t, s; η, θ))0≤k,l≤n−1 , (3.1)

with

µk(t, s; η, θ) =

∫ 2π+η

θ

zk

e

∞∑
j=1

(tjzj+sjz−j) dz
2π iz

 ; z = eiϕ, k ∈ Z.

A nice consequence of this representation is that τn(t, s; η, θ) is a tau function of a reduction of the 2-Toda lattice hierarchy,
that was called the Toeplitz hierarchy in [4]. Therefore, as with any 2-Toda tau function (see [8]), it satisfies the KP equation
in the t = (t1, t2, . . .) (or s = (s1, s2, . . .)) variables separately

∂4

∂t41
+ 3

∂2

∂t22
− 4

∂2

∂t1∂t3


log τn + 6


∂2

∂t21
log τn

2

= 0. (3.2)

As announced in the introduction, in this section, using the method of [3], we establish the following result.

Theorem 3.1. The Virasoro constraints (2.13), combined with the KP equation (3.2) in the t variables (or the KP equation in the
s variables), imply that the function R(θ) defined in (1.1) satisfies (1.2).

Proof. Remembering the definition of L(n)
0 in (2.5), the Virasoro constraint in (2.13) for k = 0, evaluated along the locus

t = s = 0, gives

∂ log τn(t, s; η, θ)

∂θ


t=s=0

= −
∂ log τn(t, s; η, θ)

∂η


t=s=0

, (3.3)

which is a reformulation of the fact that the gap probability τn(0, 0; η, θ) only depends on the length θ − η.
Define the operator D =

∂
∂θ

−
∂
∂η

and put for a fixed n

f (t, s; η, θ) = log τn(t, s; η, θ),

g(η, θ) = −
1
2

D log τn(t, s; η, θ)


t=s=0

. (3.4)

Notice that for k ≥ 0

D
k log τn(t, s; η, θ)

 t=s=0
η=−θ

=
dk

dθ k
log τn(t, s; −θ, θ)


t=s=0

.

Clearly, from the definition of R(θ) in (1.1), we have

R(θ) = g(−θ, θ) = −
1
2

d
dθ

log τn(t, s; −θ, θ)


t=s=0

.

Remembering the definition of L(n)
k in (2.4), the constraints in (2.13) for k = 1, 2, evaluated at s = (s1, s2, s3, . . .) =

(0, 0, 0, . . .), can be written

B1(η, θ)f |s=0 =

−
j≥1

jtj
∂ f

∂tj+1


s=0

+ n
∂ f
∂t1


s=0

, (3.5)

B2(η, θ)f |s=0 =

−
j≥1

jtj
∂ f

∂tj+2


s=0

+
∂2f
∂t21


s=0

+


∂ f
∂t1

2

s=0

+ n
∂ f
∂t2


s=0

. (3.6)
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Using (3.3) and the definition of g(η, θ) (3.4), the constraint (3.5) evaluated along the locus t = s = 0 gives

∂ f
∂t1


t=s=0

=
1
in

(eiη − eiθ )g(η, θ). (3.7)

Consequently, along the locus η = −θ , we have

∂ f
∂t1

 t=s=0
η=−θ

= −
2
n
sin(θ)R(θ).

We then proceed by induction. We call

∂nf
∂tj1∂tj2 · · · ∂tjn

,

a t derivative of weighted degree |j| = j1 + j2 + · · · + jn. Then, for k ≥ 1, we compute the system formed by
all t-derivatives of weighted degree k of (3.5),
all t-derivatives of weighted degree k − 1 of (3.6), (3.8)

evaluated at t = s = 0. For instance, for k = 1, (3.8) reduces to

B1(η, θ)


∂ f
∂t1


t=s=0


=

∂ f
∂t2


t=s=0

+ n
∂2f
∂t21


t=s=0

,

B2(η, θ)f |t=s=0 =
∂2f
∂t21


t=s=0

+ n
∂ f
∂t2


t=s=0

+


∂ f
∂t1


t=s=0

2

.

After substitution of (3.7), this system of equations can be solved for ∂2f
∂t21


t=s=0

and ∂ f
∂t2


t=s=0

in terms of η, θ, g(η, θ) and

Dg(η, θ), whenever n ≠ 1. Consequently, on the locus η = −θ , the partials ∂2f
∂t21


t=s=0
η=−θ

and ∂ f
∂t2

 t=s=0
η=−θ

can be expressed in

terms of θ, R(θ) and R′(θ).
For general k ≥ 1, suppose all the t-derivatives of f of weighted degree k, evaluated at t = s = 0, have been expressed

in terms of η, θ and g(η, θ), . . . , Dk−1 g(η, θ), whenever n ≠ 1, . . . , k− 1. Then (3.8) is a system of linear equations where
the unknowns are all the t-derivatives of f of weighted degree k + 1, evaluated at t = s = 0, and the coefficients can be
expressed in terms of η, θ and g(η, θ), . . . , Dk−1 g(η, θ). This is a system of p(k) + p(k − 1) linear equations in p(k + 1)
unknowns, where p(k) is the number of partitions of the natural number k. As p(k + 1) ≤ p(k) + p(k − 1), this system can
be solved and all the t-derivatives of f of weighted degree k + 1, evaluated at t = s = 0 can be expressed in terms of η, θ ,
and g(η, θ), . . . , Dk g(η, θ), whenever n ≠ k. Consequently, on the locus η = −θ , the t-derivatives of f of weighted degree
k + 1, evaluated at t = s = 0 and on the locus η = −θ , can be expressed in terms of θ, R(θ), R′(θ), . . . , R(k)(θ).

Since the KP equation (3.2) contains t-derivatives of f of weighted degree less or equal to 4, by performing the above
scheme up to k = 3, we can express all these derivatives, evaluated at t = s = 0 and η = −θ , in terms of θ, R(θ) and its
first three derivatives, whenever n ≥ 4. This gives us a third order differential equation for R(θ):

0 = 4R(θ)2 − 2

n2

+ (1 − n2) cos 2θ

R′(θ) + 8 sin 2θR(θ)R′(θ) − 2 sin 2θR′′(θ) + sin2 θ


12R′(θ)2 − R′′′(θ)


.

Multiplying the left-hand and the right-hand side of this equation with 1
4 sin θ


2 cos θR′(θ) + sin θR′′(θ)


, we obtain

0 =
d
dθ


sin2 θR′(θ)W (θ)


, (3.9)

with

W (θ) = R(θ)2 + 2 sin θ cos θR(θ)R′(θ) + sin2 θR′(θ)2

−
1
2


1
4
sin2 θ

R′′(θ)2

R′(θ)
+ sin θ cos θR′′(θ) +


cos2 θ + n2 sin2 θ


R′(θ)


.

Eq. (3.9) implies that W (θ) = 0, which is the Eq. (1.2), obtained in [2]. This concludes the proof of Theorem 3.1. �

Remark 3.2. In the above proof, we had to assume that n ≥ 4, where n is the size of the random unitary matrices. For
n = 1, 2, 3, the function R(θ) also satisfies (1.2), as can be shown by direct computation, using the representation (3.1) of
the probability τn(η, θ) as a Toeplitz determinant. It would be interesting to relate the proof with the original derivation
in [2]. For the Gaussian ensembles, the relation between the two methods has been studied in [9].
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Finally, similarly to the case of the Jacobi polynomial ensemble (see [5]), we observe that R(θ) in (1.1) is linked to the
Painlevé VI equation. Precisely, we show that it is the restriction to the unit circle of a solution of (a special case of) the
Painlevé VI equation, defined for z ∈ C.

Corollary 3.3. Put R(θ) = r(e−2iθ ). Then, the function

σ(z) = −i(z − 1)r(z) −
n2

4
z

satisfies the Okamoto–Jimbo–Miwa form of the Painlevé VI equation

[z(z − 1)σ ′′
]
2
+ 4z(z − 1)(σ ′)3 + 4σ ′σ 2

+ 4(1 − 2z)σ (σ ′)2

− c1(σ ′)2 + [2(1 − 2z)c4 − c2]σ ′
+ 4c4σ − c3 = 0, (3.10)

with

c1 = n2, c2 =
3n4

8
, c3 =

n6

16
, c4 = −

n4

16
. (3.11)

Proof. From (1.2), by a straightforward computation, putting R(θ) = r(e−2iθ ), we obtain that r(z) satisfies

[z(z − 1)r ′′
]
2
+ 4z2(z − 1)r ′r ′′

− 4iz(z − 1)2(r ′)3 − 4i(z2 − 1)r(r ′)2 + [4z2 − n2(z − 1)2](r ′)2 − 4ir2r ′
= 0. (3.12)

Substituting in (3.12)

r(z) = i
σ(z) + xz

z − 1

for some constant x, and annihilating the coefficient of σ 2, one finds that x = n2/4. With this choice of x, the new function
σ(z) satisfies the Painlevé VI equation (3.10) if we pick c1, c2, c3 and c4 as in (3.11), which establishes Corollary 3.3. �

4. Discussion of the results and some further directions

Our starting motivation was to understand a differential equation (1.2) discovered in [2], satisfied by the logarithmic
derivative of the gap probability that an arc of circle of length 2θ contains no eigenvalues of a randomly chosen unitary
n × n matrix, from the point of view of the algebraic approach initiated in [3]. The main surprise is that the 2-dimensional
Toda tau functions (1.3) deforming these gap probabilities, satisfy a centerless full Virasoro algebra of constraints. The result
stands in contrastwith the corresponding integrals for the Gaussian or the orthogonal polynomial ensembles, which roughly
satisfy only ‘‘half of’’ a Virasoro type algebra of constraints, see [3,5,6,9].

As mentioned at the beginning of Section 3, the integrals (1.3) can be expressed as Toeplitz determinants, see (3.1). As
such, they are very special instances of tau functions for the so-called Toeplitz lattices [4], that is

τn(t, s) = det (µk−l(t, s))0≤k,l≤n−1 , (4.1)

where

µk(t, s) =

∫
S1

zke

∞∑
j=1

(tjzj+sjz−j)

w(z)
dz

2π iz
, k ∈ Z, (4.2)

and w(z) is some (complex-valued) weight function defined on the unit circle S1, such that the trigonometric moments

µk = µk(0, 0) =

∫
S1

zkw(z)
dz

2π iz
, k ∈ Z,

satisfy det (µk−l)0≤k,l≤n−1 ≠ 0, ∀n ≥ 1. In the special case (3.1) that we consider in this paper, w(z) = χ(η,θ)c (z) is the
characteristic function of the complement of the arc of circle (η, θ) = {z ∈ S1|η < arg(z) < θ}.

As it immediately follows from (4.2), at the level of the trigonometric moments, the Toeplitz hierarchy is given by the
simple equations

Tjµk ≡
∂µk

∂tj
= µk+j, T−jµk ≡

∂µk

∂sj
= µk−j, ∀j ≥ 1.

Obviously [Ti, Tj] = 0, ∀i, j ∈ Z, if we define T0µk = µk. Following an idea introduced in [5] in the context of the
1-dimensional Toda lattices, we define the following vector fields on the trigonometric moments

Vjµk = (k + j)µk+j, ∀j ∈ Z. (4.3)
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These vector fields trivially satisfy the commutation relations
[Vi, Vj] = (j − i)Vi+j (4.4)

[Vi, Tj] = jTi+j, ∀i, j ∈ Z, (4.5)
from which it follows that

[[Vi, Tj], Tj] = j[Ti+j, Tj] = 0, ∀i, j ∈ Z. (4.6)
Eqs. (4.4)–(4.6) mean that the vector fields Vj, j ∈ Z, form a Virasoro algebra of master symmetries, in the sense of
Fuchssteiner [10], for the Toeplitz hierarchy.

The tau functions (4.1) admit the following expansion

τn(t, s) =

−
0≤i0<···<in−1
0≤j0<···<jn−1

p i0,...,in−1
j0,...,jn−1

Sin−1−(n−1),...,i0(t)Sjn−1−(n−1),...,j0(s),

where
p i0,...,in−1

j0,...,jn−1

= det

µik−jl(0, 0)


0≤k,l≤n−1 , (4.7)

are the so-called Plücker coordinates, and Si1,...,ik(t) denote the Schur polynomials

Si1,...,ik(t) = det

Sir+s−r(t)


1≤r,s≤k ,

with Sn(t) the so-called elementary Schur polynomials defined by the generating function

exp


∞−
k=1

tkxk


=

−
n∈Z

Sn(t1, t2, . . .)xn.

In a forthcoming publication, we shall establish the next result:

Theorem 4.1. For all k ∈ Z, we have

L(n)
k τn(t, s) =

−
0≤i0<···<in−1
0≤j0<···<jn−1

Vk


p i0,...,in−1

j0,...,jn−1


Sin−1−(n−1),...,i0(t)Sjn−1−(n−1),...,j0(s),

with L(n)
k , k ∈ Z, defined as in (2.4)–(2.6), and Vk


p i0,...,in−1

j0,...,jn−1


the Lie derivative of the Plücker coordinates (4.7) in the direction

of the master symmetries Vk of the Toeplitz hierarchy, as defined in (4.3).

Thus the operators L(n)
k , k ∈ Z, precisely describe the master symmetries of the Toeplitz hierarchy on the tau functions

of this hierarchy. Since master symmetries are usually connected with a bi-Hamiltonian structure in the sense of Magri [11]
(see [12,13] for an overview), it suggests investigating the relation with the recursion operator for this hierarchy that was
found in [14].
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