Asymptotic behavior of solutions of the m th-order nonhomogeneous difference equations

Andrzej Drozdowicz*, Małgorzata Migda
Institute of Mathematics, Poznań University of Technology, ul Piotrowo 3a, 60-965, Poznań, Poland

Abstract

Asymptotic behavior of solutions of the m th-order difference equation of the form
(E1) $\quad \Delta^{m} x_{n}+f\left(n, x_{n}, \ldots, \Delta^{m-1} x_{n}\right)=h_{n}$
and some special case (E2) of these equation are investigated.
Keywords: Difference equations; Asymptotic behavior
AMS classification: Primary 39A10

The asymptotic behavior of solutions of an n th-order nonhomogeneous differential equation of the form $y^{(n)}+f\left(t, y, y^{(1)}, \ldots, y^{(n-1)}\right)=h(t)$ has been considered in [3]. Some asymptotic properties of the difference equation $\Delta^{2} y_{n}+F\left(n, y_{n}, y_{n+1}\right)=b_{n}$ were given in [6]. The asymptotic behavior of solutions of the second-order difference equation of the form $\Delta\left(r_{n} \Delta x_{n}\right)+f\left(n, x_{n}, \Delta x_{n}\right)=h_{n}$ has been investigated in [1]. Similar problems for m th-order difference equation have been studied in [4].

Let $\mathbb{N}:=\left\{n_{0}, n_{0}+1, \ldots\right\}$, where n_{0} is a given nonnegative integer, \mathbb{R} the set of real numbers and \mathbb{R}_{+}the set of positive reals. For a function $f: \mathbb{N} \rightarrow \mathbb{R}$ one introduces the difference operator Δ as follows:

$$
\Delta f_{n}=f_{n+1}-f_{n}, \quad \Delta^{k} f_{n}=\Delta\left(\Delta^{k-1} f_{n}\right), \quad k \geqslant 1, \text { where } f_{n}=f(n) .
$$

Moreover, $\sum_{j=k}^{t} f_{j}=0$ for $t<k$ and let us denote

$$
\begin{aligned}
& n^{(k)}=\prod_{i=0}^{k-1}(n-i) \quad \text { for } n \geqslant k, \\
& n^{(0)}=1
\end{aligned}
$$

[^0]The application of the argueing method of the discrete versions of Gronwall lemma, as given in [5], allows us to perform the proofs of the following lemma.

Lemma. Let $u: \mathbb{N} \rightarrow \mathbb{R}_{+}, c: \mathbb{N} \rightarrow \mathbb{R}_{+}, M \in \mathbb{R}_{+}, C_{0} \in \mathbb{R}_{+}$.
If $\quad u_{n} \leqslant C_{0}+M \sum_{j=n_{0}}^{n-1} c_{j}\left(1+u_{j}\right)$
then

$$
u_{n} \leqslant\left(1+C_{0}\right) \exp \left[M \sum_{j=n_{0}}^{n-1} c_{j}\right]-1
$$

for all $n \in \mathbb{N}$.

1. The m th-order nonhomogeneous difference equation
(E1) $\quad \Delta^{m} x_{n}+f\left(n, x_{n}, \Delta x_{n}, \ldots, \Delta^{m-1} x_{n}\right)=h_{n}$,
where $h: \mathbb{N} \rightarrow \mathbb{R}, f: \mathbb{N} \times \mathbb{R}^{m} \rightarrow \mathbb{R}, m \geqslant 2$ will be investigated subject to the following hypothese:

$$
\begin{equation*}
\left|f\left(n, x_{n}, \Delta x_{n}, \ldots, \Delta^{m-1} x_{n}\right)\right| \leqslant \sum_{i=0}^{m-1} g_{i}(n)\left|\Delta^{i} x_{n}\right|^{t_{i}} \tag{1.1}
\end{equation*}
$$

where $g_{i}: \mathbb{N} \rightarrow \mathbb{R}_{+} \cup\{0\}, t_{i} \in(0,1\rangle, i=0,1, \ldots, m-1$.
Theorem 1. If condition (1.1) is satisfied and
(1.2) the series $\sum_{j=n_{0}}^{\infty}\left|h_{j}\right|$ is convergent,
(1.3) the series $\sum_{j=n_{0}}^{\infty} j^{(m-i-1) t_{i}} g_{i}(j), i=0,1, \ldots, m-1$ are convergent,
then there exist solutions x_{n} of (E1) which possesses the asymptotic behavior
(AB) $\quad \lim _{n \rightarrow \infty} \frac{\Delta^{i} x_{n}}{(m-1)^{(i)} n^{(m-i-1)}}=C=$ const., $\quad i=0,1, \ldots, m-1$.
Proof. From (1.2) it follows that there exists a constant A_{0} such that

$$
\begin{equation*}
\sum_{j=n_{0}}^{\infty}\left|h_{j}\right|=A_{0} \tag{1.4}
\end{equation*}
$$

By summation (E1) over n one yields

$$
\begin{equation*}
\Delta^{m-1} x_{n}=\Delta^{m-1} x_{n_{0}}+\sum_{j=n_{0}}^{n-1} h_{j}-\sum_{j=n_{0}}^{n-1} f\left(j, x_{j}, \Delta x_{j}, \ldots, \Delta^{m-1} x_{j}\right) \tag{1.5}
\end{equation*}
$$

Hence,

$$
\left|\Delta^{m-1} x_{n}\right| \leqslant\left|\Delta^{m-1} x_{n_{0}}\right|+\sum_{j=n_{0}}^{n-1}\left|h_{j}\right|+\sum_{j=n_{0}}^{n-1}\left|f\left(j, x_{j}, \Delta x_{j}, \ldots, \Delta^{m-1} x_{j}\right)\right| .
$$

Let us denote

$$
\begin{equation*}
A_{r}=\frac{\left|\Delta^{m-r} x_{n_{0}}\right|}{n_{0}^{r-1}}, \quad r=1,2, \ldots, m . \tag{1.6}
\end{equation*}
$$

Using (1.4) and (1.6), one finds

$$
\begin{equation*}
\left|\Delta^{m-1} x_{n}\right| \leqslant A_{1}+A_{0}+\sum_{j=n_{0}}^{n-1}\left|f\left(j, x_{j}, \Delta x_{j}, \ldots, \Delta^{m-1} x_{j}\right)\right| . \tag{1.7}
\end{equation*}
$$

By summation (E1) over n twice one gets

$$
\begin{align*}
\Delta^{m-2} x_{n}= & \Delta^{m-2} x_{n_{0}}+\left(n-n_{0}\right) \Delta^{m-1} x_{n_{0}}+\sum_{k=n_{0}}^{n-1} \sum_{j=n_{0}}^{k-1} h_{j} \tag{1.8}\\
& -\sum_{k=n_{0}}^{n-1} \sum_{j=n_{0}}^{k-1} f\left(j, x_{j}, \Delta x_{j}, \ldots, \Delta^{m-1} x_{j}\right) .
\end{align*}
$$

Dividing (1.8) by n we obtain

$$
\frac{\left|\Delta^{m-2} x_{n}\right|}{n} \leqslant \frac{\left|\Delta^{m-2} x_{n_{0}}\right|}{n}+\left|\Delta^{m-1} x_{n_{0}}\right|+\sum_{j=n_{0}}^{n-1}\left|h_{j}\right|+\sum_{j=n_{0}}^{n-1}\left|f\left(j, x_{j}, \Delta x_{j}, \ldots, \Delta^{m-1} x_{j}\right)\right| .
$$

Using (1.6), one finds

$$
\frac{\left|\Delta^{m-2} x_{n}\right|}{n} \leqslant A_{2}+A_{1}+A_{0}+\sum_{j=n_{0}}^{n-1}\left|f\left(j, x_{j}, \Delta x_{j}, \ldots, \Delta^{m-1} x_{j}\right)\right| \quad \text { for all } n \geqslant n_{0} .
$$

Similarly, summation k-times of (E1) over n and division by n^{k-1}, for all $n \geqslant n_{0}$ gives

$$
\frac{\left|\Delta^{m-k} x_{n}\right|}{n^{k-1}} \leqslant A_{k}+A_{k-1}+\cdots+A_{1}+A_{0}+\sum_{j=n_{0}}^{n-1}\left|f\left(j, x_{j}, \Delta x_{j}, \ldots, \Delta^{m-1} x_{j}\right)\right|, \quad k=1,2, \ldots, m .
$$

Hence,

$$
\begin{equation*}
\sum_{k=1}^{m} \frac{\left|\Delta^{m-k} x_{n}\right|}{n^{k-1}} \leqslant \sum_{k=1}^{m} \sum_{r=0}^{k} A_{r}+m \sum_{j=n_{0}}^{n-1}\left|f\left(j, x_{j}, \Delta x_{j}, \ldots, \Delta^{m-1} x_{j}\right)\right| . \tag{1.9}
\end{equation*}
$$

Let us denote $A=\sum_{k=1}^{m} \sum_{r=0}^{k} A_{r}$ and $m-k=i, k=1, \ldots, m$. Then (1.9) can be rewritten in the form

$$
\sum_{i=0}^{m-1} \frac{\left|\Delta^{i} x_{n}\right|}{n^{m-i-1}} \leqslant A+m \sum_{j=n_{0}}^{n-1}\left|f\left(j, x_{j}, \Delta x_{j}, \ldots, \Delta^{m-1} x_{j}\right)\right| .
$$

By assumption (1.1) we have

$$
\begin{equation*}
\sum_{i=0}^{m-1} \frac{\left|\Delta^{i} x_{n}\right|}{n^{m-i-1}} \leqslant A+m \sum_{j=n_{0}}^{n-1} \sum_{i=0}^{m-1} g_{i}(j) j^{(m-i-1) t_{i}}\left|\frac{\Delta^{i} x_{j}}{j^{m-i-1}}\right|^{t_{i}} \tag{1.10}
\end{equation*}
$$

It is evident that the inequality

$$
\begin{equation*}
a_{i}^{w} \leqslant 1+a_{1}+a_{2}+\cdots+a_{m} \tag{1.11}
\end{equation*}
$$

holds for any $a_{i} \in \mathbb{R}_{+}$and $w \in(0,1\rangle$.
Using (1.11) to (1.10), one gets

$$
\begin{equation*}
\sum_{i=0}^{m-1} \frac{\left|\Delta^{i} x_{n}\right|}{n^{m-i-1}} \leqslant A+m \sum_{j=n_{0}}^{n-1} \sum_{i=0}^{m-1} j^{(m-i-1) t_{i}} g_{i}(j)\left[1+\sum_{i=0}^{m-1} \frac{\left|\Delta^{i} x_{j}\right|}{j^{m-i-1}}\right] . \tag{1.12}
\end{equation*}
$$

Let us denote

$$
u_{n}=\sum_{i=0}^{m-1} \frac{\left|\Delta^{i} x_{n}\right|}{n^{m-i-1}} .
$$

Then (1.12) takes the form

$$
u_{n} \leqslant A+m \sum_{j=n_{0}}^{n-1} \sum_{i=0}^{m-1} j^{(m-i-1) t_{i}} g_{i}(j)\left[1+u_{j}\right] .
$$

Using Lemma with $C_{0}=A, M=m$ and $c_{j}=\sum_{i=0}^{m-1} j^{(m-i-1) t_{i}} g_{i}(j)$ we have

$$
u_{n} \leqslant(1+A) \exp \left[m \sum_{j=n_{0}}^{n-1} \sum_{i=0}^{m-1} j^{(m-i-1) t_{i}} g_{i}(j)\right]-1 .
$$

If n approaches infinity then

$$
u_{n} \leqslant(1+A) \exp \left[m \sum_{i=0}^{m-1}\left(\sum_{j=n_{0}}^{\infty} j^{(m-i-1) t_{i}} g_{i}(j)\right)\right] .
$$

By virtue of (1.3) there exists a constant L such that

$$
\sum_{i=0}^{m-1} \frac{\left|\Delta^{i} x_{n}\right|}{n^{m-i-1}} \leqslant L .
$$

Hence and from (1.1) it follows the inequality

$$
\begin{equation*}
\sum_{j=n_{0}}^{n-1}\left|f\left(j, x_{j}, \Delta x_{j}, \ldots, \Delta^{m-1} x_{j}\right)\right| \leqslant \sum_{i=1}^{m-1} L^{t_{i}} \sum_{j=n_{0}}^{n-1} j^{(m-i-1) t_{i}} g_{i}(j) . \tag{1.13}
\end{equation*}
$$

In face of (1.3) the right-hand side of (1.13) is bounded if $n \rightarrow \infty$. Hence, the series

$$
\sum_{j=n_{0}}^{\infty}\left|f\left(j, x_{j}, \Delta x_{j}, \ldots, \Delta^{m-1} x_{j}\right)\right| \quad \text { is convergent. }
$$

So all terms on the right-hand side of (1.5) are bounded. There exists the finite limit

$$
\lim _{n \rightarrow \infty} \frac{\Delta^{m-1} x_{n}}{(m-1)!}=C=\text { const. }
$$

Using the Stolz theorem [2] m-times one can find the thesis of the theorem

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{x_{n}}{n^{(m-1)}} & =\lim _{n \rightarrow \infty} \frac{\Delta x_{n}}{(m-1) n^{(m-2)}}=\lim _{n \rightarrow \infty} \frac{\Delta^{2} x_{n}}{(m-1)^{(2)} n^{(m-3)}}=\cdots= \\
& =\lim _{n \rightarrow \infty} \frac{\Delta^{m-2} x_{n}}{(m-1)^{(m-2)} n^{(1)}}=\lim _{n \rightarrow \infty} \frac{\Delta^{m-1} x_{n}}{(m-1)!}=C .
\end{aligned}
$$

2. In the next theorem, a special case of equation (E1) will be considered. The second-order nonhomogeneous difference equation of the form

$$
\begin{equation*}
\Delta^{2} x_{n}+g_{0}(n) x_{n}^{t_{0}}+g_{1}(n)\left[\Delta x_{n}\right]^{t_{1}}=h_{n} \tag{E2}
\end{equation*}
$$

where $g_{i}: \mathbb{N} \rightarrow \mathbb{R}_{+} \cup\{0\}, h: \mathbb{N} \rightarrow \mathbb{R}, t_{i} \in(0,1\rangle, i=0,1$ will be investigated subject to the following set of hypotheses:
(2.1) if $g_{i}(n)$ is not identically zero, then $\lim _{n \rightarrow \infty} n^{p_{i}} g_{i}(n)=c_{i}>0$ for some $p_{i}, c_{i}=$ const., $i=0,1 ;$
(2.2) $t_{i}=u_{i} / w_{i}$, where u_{i}, w_{i} are odd integers, $i=0,1$.

Theorem 2. Assume (2.1), (2.2) and
(2.3) the series $\sum_{j=n_{0}}^{\infty}\left|h_{j}\right|$ is convergent.

A necessary and sufficient condition for some solution x_{n} of (E2) to have the asymptotic behavior
(AB^{*}) $\quad \lim _{n \rightarrow \infty} \frac{\Delta^{i} x_{n}}{n^{1-i}}=C=$ const., $\quad i=0,1$
is that $p_{i}>t_{i}(1-i)+1$ for $i=0,1$, where $g_{i}(n)$ is not identically zero.
Proof. Sufficiency: Since Eq. (E2) is a special case of Eq. (E1) it will be enough to verify if the assumption (1.3) of Theorem 1 is satisfied. If $g_{0}(n)$ and $g_{1}(n)$ are identically zero then $\sum_{j=n_{0}}^{\infty} j^{(1-i) t_{i}} g_{i}(j)=0$ for $i=0,1$. So, in this case condition (1.3) is fulfiled.

Suppose $g_{0}(n)$ is not identically zero. Then by virtue of (2.1) with $i=0$ we have $\lim _{n \rightarrow \infty} n^{p_{0}} g_{0}(n)=$ $c_{0}>0$. Choose any $\varepsilon>0$ such that $c_{0}-\varepsilon>0$. Then $\left|n^{p_{0}} g_{0}(n)-c_{0}\right| \leqslant \varepsilon$ for each $n>n_{1}$.

Hence $0<c_{0}-\varepsilon \leqslant n^{p_{0}} g_{0}(n) \leqslant c_{0}+\varepsilon$ for each $n>n_{1}$.
It means that $g_{0}(n) \leqslant\left(c_{0}+\varepsilon\right) / n^{p_{0}}$ for each $n>n_{1}$. Then

$$
\sum_{j=n_{0}}^{\infty} j^{t_{0}} g_{0}(j)=A_{1}+\sum_{j=n_{1}+1}^{\infty} j^{t_{0}} g_{0}(j) \leqslant A_{1}+\left(c_{0}+\varepsilon\right) \sum_{j=n_{1}+1}^{\infty} j^{t_{0}-p_{0}},
$$

where

$$
A_{1}=\sum_{j=n_{0}}^{n_{1}} j^{t_{0}} g_{0}(j)
$$

But $t_{0}-p_{0}<-1$. Therefore, the series $\sum_{j=n_{1}+1}^{\infty} j^{t_{0}-p_{0}}$ is convergent and the series $\sum_{j=n_{0}}^{\infty} t^{t_{0}} g_{0}(j)$ is convergent, too. Hence, it follows that condition (1.3) is satisfied if $g_{0}(n)$ is not identically zero.

Assume $g_{1}(n)$ is not identically zero. Then in face of (2.1) with $i=1$ we have $\lim _{n \rightarrow \infty} n^{p_{1}} g_{1}(n)=$ $c_{1}>0$. Choosing $\varepsilon>0$ in a similar way as above one yields

$$
\left|n^{p_{1}} g_{1}(n)-c_{1}\right| \leqslant \varepsilon \quad \text { for each } n>n_{2}
$$

and

$$
\sum_{j=n_{0}}^{\infty} g_{1}(j) \leqslant A_{2}+\left(c_{1}+\varepsilon\right) \sum_{j=n_{2}+1}^{\infty} j^{-p_{1}}, \quad \text { where } A_{2}=\sum_{j=n_{0}}^{n_{2}} g_{1}(j) .
$$

Since $p_{1}>1$, the series $\sum_{j=n_{2}+1}^{\infty} j^{-p_{1}}$ is convergent and the series $\sum_{j=n_{0}}^{\infty} g_{1}(j)$ is convergent, too. So, all assumptions of Theorem 1 are fulfiled. Therefore there exists a solution of (E2) which possesses the asymptotic behavior (AB^{*}).

Necessacity: Suppose that a solution x_{n} of (E2) possesses the asymptotic behavior (AB^{*}). Let $C \neq 0$. Assume there exists such j that

$$
\begin{equation*}
p_{j} \leqslant t_{i}(1-i)+1, \quad i=0,1 . \tag{2.4}
\end{equation*}
$$

If $C>0$ then there exists such $\varepsilon>0$ that $c-\varepsilon>0$. Since $x_{n} / n \rightarrow C$ as $n \rightarrow \infty$, so $x_{n} / n \in(C-\varepsilon, C+\varepsilon)$ for $n \geqslant N(\varepsilon)$. Hence $x_{n}>0$, for $n \geqslant N(\varepsilon)$. If $C<0$ then in a similar way, one can choose such $\varepsilon>0$ that $C+\varepsilon<0$. Then $x_{n} / n \in(C-\varepsilon, C+\varepsilon)$ for $n \geqslant N(\varepsilon)$. Therefore, $x_{n}<0$ for $n \geqslant N(\varepsilon)$. Hence, it follows that x_{n} and C are of the same sign for $n \geqslant N(\varepsilon)$. By hypothesis (2.2), if x_{n} is a solution of (E2), $-x_{n}$ satisfies (E2) with h_{n} replaced by $\bar{h}_{n}=-h_{n}$. Thus, one can consider behavior of a solution of one of these equations.

Choose constants A_{1} and A_{2} in the following way: $0<A_{1}<C, 0<A_{2}<c_{i}$ for $i=0,1$ such that $g_{i}(n), i=0,1$ is not identically zero. Select any $\varepsilon>0$ such that $0<A_{1}<C-\varepsilon$ and $0<A_{2}<c_{i}-\varepsilon$ for $i=0,1$. Then there exist such constants $N_{C, \varepsilon}, N_{c_{0}, \varepsilon}, N_{c, \varepsilon}$ that:
if $n \geqslant N_{C, \varepsilon}$ then

$$
\begin{equation*}
C+\varepsilon>\frac{\Delta^{i} x_{n}}{n^{1-i}}>C-\varepsilon>A_{1} \quad \text { for } n \geqslant N_{C, \varepsilon} \tag{2.5}
\end{equation*}
$$

if $n \geqslant N_{c_{i}, \varepsilon}, \quad i=0,1$ then

$$
\begin{align*}
& c_{0}+\varepsilon>n^{p_{0}} g_{0}(n)>c_{0}-\varepsilon>A_{2} \quad \text { for } n \geqslant N_{c_{0}, \varepsilon}, \tag{2.6}\\
& c_{1}+\varepsilon>n^{p_{1}} g_{1}(n)>c_{1}-\varepsilon>A_{2} \quad \text { for } n \geqslant N_{c_{1}, \varepsilon} . \tag{2.7}
\end{align*}
$$

Let us denote $N_{1}=\max \left[N_{C, 6}, N_{c_{0}, \varepsilon}, N_{c_{1}, \varepsilon}\right]$. Then inequalities (2.5)-(2.7) hold for $n>N_{1}$. Let K denote the set of those index k for which p_{k} associated with g_{k} by (2.1) have the property $p_{k}>t_{k}(1-k)+1$. Let J denote the set of those index j whose associated p_{j} fulfils the inequality $p_{j} \leqslant t_{j}(1-j)+1$. Then Eq. (E2) can be rewritten in the form

$$
\begin{equation*}
\Delta^{2} x_{n}+\sum_{k \in K} g_{k}(n)\left[\Delta^{k} x_{n}\right]^{t_{k}}-h_{n}=-\sum_{j \in J} g_{j}(n)\left[\Delta^{j} x_{n}\right]^{t_{j}} . \tag{2.8}
\end{equation*}
$$

In face of (2.5)-(2.7) and (2.4) we have

$$
\begin{align*}
\sum_{j \in J} g_{j}(n)\left[\Delta^{j} x_{n}\right]^{t_{j}} & =\sum_{j \in J} n^{p_{j}} g_{j}(n)\left[\frac{\Delta^{j} x_{n}}{n^{1-j}}\right]^{t_{j}} n^{t_{j}(1-j)-p_{j}} \tag{2.9}\\
& >\sum_{j \in J} A_{2} A_{1}^{t_{j}} n^{t_{j}(1-j)-p_{j}}>0 .
\end{align*}
$$

Using (2.9) to (2.8), one yields

$$
\begin{equation*}
\Delta^{2} x_{n}+\sum_{k \in K} g_{k}(n)\left[\Delta^{k} x_{n}\right]^{t_{k}}-h_{n}=-A_{2} A_{1}^{t_{1}} n^{t_{q}(1-q)-p_{q}}, \quad q \in J . \tag{2.10}
\end{equation*}
$$

Summation (2.10) over n gives

$$
\begin{align*}
& \Delta x_{n}-\Delta x_{N_{1}}+\sum_{k \in K} \sum_{j=N_{1}}^{n-1} g_{k}(j)\left[\Delta^{k} x_{j}\right]^{t_{k}}-\sum_{j=N_{\mathrm{l}}}^{n-1} h_{j} \tag{2.11}\\
& \leqslant
\end{align*}
$$

But $t_{k}(1-k)-p_{k}<-1$ for any $k \in K$. Therefore,

$$
\begin{aligned}
\sum_{j=N_{1}}^{n-1} g_{k}(j)\left[\Delta^{k} x_{j}\right]^{]_{k}} & =\sum_{j=N_{1}}^{n-1} j^{p_{k}} g_{k}(j)\left[\frac{\Delta^{k} x_{j}}{j^{1-k}}\right]^{t_{k}} j^{t_{k}(1-k)-p_{k}} \\
& \leqslant\left(c_{k}+\varepsilon\right)(c+\varepsilon)^{t_{k}} \sum_{j=N_{1}}^{\infty} j^{t_{k}(1-k)-p_{k}}
\end{aligned}
$$

Hence in (2.11) as $n \rightarrow \infty$ we have

- $\Delta x_{n} \rightarrow C$ (by assumptions),
- $\Delta x_{N_{1}} \quad$ is finite,
- the series $\sum_{j=N_{1}}^{\infty} g_{k}(j)\left[\Delta^{k} x_{j}\right]^{t_{k}}$ and $\sum_{j=N_{1}}^{\infty} h_{j}$ are convergent.

Therefore, the left-hand side of (2.11) is finite. Since $r_{q}(1-q)-p_{q} \geqslant-1$, the right-hand side of (2.11) approaches $-\infty$ as $n \rightarrow \infty$. We have a contradiction. It means that if a solution of (E2) possesses the asymptotic behavior $\left(\mathrm{AB}^{*}\right)$ then all $p_{i}>t_{i}(1-i)+1$.

References

[1] A. Drozdowicz, On the asymptotic behavior of solutions of second order nonhomogeneous difference equations, Ann. Mat. Pura. Appl. CLV (1989) pp. 75-84.
[2] G.M. Fichtengolc, Kurs differencial'nogo i integral'nogo iscislenija, t. 1, Moskva-Leningrad (1948), in Russian.
[3] T.G. Hallam, Asymptotic behavior of the solutions of an nth order nonhomogeneous ordinary differential equation, Trans. Amer. Math. Soc. 122 (1966) 177-196.
[4] M. Migda, Asymptotic properties of solutions of higher order difference equations, Radovi Matematički 5 (1989) 297-309.
[5] J. Popenda, On the discrete analogy of Gronwall lemma, Demonstratio Math. 16 (1) (1983) pp. 11-15.
[6] J. Popenda, J. Werbowski, On the asymptotic behavior of the solutions of difference equations of second order, Comm. Math. 22 (1980) 135-142.

[^0]: * Corresponding author. E-mail: adrozdow@math.put.poznan.pl

 0377-0427/97/\$17.00 © 1997 Elsevier Science B.V. All rights reserved PII S0377-0427(97)00011-3

