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This paper deals with the dynamics of a predator–prey model with Hassell–Varley–Holling
functional response. First, we show that the predator coexists with prey if and only if
predator’s growth ability is greater than its death rate. Second, using a blow-up technique,
we prove that the origin equilibrium point is repelling and extinction of both predator
and prey populations is impossible. Third, the local and global stability of the positive
steady state coincide when the predator interference is large. Finally, for a typical biological
case, we show instability of the positive equilibrium implies global stability of the limit
cycle. Numerical simulations are carried out for a hypothetical set of parameter values to
substantiate our analytical findings.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Predator–prey interactions have long been the subject of wild interest in the biomathematical literature. The classical
Gause type model for a prey population of density N and a predator population of density P may be written as⎧⎪⎪⎨

⎪⎪⎩
dN

dt
= B(N) − ϕ(N, P )P ,

dP

dt
= eϕ(N, P )P − dP ,

(1.1)

where B(N) is the growth rate of the prey population in the absence of predation. The functional response ϕ(N, P ) rep-
resents the instantaneous rate of prey depletion per predation. The constant e describes the efficiency of the predator in
converting consumed prey into predator offspring, while d denotes the food independent predator mortality rate.

Since the famous work of Lotka [21] and Volterra [26], there has been extensively investigation on the dynamics of
predator–prey models (see, e.g., [7,10–14,18–20,22,27,29] and references therein). In these works, the functional response,
quantifying the amount of prey consumed per predator per unit time, plays an important role in predator–prey dynamics.
Functional responses are conventionally modeled as prey-dependent, where the prey consumption rate by an average preda-
tor is only a function of prey density alone, that is, ϕ(N, P ) = ϕ(N). Different prey-dependent response types (for example,
the mass-action approach in Lotka–Volterra model and Holling types I–III) have been used to model the prey–predator
interactions and get success in describing some ecological communities. As noted in [5], the derived functional response

✩ The work of Liu is supported in part by the NSF of China (10801056, 10971057), Guangdong Province (84510631000730), the Doctoral Program of
Higher Education of China (20094407110001) and China Scholarship Council. That of Lou is supported in part by NSERC of Canada and the MITACS of
Canada.

* Corresponding author.
E-mail addresses: liuxx@scnu.edu.cn (X. Liu), ylou@mun.ca (Y. Lou).
0022-247X/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2010.05.037

https://core.ac.uk/display/82354721?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:liuxx@scnu.edu.cn
mailto:ylou@mun.ca
http://dx.doi.org/10.1016/j.jmaa.2010.05.037


324 X. Liu, Y. Lou / J. Math. Anal. Appl. 371 (2010) 323–340
maybe prey-dependent under the assumption of spatially homogeneous distributions of both predators and prey. However,
when the spatial structure of one or both of the interacting populations are involved, it would be more plausible to take
the predator-dependent functional form, where both predator and prey densities affect the response. Recently, predator-
dependent responses, a terminology taken from [2], have received increasing support from theoretical and empirical study
in ecology (see, e.g., [2,5,16,17]). In 1969, Hassell and Varley [8] proposed a trophic function

ϕ1(N, P ) = αN

Pσ
,

based on the empirical evidence for an adverse influence of predator abundance on the predator ration. In this functional
response, α quantifies the searching efficiency and σ presents the predator interference, which is called the Hassell–Varley
constant. This type of response is referred as the Hassell–Varley response. After that, extended study has been done on
Hassell–Varley response, see, e.g., [1,5,12,24]. In [5], Cosner et al. gave a unified mechanistic approach for Hassell–Varley
response. If predators do not form groups, one can assume σ = 1, which is so-called ratio-dependence and studied by many
authors, see, e.g., [10,11,18,19]. As pointed in [5,12], σ = 1/2 is suitable for terrestrial predators that form a fixed number
of tight groups, σ = 1/3 for aquatic predators that form a fixed number of tight groups, and for most realistic predator–prey
interactions, it can be argued that σ ∈ [1/2,1) since most predators do not form a fixed number of tight groups. Recently,
by manipulating prey density of paper wasps against larvae of the shield beetle in the field, Schenk et al. [23] derived the
following functional response

ϕ2(N, P ) = α( N
Pσ )2

1 + αh( N
Pσ )2

,

which is the Hassell–Varley functional response, adapted for the Holling type III response [17]. Here h is the handling time.
Moreover, it is pointed out in [23] that their study provided the first experimental evidence discriminating between ratio-
and prey-dependence in a natural setting with unconfined predators and prey. It is worthy for us to further study the
dynamics of a predator–prey system with this specific functional response.

The main objective of this paper is to consider a Gause type predator–prey model with Hassell–Varley–Holling functional
response. Suppose the prey population grows logistically in the absence of predation, with the intrinsic growth rate r and
carrying capacity K , that is B(N) = rN(1 − N

K ). Therefore, we focus on the dynamics of the following model⎧⎪⎪⎨
⎪⎪⎩

dN

dt
= rN

(
1 − N

K

)
− αN2 P

αhN2 + P 2σ
,

dP

dt
= −dP + eαN2 P

αhN2 + P 2σ
,

(1.2)

with r, K , d, e, α, h being positive and σ ∈ (0,1) the Hassell–Varley constant.
For the sake of simplicity it is convenient to scale the model to nondimensional form. Thus, in (1.2), we take

t̄ = rt, x = N/K , y = 1/(K
√

αh )
1
σ P ,

and rescale the parameters via

a = (K
√

αh )
1
σ

rhK
, b = d

r
, c = e

rh
.

This leads to (after dropping the bar on t) the following dimensionless system⎧⎪⎪⎨
⎪⎪⎩

dx

dt
= x(1 − x) − ax2 y

x2 + y2σ
:= F1(x, y),

dy

dt
= −by + cx2 y

x2 + y2σ
:= F2(x, y),

(1.3)

where a, b and c are positive constants. Note that when σ = 0, system (1.3) reduces to a predator–prey model with
Holling III functional response while it is a model with ratio-dependent response when σ = 1. We may say that the prey-
dependent and ratio-dependent models are extremes of system (1.3).

In this paper, we shall give an almost complete classification for the asymptotic behavior of the solutions for system (1.3).
According to [15] and our numerical simulations, in the ratio-dependent predator–prey models (with σ = 1), the origin has
its own basin of attraction in phase space and deterministic extinction of both predator and prey populations can occur.
However, our result shows that (0,0) must be a repeller when σ < 1. Moreover, we have a threshold result. The predator
coexists with prey permanently if and only if the predator’s growth ability is greater than its death rate. When the predator’s
growth ability is less than or equal to its death rate, the predator will become extinction and the prey can survive from
predation. Furthermore, a large degree of predator interference may guarantee that local stability of positive equilibrium
implies its global stability. For terrestrial predators that form a fixed number of tight groups, it is often reasonable to assume
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that σ = 1
2 . In this special case, we show that the system admits a unique stable limit cycle if the positive equilibrium is

instable. The choice of suitable Hassell–Varley constant σ is of crucial importance, calling for both empirical and theoretical
studies.

The remainder of this paper is organized as follows. The next section deals with the coexistence and extinction. Local
and global stability analysis of equilibria is established in Sections 3 and 4, respectively. Section 5 focuses on the study of
limit cycles. Each section ends with some carefully designed numerical simulations. Finally, a brief discussion completes the
paper.

2. Coexistence and extinction

In this section, we shall present some preliminary results, including the boundedness of solutions, and try to find condi-
tions to ensure predator–prey coexistence. Observing that lim(x,y)→(0,0) F1(x, y) = lim(x,y)→(0,0) F2(x, y) = 0, we may define
that F1(0,0) = F2(0,0) = 0. Clearly, with this extended definition, both F1 and F2 are continuous functions on R

2+ . It is
easy to see that a solution with non-negative initial value exists and is unique. Moreover, it stays non-negative. Our next
task is to show the boundedness of solutions.

Lemma 2.1. Let (x(t), y(t)) be any solution of (1.3) with non-negative initial condition (x(0), y(0)), then

lim sup
t→∞

(
x(t) + a

c
y(t)

)
� (1 + b)2

4b
.

Proof. Let V (t) = x(t) + ay(t)/c. Differentiating V , one yields

V ′(t) = x(t)
(
1 + b − x(t)

) − bV (t) � (1 + b)2

4
− bV (t).

Thus, we have lim supt→∞ V (t) � (1+b)2

4b and system (1.3) is dissipative. �
Before proving the main result of this section, we need some preliminaries. First, we consider the following ordinary

differential equation

x′(t) = xh(x), (2.1)

where h ∈ C(R+,R) with h(0) > 0 and h′(x) < 0 for all x > 0. In addition, there exists M > 0 such that h(M) < 0. It then
follows from [28, Theorem 5.2.1] that the following statement holds.

Lemma 2.2. The scalar ordinary differential equation (2.1) has a unique positive equilibrium, which is globally attractive in R+ \ {0}.

Consider an auxiliary function

G(z) = z

λ + z2σ

which is defined on [0,∞) with λ > 0 and σ ∈ (0,1), its monotonicity is given by the following lemma.

Lemma 2.3. If σ ∈ (0,1/2], then G ′(z) > 0 for z ∈ [0,∞). If σ ∈ (1/2,1), then G ′(z) > 0 for z ∈ [0, z∗) and G ′(z) < 0 for z ∈ (z∗,∞),
where z∗ = ( λ

2σ−1 )1/(2σ) .

Now, we are in a position to state the main result of this section. It gives conditions which are both necessary and
sufficient conditions for predator–prey coexistence or predator extinction.

Theorem 2.1. Suppose that (x(t), y(t)) is the solution of (1.3) through the initial value (x(0), y(0)) ∈ int(R2+). Then the following
statements are valid:

(i) If c � b, then limt→∞(x(t), y(t)) = (1,0);
(ii) If c > b, then system (1.3) is uniform persistence in the sense that there exists an η > 0 such that lim inft→∞ x(t) � η and

lim inft→∞ y(t) � η.

Proof. Since (x(t), y(t)) ∈ R
2+ , ∀t � 0, we have y′(t) < (−b + c)y � 0. Suppose y(t) → ε > 0 as t → ∞, then y(t) � ε,

∀t � 0 and there exists some t0 such that x(t) � 1 + ε when t � t0. Therefore,

dy = −by + cx2 y
2 2σ

� y

[
−b + c(1 + ε)2

2 2σ

]
, ∀t � t0.
dt x + y (1 + ε) + ε
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Hence, we have y(t) → 0 as t → ∞, a contradiction. Then, y(t) → 0 as t → ∞, and the equation for x is asymptotic to the
following one

dx

dt
= x(1 − x).

By the theory of asymptotically autonomous semiflows (see [25]),

lim
t→∞ x(t) = 1, ∀x(0) > 0.

To prove the uniform persistence, we consider two different cases: 1 − 2σ � 0 and 1 − 2σ < 0.
In the case where 1−2σ � 0, it then follows from Lemma 2.1 that there exist M > 0 and t1 > 0 such that (y(t))1−2σ � M

for t � t1. Hence, Lemma 2.3 implies that

dx

dt
� x(1 − x − aMx), ∀t � t1.

According to the comparison principle and Lemma 2.2, there exists an η1 > 0 such that lim inft→∞ x(t) > η1.
In the case where 1 − 2σ < 0, according to Lemma 2.3, we have

dx

dt
� x

(
1 − x − μx

1−σ
σ

)
,

where μ = a
2σ (2σ − 1)

2σ−1
2σ . By the comparison principle and Lemma 2.2 again, we can show there exists an η1 > 0 such

that lim inft→∞ x(t) > η1.
Therefore, there exists an η1 > 0 such that lim inft→∞ x(t) > η1 for both cases. Consequently, for the predator equation,

there exists a t0 > 0 such that

dy

dt
� y

(
−b + cη2

1

η2
1 + y2σ

)
, ∀t > t0.

It then follows from Lemma 2.2 and the comparison principle that there exists an η2 > 0 such that lim inft→∞ y(t) > η2.
The proof of theorem is completed. �
3. Boundary equilibria

By setting F1(x, y) = 0 and F2(x, y) = 0, we obtain two boundary equilibria E0(0,0) and E1(1,0) for any positive param-
eters (a,b, c) and σ ∈ (0,1). In addition, there exists a positive equilibrium E∗(x∗, y∗) if and only if c > b. In this section,
we will investigate two boundary steady states.

Since the variational matrix at E1 is given by

J (E1) =
(−1 −a

0 −b + c

)
,

it is clear that the following result holds.

Proposition 3.1. If c > b, then E1 is a saddle.

Since the functional response is undefined at the origin, as a sequence, the origin is a so-called “complicated equilibrium”,
and the standard local stability analysis method cannot be applied to E0. To study the behavior of the model system
around E0, we follow the blow-up technique developed by Berezovskaya et al. [4]. For this purpose, we first introduce some
basic notations.

Consider a system of differential equations⎧⎪⎪⎨
⎪⎪⎩

dx

dt
= P (x, y) = Pn(x, y) + P∗(x, y),

dy

dt
= Q (x, y) = Q n(x, y) + Q ∗(x, y),

(3.1)

where Pn(x, y), Q n(x, y) are homogeneous polynomials of the nth order, and

P∗(x, y) = o
(∣∣(x, y)

∣∣n)
, Q ∗(x, y) = o

(∣∣(x, y)
∣∣n)

.

Define the corresponding vector field

W (x, y) = ∂

∂x
P (x, y) + ∂

∂ y
Q (x, y). (3.2)

We assume that the origin is an isolated singular point of (3.1), and let H(x, y) = xQ n(x, y) − y Pn(x, y).
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Definition 3.1. A vector field W (x, y) is non-degenerate if it satisfies the following two conditions:

(C1) polynomials Pn(x, y), Q n(x, y) have no common factors of the form Ax + B y, where at least one of the constants A, B
is non-zero;

(C2) polynomials H(x, y) has no factors of the form (Ax + B y)k , where k > 1.

Making change of variables with x → x, y → yσ , system (1.3) takes the form⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dx

dt
= x(1 − x) − ax2 y

1
σ

x2 + y2
,

dy

dt
= −σby + σ cx2 y

x2 + y2
.

Through time scale change dt → dt/(x2 + y2), it becomes⎧⎪⎪⎨
⎪⎪⎩

dx

dt
= x3 + xy2 − ax2 y

1
σ − x4 − x2 y2,

dy

dt
= σ(c − b)x2 y − σby3.

(3.3)

Let P3(x, y) = x3 + xy2, Q 3(x, y) = σ(c − b)x2 y − σby3, then

H(x, y) = xQ 3(x, y) − y P3(x, y) = xy
[
(σ c − σb − 1)x2 − (σb + 1)y2].

Obviously, the vector field of (3.3) is non-degenerate. After transformations (x, y) → (x, u) with

u = y

x
, x 	= 0,

and the time change dt → x2 dt , we obtain the following system⎧⎪⎪⎨
⎪⎪⎩

dx

dt
= xP3(1, u) + G1(x, u),

du

dt
= H1(u) + G2(x, u),

(3.4)

with

H1(u) = H(1, u) = u
[
(σ c − σb − 1) − (σb + 1)u2],

G1(x, u) = P∗(x, u)/x2, G2(x, u) = (
Q ∗(x, ux) − P∗(x, ux)u

)
/x3.

Thus, if (c − b)σ > 1, H1(u) has two non-negative roots: u1 = 0, u2 =
√

(c−b)σ−1
σb+1 and hence (3.4) has two equilibria

O 1(0, u1) and O 2(0, u2) on u-axis. If (c−b)σ < 1, H1(u) has only one non-negative roots u1 = 0, and consequently, (3.4) has
one equilibrium O 1(0, u1). Therefore, we have the following lemma.

Lemma 3.1. If (c − b)σ > 1, O 1(0, u1) is an instable node whereas O 2(0, u2) is a saddle respectively. If (c − b)σ < 1, O 1 is a saddle.

Proof. It is easy to see that P3(1, u1) = 1 and P3(1, u2) = 1 + u2
2 > 0. If (c − b)σ > 1, then H ′

1(u1) = (c − b)σ − 1 > 0
and H ′

1(u2) = −[(c − b)σ − 1] < 0. It then follows from [4, Proposition 3] that O 1 is an instable node and O 2 is a saddle,
respectively. If (c − b)σ < 1, then H ′

1(u1) = (c − b)σ − 1 < 0, which implies O 1 is a saddle. �
Similarly, after transformations (x, y) → (x, v) with

v = x

y
, y 	= 0,

and the time change dt → y2 dt , we obtain the system⎧⎪⎪⎨
⎪⎪⎩

dv

dt
= H2(v) + K1(v, y),

dy

dt
= y Q 3(v,1) + K2(v, y),

(3.5)

where
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Fig. 1. Structure of the neighborhood of the origin point O in the first quadrant.

H2(v) = −H(v,1) = −v
([

(c − b)σ − 1
]
v2 − (σb + 1)

)
,

K1(v, y) = (
P∗(v y, y) − Q ∗(v y, y)v

)
/y3,

K2(v, y) = Q ∗(v y, y)/y2.

Thus, system (3.5) has two equilibria O ∗
1(0,0) and O ∗

2(v2,0) on the v-axis. Point O ∗
1 is a new equilibrium and it does

not exist in the (x, u)-plane. However, point O ∗
2 corresponds to point O 2, and we do not need to study it again.

Note that H ′
2(0) = σb + 1 > 0 and Q 3(0,1) = −σb < 0. It is clear from [4, Proposition 3] that the next conclusion is

valid.

Lemma 3.2. O ∗
1 is a saddle.

According to Lemmas 3.1 and 3.2, it then follows from [4, Proposition 3] that the following result holds for the singular
equilibrium (0,0) of system (1.3).

Theorem 3.1. If (c − b)σ > 1, then the neighborhood of (0,0) in the first quadrant has a saddle sector and a repelling node sector. If
(c − b)σ < 1, then the neighborhood of (0,0) in the first quadrant has only a saddle sector.

Remark 3.1. Theorem 3.1 implies that the origin equilibrium E0 is repelling, which is illustrated in Fig. 1. If (c − b)σ = 1,
O i (i = 1,2) are also complicated equilibria and need to use blow-up again. However, Theorem 4.3 in Section 4 indicates
the positive equilibrium is global asymptotical stable for this case. Hence, when σ < 1, the possibility of predator–prey
extinction is excluded. This is also consistent with our threshold result (Theorem 2.1).

4. Positive equilibrium

In the previous section, we have observed that instability of the boundary equilibrium point E1(1,0) gives support for
the existence of a positive interior equilibrium E∗ . The parametric condition for the existence of positive equilibrium E∗ is
b < c. Now we try to find conditions under which the positive equilibrium E∗ is globally stable. Hence, in this section, we
always assume c > b.

According to Theorem 2.1, system (1.3) is uniformly persistent and there exists a positive equilibrium E∗(x∗, y∗) satisfying⎧⎪⎪⎨
⎪⎪⎩

1 − x∗ − ax∗ y∗
x2∗ + y2σ∗

= 0,

cx2∗
x2∗ + y2σ∗

= b,

which is equivalent to⎧⎪⎪⎨
⎪⎪⎩

y∗ = c

ab
x∗(1 − x∗), x∗ > 0,

y∗ =
(√

c

b
− 1

) 1
σ

x
1
σ∗ .

(4.1)

We first study the local stability of the positive equilibrium E∗ .

4.1. Local stability

The variational matrix of system (1.3) is given by

J (x, y) =
⎛
⎝1 − 2x − 2axy

x2+y2σ + 2ax3 y
(x2+y2σ )2 −ax2[x2+(1−2σ )y2σ ]

(x2+y2σ )2

2cxy2σ+1 −b + cx2[x2+(1−2σ )y2σ ]

⎞
⎠ .
(x2+y2σ )2 (x2+y2σ )2
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Hence, the variational matrix of system (1.3) at E∗ becomes

J (E∗) =
⎛
⎝ x∗[−1 + a(x2∗−y2σ∗ )y∗

(x2∗+y2σ∗ )2 ] −ax2∗[x2∗+(1−2σ )y2σ∗ ]
(x2∗+y2σ∗ )2

2cx∗ y2σ+1∗
(x2∗+y2σ∗ )2 − 2σ cx2∗ y2σ∗

(x2∗+y2σ∗ )2

⎞
⎠ .

A straightforward calculation leads that

det
(

J (E∗)
) = −x∗

[
−1 + a(x2∗ − y2σ∗ )y∗

(x2∗ + y2σ∗ )2

]
· 2σ cx2∗ y2σ∗
(x2∗ + y2σ∗ )2

+ ax2∗[x2∗ + (1 − 2σ)y2σ∗ ] · 2cx∗ y2σ+1∗
(x2∗ + y2σ∗ )4

= 2σ cx3∗ y2σ∗
(x2∗ + y2σ∗ )2

+ 2acx3∗ y2σ+1∗
(x2∗ + y2σ∗ )4

[−σ
(
x2∗ − y2σ∗

) + x2∗ + (1 − 2σ)y2σ∗
]

= 2σ cx3∗ y2σ∗
(x2∗ + y2σ∗ )2

+ 2ac(1 − σ)x3∗ y2σ+1∗
(x2∗ + y2σ∗ )4

(
x2∗ + y2σ∗

)
> 0,

and

tr
(

J (E∗)
) = x∗

(x2∗ + y2σ∗ )2

[
a
(
x2∗ − y2σ∗

)
y∗ − 2σ cx∗ y2σ∗ − (

x2∗ + y2σ∗
)2]

.

Notice that x2∗ + y2σ∗ = c
b x2∗ . By the first equation of (4.1), we get

tr
(

J (E∗)
) = x∗

(x2∗ + y2σ∗ )2

(
a

[
x2∗ −

(
c

b
− 1

)
x2∗

]
· c

ab
x∗(1 − x∗) − σ cx∗

(
c

b
− 1

)
x2∗ −

(
c

b

)2

x4∗
)

= cx4∗
b(x2∗ + y2σ∗ )2

[(
2 − c

b

)
(1 − x∗) − 2bσ

(
c

b
− 1

)
−

(
c

b

)
x∗

]

= cx4∗
b2(x2∗ + y2σ∗ )2

[
2b(1 − x∗) − c − 2b(c − b)σ

]
.

Thus, the stability of E∗ is determined by the sign of tr( J (E∗)). In other words, E∗ is locally asymptotically stable (or
instable) if tr( J (E∗)) < 0 (> 0).

Define

δ := [
2b(1 − x∗) − c

]
/
[
2b(c − b)

]
,

then the following conclusion holds.

Theorem 4.1. The following statements are valid for system (1.3):

(a) E∗ is locally asymptotically stable if σ > δ.
(b) E∗ is instable if σ < δ.

Moreover, we have the following corollary since 2b(1 − x∗) − c < 0 (δ < 0) whenever x∗ � 1
2 .

Corollary 4.1. If x∗ � 1
2 , then E∗ is locally asymptotically stable.

Next, we study the global stability of E∗ .

4.2. Global stability

In this subsection, we consider the global asymptotical stability of the positive equilibrium. The techniques used here are
similar to those in [12]. Using the change of variables (x, y) → (u, v) with u = x/yσ , v = yγ , where γ > 0 will be chosen
later, we reduce system (1.3) into the following form⎧⎨

⎩
u′(t) = g(u) − φ1(u)vγ1 − φ2(u)vγ2 := f1(u, v),

v ′(t) = ϕ(u)v := f2(u, v),

u(0) > 0, v(0) > 0,

(4.2)

where
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g(u) = u[(1 + σb) + (1 + σb − σ c)u2]
1 + u2

,

φ1(u) = u2,

φ2(u) = au2

1 + u2
,

ϕ(u) = γ

(
−b + cu2

1 + u2

)
,

with γ1 = σ/γ and γ2 = (1 − σ)/γ .
If σ ∈ (0,1/2), then we set γ = σ . In this case, γ1 = 1 and γ2 � 1. If σ ∈ [1/2,1), then we choose γ = 1 − σ . Hence

γ1 = σ/(1 − σ) � 1 and γ2 = 1. Therefore, the vector field ( f1, f2) is C1 smooth in R
2+ . That is, (4.2) has better smoothness

than (1.3). Moreover, the following remark remains valid.

Remark 4.1. The above change of variables does not change the numbers of positive equilibria and periodic orbits (if any) of

system (1.3). The positive equilibrium E∗(x∗, y∗) of (1.3) changes into (u∗, v∗) of (4.2), where u∗ =
√

b
c−b and f1(u∗, v∗) = 0.

In addition,

ϕ(u) = γ (c − b)(u2 − u2∗)
1 + u2

.

Clearly, system (4.2) has a trivial equilibrium Ẽ0(0,0) and a positive equilibrium Ẽ(u∗, v∗). Moreover, system (4.2) admits
a boundary equilibrium Ẽ1(u0,0) with u0 = (1 +σb)/[σ(c −b)− 1] if and only if 1 +σ(b − c) < 0. In fact, under the change
of variables, the boundary equilibrium E1 in system (1.3) is transformed to (∞,0) and E0 splits into two equilibria Ẽ0
and Ẽ1. Here we only need to investigate the positive equilibrium Ẽ(u∗, v∗), and its stability is given by the following
lemma.

Lemma 4.1. The following statements are true for system (4.2):

(i) If σ < δ, Ẽ∗ is an instable focus or node;
(ii) If δ < σ , Ẽ∗ is locally asymptotically stable.

Proof. For the sake of simplicity, we denote A = 1+σb and B = 1+σb−σ c. Note that the variational matrix of system (4.2)
at Ẽ∗ is given by

J (Ẽ∗) =
( ∂ f1

∂u (Ẽ∗) ∂ f1
∂v (Ẽ∗)

2cγ u∗v∗
(1+u2∗)2 0

)
.

Since ∂ f1
∂v (Ẽ∗) < 0, det( J (Ẽ∗)) > 0 and the stability of Ẽ∗ is determined by the sign of the trace of J (Ẽ∗).

Our next task is to show tr( J (Ẽ∗)) = tr( J (E∗)). Note that

A + Bu2∗
u2∗ + 1

− u∗vγ1∗ − au∗
u2∗ + 1

vγ2∗ = 0.

Hence one has

tr
(

J (Ẽ∗)
) = g′(u∗) − φ′

1(u∗)vγ1∗ − φ′
2(u∗)vγ2∗

= B + (B − A)(u2∗ − 1)

(u2∗ + 1)2
− 2u∗vγ1∗ − 2au∗

(u2∗ + 1)2
vγ2∗

= B + (B − A)(u2∗ − 1)

(u2∗ + 1)2
− u∗vγ1∗ − 2au∗ − au∗(1 + u2∗)

(u2∗ + 1)2
vγ2∗ − (A + Bu2∗)(1 + u2∗)

(u2∗ + 1)2

= −u∗vγ1∗ + 2(A − B)u2∗
(u2∗ + 1)2

− au∗(1 − u2∗)
(u2∗ + 1)2

vγ2∗

= −x∗ + a(x2∗ − y2σ∗ )y∗
(x2∗ + y2σ∗ )2

− 2σ cx2∗ y2σ∗
(x2∗ + y2σ∗ )2

= tr
(

J (E∗)
)
.

Thus the local stability of E∗ and Ẽ∗ are the same. By Theorem 4.1, Ẽ∗ is an instable focus or node if σ < δ and locally
asymptotically stable if σ > δ. �
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The above lemma tells us that Ẽ∗ is locally asymptotically stable if σ > δ. An interesting problem naturally arise: whether
E∗ is also globally asymptotically stable? We will first answer this problem partially under the most biologically interesting
case of σ � 1/2.

Let us consider the following function

q(v, ι) =
{

vι−vι∗
v−v∗ , if v 	= v∗,
ιvι−1∗ , if v = v∗,

(4.3)

with ι > 0. Clearly, q(·, ι) is a positive C1 function on [0,∞) and q(v,1) = 1 for v � 0. Additionally, ∂q(v,ι)
∂v > 0 (< 0) for

v > 0 if ι > 1 (< 1). Since we consider the case where σ � 1
2 , we have γ1 = σ

1−σ � γ2 = 1. Denote q(v) = q(v, γ1), then
q′(v) � 0 for v > 0.

Lemma 4.2. Assume that (u, v) is a solution of system (4.2) with u(0) > 0, v(0) > 0, then

v(t) − v∗ = −σ c + auv − (θ1 vγ1 + av)κ(u)

γ cu∗[q(v) + θ2] · v ′(t)
v(t)

− 1

u∗[q(v) + θ2] · u′(t)
u(t)

,

where κ(u) = 1+u2

u+u∗ , θ1 = c
c−b and θ2 = a(c−b)

c .

Proof. It is easy to see that

v ′(t)
v(t)

= γ (c − b)(u2 − u2∗)
1 + u2

and

u′(t)
u(t)

=
(

A + Bu2

1 + u2
− A + Bu2∗

1 + u2∗

)
− (

uvγ1 − u∗vγ1∗
) −

(
auv

1 + u2
− au∗v∗

1 + u2∗

)
,

where A = 1 + σb, B = 1 + σb − σ c. A direct computation produces that

A + Bu2

1 + u2
− A + Bu2∗

1 + u2∗
= (B − A)(u2 − u2∗)

(1 + u2)(1 + u2∗)
= −σ

γ
· v ′(t)

v(t)
.

Moreover, we have

uvγ1 − u∗vγ1∗ = (u − u∗)vγ1 + u∗
(

vγ1 − vγ1∗
)

= (1 + u2)vγ1

γ (c − b)(u + u∗)
· v ′(t)

v(t)
+ u∗q(v)(v − v∗), (4.4)

and

auv

1 + u2
− au∗v∗

1 + u2∗
= a[u(u2∗ − u2)v + (1 + u2)(uv − u∗v∗)]

(1 + u2)(1 + u2∗)

= a(u − u∗)v

1 + u2∗
+ au∗(v − v∗)

1 + u2∗
− au(u2 − u2∗)v

(1 + u2)(1 + u2∗)

= a(1 + u2)v

γ c(u + u∗)
· v ′(t)

v(t)
− auv

γ c
· v ′(t)

v(t)
+ au∗(c − b)

c
(v − v∗).

Therefore, it follows that

u′(t)
u(t)

= v ′(t)
v(t)

[
−σ

γ
+ auv

γ c
− (1 + u2)vγ1

γ (c − b)(u + u∗)
− a(1 + u2)v

γ c(u + u∗)

]
− u∗(v − v∗)

[
q(v) + a(c − b)

c

]

= v ′(t)
v(t)

· −σ c + auv − (θ1 vγ1 + av)κ(u)

γ c
− u∗(v − v∗)

[
q(v) + θ2

]
,

where κ(u) = 1+u2

u+u∗ , θ1 = c
c−b and θ2 = a(c−b)

c . Hence, we obtain

v(t) − v∗ = −σ c + auv − (θ1 vγ1 + av)κ(u)

γ cu∗[q(v) + θ2] · v ′(t)
v(t)

− 1

u∗[q(v) + θ2] · u′(t)
u(t)

.

This completes the proof. �
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Lemma 4.3. Let Γ (t) = (u(t), v(t)) be any positive T -periodic solution of system (4.2), then

T∫
0

tr
(

J
(
Γ (t)

))
dt =

T∫
0

[(
B − A + B

1 + u2

)
− 2

(
u − u

1 + u2

)
vγ1

]
dt.

Proof. Assume that Γ (t) = (u(t), v(t)) is a T -periodic solution of system (4.2), one has

tr
(

J
(
Γ (t)

)) = g′(u) − φ′
1(u)vγ1 − φ′

2(u)vγ2 + v ′(t)
v(t)

= v ′(t)
v(t)

+ g′(u) − φ′
1(u)vγ1 − φ′

2(u)

φ2(u)

[
g(u) − φ1(u)vγ1 − u′(t)

]
= v ′(t)

v(t)
+ φ′

2(u)

φ2(u)
u′(t) + φ2(u)

[(
g(u)

φ2(u)

)′
−

(
φ1(u)

φ2(u)

)′
vγ1

]
.

Since

T∫
0

v ′(t)
v(t)

dt = 0 and

T∫
0

φ′
2(u(t))

φ2(u(t))
u′(t)dt = 0,

we get

T∫
0

tr
(

J
(
Γ (t)

))
dt =

T∫
0

φ2(u)

[(
g(u)

φ2(u)

)′
−

(
φ1(u)

φ2(u)

)′
vγ1

]
dt

=
T∫

0

au2

1 + u2

(
Bu2 − A

au2
− 2u

a
vγ1

)
dt

=
T∫

0

(
Bu2 − A

1 + u2
− 2u3

1 + u2
vγ1

)
dt

=
T∫

0

[(
B − A + B

1 + u2

)
− 2

(
u − u

1 + u2

)
vγ1

]
dt.

Hence, the lemma holds. �
Lemma 4.4. Let Γ (t) = (u(t), v(t)) be any T -periodic solution of system (4.2), then

T∫
0

tr
(

J
(
Γ (t)

))
dt = tr

(
J (Ẽ∗)

)
T −

∫ ∫
Ω

Φ(u, v)du dv,

where Ω is the bounded region enclosed by Γ and

Φ(u, v) = 2bcvγ1θ2κ
′(u) + 2abv(c − b)q(v)(1 − κ ′(u))

γ c2 v(c − b)[q(v) + θ2] + 2bθ2q′(v)

uc[q(v) + θ2]2
.

Proof. By Lemma 4.3, one has

T∫
0

(
tr

(
J
(
Γ (t)

)) − tr
(

J (Ẽ∗)
))

dt

= −
T∫

0

(
A + B

1 + u2
− A + B

1 + u2∗

)
dt − 2

T∫
0

(
uvγ1 − u∗vγ1∗

)
dt + 2

T∫
0

(
uvγ1

1 + u2
− u∗vγ1∗

1 + u2∗

)
dt.

A straightforward calculation leads to
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T∫
0

(
A + B

1 + u2
− A + B

1 + u2∗

)
dt =

T∫
0

(A + B)(u2 − u2∗)
(1 + u2∗)(1 + u2)

dt = − A + B

γ c

T∫
0

v ′(t)
v(t)

dt = 0.

On the other hand,

2

T∫
0

(
uvγ1

1 + u2
− u∗vγ1∗

1 + u2∗

)
dt − 2

T∫
0

(
uvγ1 − u∗vγ1∗

)
dt

= 2

T∫
0

−u(u2 − u2∗)vγ1 + (1 + u2)(uvγ1 − u∗vγ1∗ )

(1 + u2∗)(1 + u2)
dt − 2

T∫
0

(
uvγ1 − u∗vγ1∗

)
dt

= −2

T∫
0

u(u2 − u2∗)vγ1

(1 + u2)(1 + u2∗)
dt − 2

T∫
0

u2∗
1 + u2∗

(
uvγ1 − u∗vγ1∗

)
dt

= −2

T∫
0

uvγ1

γ c
· v ′(t)

v(t)
dt − 2b

c

T∫
0

(
uvγ1 − u∗vγ1∗

)
dt.

Using (4.4) we have

T∫
0

(
uvγ1 − u∗vγ1∗

)
dt =

T∫
0

(1 + u2)vγ1

γ (c − b)(u + u∗)
· v ′(t)

v(t)
dt +

T∫
0

u∗q(v)(v − v∗)dt.

It then follows from Lemma 4.3 that

T∫
0

(
tr

(
J
(
Γ (t)

)) − tr
(

J (Ẽ∗)
))

dt

= −
T∫

0

{
2bvγ1κ(u)

γ c(c − b)
+ 2uvγ1

γ c
+ 2bq(v)[−σ c + auv − (θ1 vγ1 + av)κ(u)]

γ c2[q(v) + θ2]
}

· v ′(t)
v(t)

dt +
T∫

0

2bq(v)

c[q(v) + θ2] · u′(t)
u(t)

dt

=
∮
Γ

M(u, v)du + N(u, v)dv,

where

M(u, v) = 2bq(v)

uc[q(v) + θ2] , and

N(u, v) = − 1

v

{
2bvγ1κ(u)

γ c(c − b)
+ 2uvγ1

γ c
+ 2bq(v)[−σ c + auv − (θ1 vγ1 + av)κ(u)]

γ c2[q(v) + θ2]
}
.

The Green’s Theorem implies that

T∫
0

(
tr

(
J
(
Γ (t)

)) − tr
(
(Ẽ∗)

))
dt =

∫ ∫
Ω

(
∂N

∂u
− ∂M

∂v

)
du dv

= −
∫ ∫
Ω

{
2bcvγ1θ2κ

′(u) + 2abv(c − b)q(v)(1 − κ ′(u))

γ c2 v(c − b)[q(v) + θ2] + 2bθ2q′(v)

uc[q(v) + θ2]2

}
du dv

= −
∫ ∫
Ω

Φ(u, v)du dv,

where Ω is the bounded region enclosed by Γ . This proves the lemma. �
Lemma 4.5. Let σ � 1 . If Ẽ∗ is locally asymptotically stable, then system (4.2) has no nontrivial periodic orbit in int(R2+).
2
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Proof. For any u � 0 and v � 0, we have q′(v) � 0 and κ ′(u) = u2+2uu∗−1
(u+u∗)2 < 1. Hence Φ(u, v) > 0 for u > 0 and v > 0.

Assume, by contradiction, there exists a nontrivial periodic orbit of (4.2) with period T > 0. It then follows from Lemma 4.4
that

∫ T
0 tr( J (Γ (t)))dt < 0, a contradiction with the fact that Ẽ∗ is locally asymptotically stable. The proof is completed. �

By Remark 4.1, we obtain the following theorem for system (1.3).

Theorem 4.2. Let σ � 1
2 , then local and global stability of E∗ coincide for system (1.3).

Note that Theorem 4.2 is not applicable for σ < 1
2 since we cannot determine the sign of Φ(u, v) for ∂q(v,γ1)

∂v < 0 in this
case. However, we can show that it is globally stable when σ � 1/(c − b) by Lyapunov function and LaSalle’s invariance
principle.

Lemma 4.6. Let σ ∈ [ 1
c−b ,1), then Ẽ∗ is globally asymptotically stable for system (4.2) in int(R2+).

Proof. Note that δ = 2b(1−x∗)−c
2b(c−b)

< 1
c−b . Hence Ẽ∗ is locally asymptotically stable if σ ∈ [ 1

c−b ,1). Consider the following
Lyapunov function

V (u, v) = v
− g(u∗)

φ2(u∗) exp

(
φ1(u∗)
φ2(u∗)

· vγ1

γ1
+ vγ2

γ2
+

u∫
u∗

ϕ(τ )

φ2(τ )
dτ

)

for (u, v) ∈ int(R2+). The derivative of V along the solution of system (4.2) satisfies

V̇ (u, v)

V (u, v)
= − g(u∗)

φ2(u∗)
ϕ(u) + φ1(u∗)

φ2(u∗)
ϕ(u)vγ1 + ϕ(u)vγ2 + ϕ(u)

φ2(u)

[
g(u) − φ1(u)vγ1 − φ2(u)vγ2

]
=

(
g(u)

φ2(u)
− g(u∗)

φ2(u∗)

)
ϕ(u) −

(
φ1(u)

φ2(u)
− φ1(u∗)

φ2(u∗)

)
ϕ(u)vγ1

= 1

a
ϕ(u)(u − u∗)

[(
1 + σ(b − c)

) − 1 + σb

uu∗
− (u + u∗)vγ1

]
.

Clearly, (c − b)σ � 1 implies that V̇ (u, v) � 0 for (u, v) ∈ int(R2+). Therefore, the lemma follows from LaSalle’s invariance
principle. �

For the positive equilibrium E∗ of system (1.3), we have the following result.

Theorem 4.3. Let σ ∈ [ 1
c−b ,1), then E∗ is globally asymptotically stable for system (1.3) in int(R2+).

Fig. 2 shows that when σ � 1
2 or σ � 1

c−b , local stability of positive equilibrium implies its global stability.

5. Limit cycles

If σ < δ and c > b, then the positive equilibrium E∗ is instable and the system is uniformly persistent. According to the
Poincaré–Bendixson Theorem, there will be at least one limit cycle in the positive quadrant of the xy-plane. Now we can
state the following lemma.

Lemma 5.1. If c > b and σ < δ, there is at least one limit cycle in system (1.3).

The above result establishes the existence of a periodic solution. Our next task is to find the conditions for uniqueness
of the limit cycle. To do this, we will study a special case where terrestrial predator form a fixed number of tight group,
that is σ = 1

2 . In this case, one has γ1 = γ2 = 1, and system (4.2) becomes⎧⎨
⎩

u′(t) = φ(u)
[
h(u) − v

]
,

v ′(t) = ϕ(u)v,

u(0) > 0, v(0) > 0

(5.1)

with

φ(u) = u2 + au2

2
and h(u) = g(u)/φ(u).
1 + u
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Fig. 2. Local and global stability of E∗ coincide if σ � 1
2 or σ � 1

c−b .

By Theorems 4.2 and 4.3, the limit cycle exists only when positive equilibrium is not globally stable, that is, B = 1 + σb −
σ c > 0 and h′(u∗) > 0. Note that system (5.1) is similar to those discussed in Ref. [14], and the assumptions (A1)–(A5)
in [14, Theorem 2.2] are satisfied except the latter part of assumption (A3), i.e., there exists K > 0 such that g′(K ) < 0 and
(x − K )g(x) < 0 for x ∈ (0,∞) \ {K }. Hence, we cannot directly use [14, Theorem 2.2] to prove the uniqueness of limit cycle.
In this subsection, we follow the proof idea developed in [6,14] to overcome it. For this purpose we need to prove the
following lemma first.
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Lemma 5.2. If c > b and h′(u∗) > 0, then

d

du

(
φ(u)h′(u)

ϕ(u)h(u)

)
< 0 (5.2)

for u ∈ (0,∞) \ {u∗}.

Proof. It is easy to obtain

h′(u) =
[

A + Bu2

u3 + (a + 1)u

]′
= −Bu4 + Cu2 − D

u2(u2 + a + 1)2
,

where

C = B(a + 1) − 3A = (a − 2)(1 + σb) − σ c(a + 1),

and

D = (1 + σb)(a + 1).

Denote β(u) = −Bu4 + Cu2 − D , then β(u∗) = h′(u∗)(u2∗(u2∗ + a + 1)2) > 0. Moreover,

φ(u)h′(u) = β(u)

(u2 + 1)(u2 + a + 1)

and

ϕ(u)h(u) = γ (c − b)(u2 − u2∗)(A + Bu2)

u(1 + u2)[u2 + (a + 1)] .

Hence, we have

φ(u)h′(u)

ϕ(u)h(u)
= uβ(u)

γ (c − b)(u2 − u2∗)(A + Bu2)
.

Note that

uβ(u) = uβ(u∗) + u
[
β(u) − β(u∗)

] = uβ(u∗) − u
(
u2 − u2∗

)[
B
(
u2 + u2∗

) − C
]
.

Consequently, we obtain

φ(u)h′(u)

ϕ(u)h(u)
= 1

γ (c − b)

{
β(u∗)u

(u2 − u2∗)(A + Bu2)
− u[B(u2 + u2∗) − C]

A + Bu2

}

:= 1

γ (c − b)

[
β(u∗)P1(u) − P2(u)

]
.

Since

P ′
1(u) = (u2 − u2∗)(A + Bu2) − 2u2[A + Bu2 − B(u2 − u2∗)]

[(u2 − u2∗)(A + Bu2)]2

= −3Bu4 + Buu2u2∗ − Au2 − Au2∗
[(u2 − u2∗)(A + Bu2)]2

= − 11
4 Bu4 − B( u2

2 − u∗)2 − Au2 − σ cu2∗
[(u2 − u2∗)(A + Bu2)]2

< 0,

and note that β(u∗) > 0 implies C > Bu2∗ + D/u2∗ ,

P ′
2(u) = B2u4 + B(3A + C − Bu2∗)u2 + A(C − Bu2∗)

(A + Bu2)2
> 0,

we proved d
du (

φ(u)h′(u)
ϕ(u)h(u)

) < 0 for u ∈ (0,∞) \ {u∗}. �
By replacing (0, K ) \ {u∗} with (0,∞) \ {u∗}, we can see that the proof of [14, Theorem 2.2] still holds. It then follows

from [14, Theorem 2.2] and Lemma 5.2 that system (1.3) admits a unique limit cycle provided that the positive equilibrium
is instable.
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Fig. 3. When σ = 1
2 , the limit cycle is globally stable in int(R2+) provided that the positive equilibrium is instable.

Theorem 5.1. If δ > σ = 1/2, then there exists a unique stable limit cycle.

Remark 5.1. By the threshold result (Theorem 2.1), combined with the Poincaré–Bendixson Theorem, we can see that this
unique limit cycle is globally stable in int(R2+).

Fig. 3 numerically shows that when σ = 1
2 , instability of the positive equilibrium implies the global stability of the limit

cycle.

6. Discussion

In some predator–prey models, it is a classical assumption that the consumption rate of a single predator (so-called
functional response) is prey-dependent, that is, predators encounter prey at random and that the response function depends
solely on prey abundance. However, it is clear that predator abundance can influence the functional response and hence, it
is reasonable to assume that the response function depends not only on prey abundance but also on predator abundance.
One special form of predator-dependent response is ratio-dependent, i.e., the functional response depends on the ratio of
prey to predator abundance. Quite a good number of works have already performed on the ratio-dependent predator–prey
models, see e.g., [3,4] and references therein. However, other kinds of predator-dependent functional responses have also
been approved by field and laboratory observations (see [8,17,23]).

In this paper, we have considered a nonlinear predator–prey system with Hassell–Varley–Holling functional response.
Actually, prey-dependent and ratio-dependent models are extremes or limiting cases for this functional response: when
σ = 1, our system is a ratio-dependent predator–prey model while σ = 0, it is a prey-dependent one. First, we show that
the relationship between predator’s growth ability (c) and death rate (b) plays a major role in the long-term behavior of
the system. Using the similar idea as in [9], we can define the predator demographic reproduction number R p = c

b . This
number has clear ecological interpretation. Assume that the prey are at carrying capacity, then the maximum predator
birth rate is c, with an expected life span of 1

b . Subsequently, the product of these two terms gives the averaged number
of offspring a predator individual has in its lifetime. Furthermore, the threshold result indicates that if the predator de-
mographic reproduction number R p � 1 (b � c), then the predator species will become extinct and the prey species will
go to the carrying capacity, surviving from predation. If R p > 1 (c > b), then the predator and prey will coexists in the
environments.

Second, we studied the local behavior of two x-axis equilibria: E0(0,0) and E1(1,0). Since the origin E0 is a complicated
equilibrium, it is impossible to determine its stability by conventional procedure. To overcome this situation, we employed
the blow-up method introduced in [4]. Our analysis shows that the origin is repelling and both the populations cannot
become extinction. Because extinction of both populations can be explained as a simple deterministic process ([15] and
Fig. 4) in the ratio-dependent models, the dynamics of our model system is significantly different with its limiting case
(σ = 1).

Next, we have considered the local and global stability of interior equilibrium E∗ . For a large degree of predator interfer-
ence (σ � min{ 1 , 1 }) which is applicable for most biological realistic cases, local stability of the positive equilibrium E∗
c−b 2
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Fig. 4. When σ = 1, both prey and predator populations may go to extinction.

Fig. 5. When σ = 1, a stable limit cycle can coexist with an “attracting” origin equilibrium.

implies its global stability. In this case, both prey and predator populations coexist at their steady value E∗ . It is crucial to
accurately determine the predator interference (Hassell–Varley constant σ ) in field work.

On the other hand, instability of the interior equilibrium E∗ implies the existence of limit cycles. Since when terrestrial
predator is forming a fixed number of tight groups, it is biologically reasonable to assume σ = 1

2 . Mathematically, we for-
mally proved that when σ = 1

2 , the limit cycle is globally stable provided that the interior equilibrium E∗ is instable. In this
scenario, we can conclude that both prey and predator populations coexist and oscillates, generating a balanced dynamics.
As mentioned in Schenk et al. [23], the functional response in this paper is neither prey-dependent nor ratio-dependent.
However, for the ratio-dependence functional response (σ = 1), Ref. [15] and our numerical simulation (Fig. 5) show that
the stable limit cycle can coexist with the partially attractive origin equilibrium point. Hence, there are significantly different
dynamics between σ = 1

2 and σ = 1.
Finally, we remark that there are quite a few space to improve and generalize our work. Although in Figs. 6 and 7,

we have shown numerically that the limit cycle is still unique when σ 	= 1
2 and E∗ is instable, and E∗ is globally stable

when δ < σ < min{ 1
2 , 1

c−b }, it is mathematically interesting to rigorously validate that these statements hold or not. Biolog-
ically, it is well known that the seasonal fluctuation has impact on the dynamics of both predator and prey populations.
It would also be interesting to incorporate seasonal effects into the current model. We leave these problems for further
investigation.
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Fig. 6. When σ 	= 1
2 and E∗ is instable, there is still a “unique” limit cycle.

Fig. 7. When δ = −0.4 < σ = 1
3 < min{ 1

2 , 1
c−b }, E∗ is locally stable. Moreover, it is also “globally stable”.
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