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Abstract

In Arai (1996), we introduced a new inference rule called permutation to propositional cal-
culus and showed that cut-free Gentzen system LK (GCNF) with permutation (1) satis�es the
feasible subformula property, and (2) proves pigeonhole principle and k-equipartition polyno-
mially. In this paper, we survey more properties of our system. First, we prove that cut-free
LK+permutation has polynomial size proofs for nonunique endnode principle, Bondy’s theorem.
Second, we remark the fact that permutation inference has an advantage over renaming inference
in automated theorem proving, since GCNF+renaming does not always satisfy the feasible sub-
formula property. Finally, we discuss on the relative e�ciency of our system vs. Frege systems
and show that Frege polynomially simulates GCNF+renaming if and only if Frege polynomially
simulates extended Frege. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Preliminaries

We usually deal with a mass of objects in combinatorics; n pigeons, n di�erent
rows of 0’s and 1’s, etc. When one proves a combinatorial theorem in the setting
of propositional calculus, he=she �rst has to translate it into a series of propositional
formulas. The base step of the translation is to, informally, enumerate the objects.
The pigeonhole principle gives us a good example. It states that there is no one-to-
one mapping from (n + 1) objects to n objects. Ordinal numbers from 0 to n are
given to identify objects in the domain and the range. The situation of the ith object
mapped to the jth object, or f(i)= j, is expressed as a new propositional variable
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pi; j. Accordingly, the statement “the mapping is not one-to-one” is translated to the
disjunction of f(i)=f(j)= h (i 6= j), in which no speci�c i or j play any special role
and they are interchangeable. We are now ready to obtain the propositional pigeonhole
principle, which is

PHPn
∧

06i6n

∨
06j6n−1

pi; j→
∨

06i¡m6n

∨
06j6n−1

(pi; j ∧pm; j)

∨
06i6n Ai is an abbreviation for the formula A0 ∨ · · · ∨An.

∧
06i6nCi is an abbrevia-

tion for the formula C0 ∧ · · · ∧Cn. Note that PHPn is closed under some permutations
(a subset of Sn), as most of propositional combinatorial statements are.
An elementary proof of the pigeonhole principle uses mathematical induction on the

number n of objects in the domain; we assume that the pigeonhole principle holds for
n, and show that it also holds for n + 1. Let f be a mapping from {0; : : : ; n + 2}
to {0; : : : ; n + 1}. Without loss of generality, we can assume that f(n + 2)= n + 1.
If there exists an i 6= n + 2 such that f(i)= n + 1, we are done. Suppose other-
wise. Then the function f restricted to {0; : : : ; n + 1} is a mapping to {0; : : : ; n}.
By the induction hypothesis, it is not one-to-one, and so is not f (q.e.d.). The nov-
elty of this proof is the line, “Without loss of generality : : :”. Here, we understand
that the situation of f(n + 2)= i (i=0; : : : ; n) is merely a variant of the situation of
f(n+2)= n+1; we save time by representing (exponentially) many cases by just one
case.
In [2], we showed that the inference rule, permutation, enables cut-free LK to imitate

this elementary proof line by line, which gives polynomial-size propositional proofs
for PHPn. It is an interesting question to ask whether it is always the case: viewing a
combinatorial theorem as a disjunction of (exponentially) many cases, are they always
reduced to several typical cases?
Checking proofs of theorems of combinatorics closely, we �nd that not only “without-

loss-of-generality” argument but also arithmetical techniques are involved in the rea-
soning, such as counting the number of objects. Hence, it is equivalent to ask if these
arithmetical arguments are removable without increasing the size of the proof signi�-
cantly.
This question is closely related to three fundamental questions in the theory of

computation.
The �rst question is in the theory of automated reasoning: what kind of mathematical

problem is automatically solvable in polynomial time? Cut-free LK with permutation is
known to satisfy the feasible subformula property, which means that if P is a cut-free
LK+permutation proof of a theorem T , then one can assume that any formula appear-
ing in P is a subformula of T . Or even stronger, any line (sequent) in P expresses
a ‘subcase’ of T . Accordingly, the range of proof-search is quite limited compared
to other powerful proof systems such as Frege. By virtue of its subformula prop-
erty, cut-free LK+permutation is ready to be implemented for automated reasoning.
At the same time, we have experienced that cut-free LK+permutation is quite e�cient
on tautologies which are closed under permutations. Hence, we hope, a wide range
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of universal combinatorial principles which are closed under Sn can be automatically
provable e�ciently through implementation of cut-free LK+permutation.
We can �nd two other questions in the �eld of propositional proof complexity.
It is a classical result by Gentzen [15] that any tautology can be proved in LK

without using any cut inferences. However, it does not guarantee that one can remove
cut inferences from a given proof in short time. It is well-known that cut inferences, of
even restricted complexity, are not removable in polynomial time [10, 17, 3], but it is
not known if it is also the case for LK+renaming, which is polynomially equivalent to
extended Frege. Here, our question can be generalized as follows: is a superpolynomial
function required to carry out cut-elimination for LK+renaming? We conjecture that
it is so, or even stronger that cut-free LK+renaming does not polynomially simulate
Frege.
Frege is known to have an ability to express NC1 concepts. In NC1, we can deal

with elementary arithmetic. As suggested in [8], the base step for the translation of an
arithmetical statement to a series of propositional formulas is to encode an integer of
length n into a vector of n 0’s and 1’s, and a free variable of length n into a vector of
n propositional variables; pi represents the ith digit of a free variable a. As a result,
pi and pj with i 6= j have di�erent “weight” in the obtained propositional formula, and
usually they are not interchangeable. For example, a statement of x0 = x1 + x2 can be
translated to

Add�(�̃0; �̃1; �̃2) =
∧

16i6�

(
(�00↔�10⊕�20)

∧
(
�0i ↔�1i ⊕�2i ⊕

∨
06j¡i

(
�1j ∧�2j ∧

∧
j¡k¡i

(�1k ⊕�2k)
)))

;

where �̃l=�l0; : : : ; �
l
� (06 l6 2) with propositional variables �lk ’s. Frege polynomi-

ally proves elementary arithmetical statements, such as the associativity of addition,
but it is questionable whether cut-free LK+renaming does.
It is also a fundamental question in propositional proof complexity whether or not

Frege system can e�ciently simulate Frege system with extension rule (extended Frege
system). In Section 3, we show that Frege system polynomially simulates extended
Frege system if and only if it polynomially simulates cut-free LK+renaming.

De�nition 1. A �nite (possibly empty) sequence of formulas are called a cedent. Ce-
dents are usually denoted by capital Greek letters. An ordered pair of cedents written
in the form

A1; : : : ; An→B1; : : : ; Bm

is called a sequent, where A1; : : : ; An is called an antecedent and B1; : : : ; Bm succedent.
The intuitive meaning of a sequent of the form A1; : : : ; An→B1; : : : ; Bm is A1 ∧ · · ·
∧An→B1 ∨ · · · ∨Bm. When the succedent is empty, then it simply means that from
the set of assumptions A1; : : : ; An, we get a contradiction.
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De�nition 2. A cut-free LK proof is a sequence of sequents in which every sequent
is an initial sequent of the form, p→p (p is a variable) or derived from previous
sequents by one of following inference rules.
1. Structural rule:

�→�
�∗→�∗

where �∗ ⊇� and �∗ ⊇� as sets.
2. ¬ -left:

�→�; A
¬A; �→�

3. ¬ -right:
A; �→�
�→�;¬A

4. ∧-left:
A; �→�

A∧B; �→�
and

B; �→�
A∧B; �→�

5. ∧ -right:
�→�; A�→�; B
�→�; A∧B

6. ∨-left:
A; �→�B; �→�
A∨B; �→�

7. ∨ -right:
�→�; A

�→�; A∨B and
�→�; B

�→�; A∨B
We de�ne the notions of ancestors, descendants and so on as usual [18].

De�nition 3. A literal is a propositional variable p or a conjugate �p. A clause is a
�nite set of literals, where the meaning of the clause is the disjunction of the literals
in the clause. A �nite set of clauses is called a cedent.

When we restrict our interest to conjunctive normal form formulas, two inference
rules are extracted out of nine to ful�ll the requirements. The part of cut-free LK for
conjunctive normal forms is called GCNF.

De�nition 4. GCNF refutation is a sequence of cedents in which every sequent is an
initial sequent of the form, p; �p or derived from previous cedents by one of following
inference rules:

structural inference
�
�; �
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logical inference
�; C1; : : : ; Ck �; l
�∪�;C1l; : : : ; Ckl (l)

l is an arbitrary literal, which is called the auxiliary literal of this inference.
Now we introduce new inference rules, renaming and permutation, to cut-free LK

and GCNF.

renaming
�

�(q=p)
(q=p)

�(q=p) is obtained by replacing every occurrence of p by q in �.

permutation
�(p1; : : : ; pm)

�(�(p1)=p1; : : : ; �(pm)=pm)
�

� is a permutation on {p1; : : : ; pm} and �(�(p1)=p1; : : : ; �(pm)=pm) is the result of
replacing every occurrence of pi (16 i6m) in �(p1; : : : ; pm) by �(pi).
� is either a sequent or a cedent according to the context.

Now we de�ne a scale to measure the e�ciency of a proof system.

De�nition 5. (1) Let S be a proof system which is sound and complete, and let P be
a proof system of S. The size of P is the number of all the symbols used in P, that
is denoted by size(P).
(2) Let S1 and S2 be proof systems for propositional calculus. S1 simulates S2 if

and only if there exists a polynomial function p such that for any formula A and any
proof P2 of A in S2, there exists an S1-proof P1 of A (translated into S1 language) so
that

size(P1)6p(size(P2)):

In other words, a system S1 simulates S2 if S1 is not less e�cient than S2 as a proof
system.
(3) In particular, we say that S1 polynomially simulates (p-simulates) S2 if there

is a polynomial-time algorithm which, given an S2-proof of a formula A, produces an
S1-proof of A.
Note that GCNF in tree form and resolution in tree form polynomially simulate each

other.

2. Short proofs without using a cut

Cut-free LK with permutation is suitable for proving combinatorial theorems since
combinatorial statements put into series of propositional formulas are usually closed
under (some) permutations. Pigeonhole principles and mod-k principles are counted
among hard examples for bounded depth Frege [1], though GCNF+permutation proves
them rather easily [2]. One may speculate that GCNF+permutation (or cut-free LK+
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permutation) polynomially proves non-unique endnode principle and Bondy’s theorem
observing that they are equivalent to or weaker than mod-2 principle by constant depth
polynomial size Frege proofs [6, 4, 7]. In general, such equivalence does not promise
the existence of polynomial-size cut-free LK+permutation proofs of the equivalents.
However, the odds are on our side in these cases. In this section, we show that cut-free
LK+permutation does polynomially proves non-unique endnode principle and Bondy’s
theorem.

2.1. Non-unique endnode principle

The non-unique endnode principle is a statement on graphs. Suppose that G is a
�nite simple undirected graph such that any edge x in G has at most 2 edges adjacent
to x. Then, G cannot have a unique endnode. According to the fomalization given in
[11], the non-unique endnode principle with vertex set {1; : : : ; n} is translated into a
propositional sequent, ENDNODEn, given by �→ where � is the cedent consisting
of (1)–(6) and is an empty cedent.
1. ¬ ri; i for all 16 i6 n:
2. ¬ ri; j ∨ rj; i for all 16 i; j6 n:
3.
∨
16j6n rj; n:

4. ¬ rj; n ∨¬ rj′ ; n for all 16 j¡j′¡n:
5.
∨
16j¡j′¡n(ri; j ∧ ri; j′) for all 16 i¡n:

6. ¬ ri; j ∨¬ ri; j′ ∨¬ ri; j′′ for all 16 i¡n and 16 j¡j′¡j′′6 n:
Note that the vertex n is meant to be the unique endnode.

Lemma 1. If P is a cut-free LK+permutation proof of A∨B; �→�, then there exist
cut-free LK+permutation proofs P1 of A; �→� and P2 of B; �→� with size(Pi)¡
size(P) and len(Pi)¡len(P) for i=1; 2.

Proof. Find all the direct ancestors of the indicated A∨B. Change them to A or B, as
needed. The result may fail to be a proof. Discard some unnecessary ∨-left inferences
and change names of variables to obtain proper proofs of A; �→� and B; �→�.

Theorem 1. There exists a polynomial function p and a cut-free LK+permutation
proof Pn such that the end-sequent of Pi is ENDNODEn and size(Pn)6p(n).

Proof. We prove ENDNODEn backwards and reduce it to a proof of ENDNODEn−1.
Then, we show that the length of the proof of ENDNODEn is bounded by O(n2) by
induction on n.
First, we break down the formula

∨
16j6n rj; n in ENDNODEn by using ∨-left back-

wards. Then, we obtain sequents �k → where for each k (16 k6 n)�k is a cedent
consisting of the following formulas.
1. ¬ ri; i for all 16 i6 n:
2. ¬ ri; j ∨ rj; i for all 16 i; j6 n:
3. rk; n:
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4. ¬ rj; n ∨¬ rj′ ; n for all 16 j ¡ j′¡n:
5.
∨
16 j¡j′6 n(ri; j ∧ ri; j′) for all 16 i¡n:

6. ¬ ri; j ∨¬ ri; j′ ∨¬ ri; j′′ for all 16 i¡n and 16 j¡j′¡j′′6 n:
Obviously �n is reducible to an initial sequent rn; n→ rn; n. For k (16 k6 n−2); �k

can be obtained from �n−1 by exchanging rk; n by rn−1; n and rn; k by rn; n−1. Hence, we
only need to consider �n−1.
Second, we apply ∨-left backwards to �n−1 to decompose the formula ∨16j¡j′6n

(rn−1; j ∧ rn−1; j′). Then, we obtain two sequents which we have to prove:
∨
16j¡j′¡n

(rn−1; j ∧ rn−1; j′); �∗→ and
∨
16j¡n (rn−1; j ∧ rn−1; n); �∗→ where �∗ is a cedent

obtained from �n−1 by deleting the formula
∨
16j¡j′6n (rn−1; j ∧ rn−1; j′). We have

a short proof for rn−1; n; rn−1; j ; rn−1; j′ ;¬ rn−1; n ∨¬ rn−1; j ∨¬ rn−1; j′ → , and so for∨
16j¡j′¡n (rn−1; j∧rn−1; j′); �∗→ . Now we focus on the latter sequent,

∨
16j¡n(rn−1; j

∧ rn−1; n); �∗ → . We, again, apply ∨-left backwards to the sequent and decompose
the formula

∨
16j¡n(rn−1; j ∧ rn−1; n). Then, we obtain the sequent �k → where �k

consists of the following formulas.
1. ¬ri; i for all 16i6n.
2. ¬ri; j ∨ rj; i for all 16i; j6n.
3. rn−1; n.
4. ¬rj; n ∨ ¬rj′ ; n for all 16j¡j′¡n.
5.
∨
16j¡j′6n(ri; j ∧ ri; j′) for all 16i¡n− 1.

6. rn−1; k ∧ rn−1; n.
7. ¬ri; j ∨ ¬ri; j′′ ∨ ¬ri; j′ for all 16i¡n and 16j¡j′¡j′′6n.
Obviously, �n−1 is reducible to an initial sequent rn−1; n−1→ rn−1; n−1. For k (16k

6 n− 3), �k is obtainable from �n−2 by exchanging rk; n−1 by rn−2; n−1 and rn−1; k by
rn−1; n−2. Hence, we only need to consider the sequent �n−2→ .
Third, we apply, to �n−2→ , a logical inference of which auxiliary literal is ¬rn−1; n

then a structural inference backwards so that we can obtain the sequents ¬rn−1; n;
rn−1; n→ and �∗→ where �∗ consists of the following formulas.
1. ¬ri; i for all 16i6n− 1.
2. ¬ri; j ∨ rj ; i for all 16i; j6n− 1.
3. ¬rj; n−1 ∨ ¬rj′ ; n−1 for all 16j¡j′¡n.
4.
∨
16j¡j′6n−1(ri; j ∧ ri; j′) for all 16i¡n− 1.

5. rn−1; n−2.
6. ¬ri; j ∨ ¬ri; j′ ∨ ¬ri; j′′ for all 16i¡n− 1 and 16j¡j′¡j′′6n− 1.
By Lemma 1 and the induction hypothesis, �∗ → has a cut-free LK+permutation

proof of length less than O(n2). The length of the proof of ENDNODEn given above
is obviously bounded by O(n2). The size of this proof is bounded by O(n6) since the
size of every line is bounded by O(n4).

2.2. Bondy’s theorem

Bondy’s theorem states that in any n×n (0,1)-matrix containing n pairwise distinct
rows, there exists a column such that, if the column is deleted, the resulting (n−1)×n
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matrix still contains n pairwise distinct rows. Propositional Bondy’s theorem BONDYn
is obtained by translating the {i; j}-entry of the given matrix by a propositional variable
pi; j.

BONDYn


 ∧
16k06n

∨
16i¡j6n

∧
16k6n
k 6=k0

pi; k ≡pj; k


→

( ∨
16i¡j6n

∧
16k6n

pi; k ≡pj; k
)

Theorem 2. There exists a polynomial function p and a cut-free LK+permutation
proof Pn such that the end-sequent of Pn is BONDYn and size(Pn)6p(n).

Proof. We prove BONDYn backwards and show that the length of the proof of BONDYn
is bounded by O(n4) by induction on n.
We denote the formula

∨
16i¡j6n

∧
16k6n
k 6=k0

(pi; k ≡pj; k) by �k 0 and the succedent of
BONDYn by �n. Hence, BONDYn is written as follows:

�1; : : : ; �n→�n:

First, we apply ∨-left backwards to decompose the formula �1 in BONDYn. As a result,
we obtain (n(n − 1)=2)-many sequents �g;h1 ; �2; : : : ; �n→�n where �

g;h
1 (16g¡h6n)

is a formula de�ned by∧
16k6n
k 6=1

pg; k ≡ph; k :

�g; h1 intuitively means that the gth and the hth columns coincide except for the �rst
row. �g;h1 ; �2; : : : ; �n→�n is obtainable from �

1;2
1 ; �2; : : : ; �n→�n by using a permutation

inference. Hence, we only need to consider �1;21 ; �2; : : : ; �n→�n.
Similarly, we decompose the formula �2 in �

1;2
1 ; �2; : : : ; �n→�n by applying ∨-left

backwards. Then, we obtain the sequents �1;21 ; �g; h2 ; �3; : : : ; �n→�n where �
g;h
2 is de-

�ned by∧
16k6n
k 6=2

pg; k ≡ph; k :

For (g; h) = (1; 2), the given sequent means that “if the �rst and the second column
coincide except for the �rst row, and at the same time they coincide except for the
second row, then there exist two columns which coincide”. Obviously, the �rst and
second columns are those which coincide. Thus, we can reduce it by applying structural
inference backwards to the sequent S1 de�ned as follows:∧

16k6n
k 6=1

p1; k ≡p2; k ;
∧

16k6n
k 6=2

pg; k ≡ph; k →
∧

16k6n
p1; k ≡p2; k :

S1 follows from the transitivity of equivalence, and has a proof of length O(n). For
(g; h) 6= (1; 2), it can be obtained by using a permutation from �1;21 ; �2;32 ; �3; : : : ;
�n→�n.
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Again, we decompose the formula �3 by applying ∨-left backwards. We obtain three
di�erent type of sequents which require di�erent treatments. The �rst type of sequents
means that “if two columns coincide except for the ith row and at the same time they
coincide except for the jth row, then they must, actually, coincide”. Sequents falling in
this type can be obtained from S1 by using a permutation. The second type means that
“Suppose that there are three columns which satisfy the following. The i0th and the
i1th columns coincide except for the j0th row, the i1th and the i2th columns coincide
except for the j1th row, and the i2th and the i0th columns coincide except for the j2th
row. Then two of them has to coincide”. De�ne S2 by the sequent as follows:

∧
16k6n
k 6=1

p1; k ≡p2; k ;
∧

16k6n
k 6=2

p2; k ≡p3; k ;
∧

16k6n
k 6=3

p3; k ≡p1; k →�n:

The sequents falling in the second type can be obtained from S2 by a permutation. S2
follows from the transitivity of equivalence, and has a proof of length O(n).
We keep going on until we obtain the sequent Sn of the following form:
 ∧
26k6n

(p1; k ≡p2; k); : : : ;
∧

k 6= n−1
16k6n

(pn−1; k ≡pn; k);
∧

16k6n−1
(pn; k 6≡p0; k)


→�n:

Again, Sn follows from the transitivity of equivalence and has a proof of length
O(n). The length of the whole proof is bounded by O(n4).

3. Permutation vs. renaming

In [2], we showed that GCNF+permutation satis�es the feasible subformula property
in the following sense. Let R be a GCNF+permutation refutation of size m. Then, there
exists a GCNF+permutation refutation R∗ such that the last lines of R∗ and R are the
same, the size of R∗ is bounded by polynomial of m, and every formula appearing
in R∗ is a subformula of some formula in the last line. In this section, we show
that GCNF+renaming does not satisfy this property; the pigeonhole principle gives a
counter example.

De�nition 6. A GCNF+renaming refutation P is normal if it satis�es the subformula
property; every formula appearing in P is a subformula of some formula in the end-
sequent of P.

Lemma 2. If P is a GCNF+renaming refutation of l; �lC1; : : : ; �lCn; � with all the oc-
currences of l and �l indicated, then there exists a GCNF+renaming refutation P∗ of
C1; : : : ; Cn; � with size(P∗)¡size(P); len(P∗)¡ len(P) and neither l nor �l occurring
in P∗.
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Proof. First, we replace every occurrence of l (resp. �l) which is not an ancestor of an
occurrence of l (resp. �l) in the end-cedent by a new literal k (resp. �k). Then we ob-
tain another GCNF+renaming refutation P′ of l; �lC1; : : : ; �lCn; � with size(P′)6size(P)
and len(P′)6len(P). By deleting every occurrences of l from P′ and by replacing
every occurrences of �lCi by Ci in P′, we obtain a GCNF+renaming refutation P∗ of
C1; : : : ; Cn; � with size(P∗)¡size(P) and len(P∗)¡len(P).

From Lemma 2, we can conclude the following.

Lemma 3. Suppose that P is a GCNF+renaming refutation, and I is a renaming
inference in P

... Q
�

I:
�(q=p)

If a literal p or �p appears as a clause in �; then P can be shortened to P′ so that

... Q′

�̃ q; �q

�(q=p)
...

where �̃ is obtained from � by deleting all the occurrences of p and �p; and neither
p nor �p appears in Q′.

Theorem 3. There exists a constant c; c¿1 such that for su�ciently large n every
normal GCNF+renaming refutation of PHPn contains at least cn lines.

Proof. By the result in [16], it su�ces to show that a shortest normal GCNF+renaming
refutation for PHPn is actually a GCNF refutation. Suppose that I is a renaming in-
ference in Pn,

�
�(pl′ ; h′ =pl; h)

I

with pl′ ; j′ 6= pl; j. By the de�nition of normal refutation, � consists of subformulas of
formulas of the form either

∨
06j6n−1 pi; j or �pi; j �pm; j. Note that pl; h only occurs in a

subformula A of
∨
06j6n−1 pl; j. By Lemma 3, we can assume that A involves other

variables than pl; h. Again by the de�nition of normal refutation, the predecessor of
A must be also a subformula of

∨
06j6n−1 pl; j; l

′= l and j′ 6= j. On the other hand,
�pl; j only occurs in a subformula B of �pl; j �pl∗ ; j for some l

∗ 6= l (06l∗6n − 1). By
Lemma 3, we can assume that B is �pl; j �pl∗ ; j. However, the predecessor of B is either
�pl; j �pl; j′ �pl∗ ; j or �pl; j′ �pl∗ ; j with j

′ 6= j; it is not a subformula of any formula in the
end-sequent. This contradicts the normality of Pn.
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4. The relative e�ciency; GCNF+renaming vs. Frege

An extension rule, p↔A, allows to abbreviate a long formula A by a new proposi-
tional variable p. It saves the space to express complicated formulas, and as a result,
we obtain considerably small-size proofs. Buss [9] showed that renaming rule has the
same e�ects on lengths of proofs as extension over Frege: Frege+renaming p-simulates
extended Frege.1

In this section, we show that the p-simulation problem of GCNF+renaming by Frege
is as di�cult to solve as that of extended Frege by Frege.

Theorem 4. LK p-simulates cut-free LK+renaming if and only if LK p-simulates
LK+renaming.

Proof. (⇐) The backward implication is obvious.
(⇒) Let P be an LK+renaming proof of �→�. For every cut inference in P,

�→�; A A; �→�
�→�

we replace it by

�→�; A
¬A; �→� A; �→�

¬A∨A; �→�

:

Then, we obtain a cut-free LK+renaming proof P′ of

¬A1 ∨A1; : : : ;¬An ∨An; �→�

where A1; : : : ; An is the list of cut-formulas in P. Note that size(P′)=O(size(P)). By
the hypothesis, there exists a polynomial-time algorithm to translate P′ to an LK proof
P∗ of ¬A1 ∨A1; : : : ;¬An ∨An; �→�. At the same time, there are small size LK proofs
of → ¬Ai ∨Ai for all 16i6n. By removing ¬Ai ∨Ai by cuts, we obtain an LK proof
Q of �→ � where size(Q)=O(size(P)2).

A similar statement holds for GCNF+permutation.

Theorem 5. LK p-simulates cut-free LK+permutation if and only if LK p-simulates
LK+permutation.

Proof. The proof is similar to that of Theorem 4.

Corollary 1. Frege p-simulates GCNF+renaming if and only if Frege p-simulates
extended Frege. Frege p-simulates GCNF+permutation if and only if Frege p-
simulates LK+permutation.

1 It is open whether resolution+renaming p-simulates resolution+extension.
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5. Open problems and future researches

In recent researches, it has been revealed that there is a close connection between the
hierarchy of computational complexity and that of propositional calculi. Among them
the relations between P vs. extended Frege systems, and NC1 vs. Frege systems are well
studied [14, 12, 5, 13]. There exist natural complexity classes known to fall between P
and NC1, for example LOGSPACE and NC. However there is no propositional calculus
which is known to correspond to them. We conjecture that LK+permutation can be
a good candidate for it: there exists a complexity class C such that LK+permutation
“corresponds to” C in the sense of S.A.Cook:
1. P⊃C⊃NC1 and P 6=C 6=NC1.
2. If F is a universal combinatorial principle which can be proved using concepts
in C, then F corresponds to a family of tautologies Fn which have polynomial-size
LK+permutation proofs.
The combinatorial principles we have proved so far in GCNF (or cut-free LK)

+permutation are already known to have polynomial-size Frege proofs. It will be
interesting if one can �nd a family of tautologies such that it has polynomial-size
GCNF+permutation proofs but it is not known if it has polynomial-size Frege proofs.
Another interesting open problem is to �nd superpolynomial lower bounds for GCNF

+permutation or, even stronger, to show that GCNF+permutation does not polynomi-
ally simulate Frege systems. We conjecture the following.
1. There exists a family of combinatorial tautologies Fn such that GCNF+permutation
polynomially proves Fn, however, it does not polynomially prove substitution in-
stances of Fn.

2. Bounded depth Frege+permutation do not p-simulate Frege systems.
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