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Abstract We use a method based on the lubrication approximation in conjunction with a residual-

based mass-continuity iterative solution scheme to compute the flow rate and pressure field in dis-

tensible converging–diverging tubes for Navier–Stokes fluids. We employ an analytical formula

derived from a one-dimensional version of the Navier–Stokes equations to describe the underlying

flow model that provides the residual function. This formula correlates the flow rate to the bound-

ary pressures in straight cylindrical elastic tubes with constant-radius. We validate our findings by

the convergence toward a final solution with fine discretization as well as by comparison to the

Poiseuille-type flow in its convergence toward analytic solutions found earlier in rigid converg-

ing–diverging tubes. We also tested the method on limiting special cases of cylindrical elastic tubes

with constant-radius where the numerical solutions converged to the expected analytical solutions.

The distensible model has also been endorsed by its convergence toward the rigid Poiseuille-type

model with increasing the tube wall stiffness. Lubrication-based one-dimensional finite element

method was also used for verification. In this investigation five converging–diverging geometries

are used for demonstration, validation and as prototypes for modeling converging–diverging

geometries in general.
ª 2015 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The flow of fluids in converging–diverging tubes has many sci-
entific, technological and medical applications such as trans-

portation in porous media, filtration processes, polymer
processing, and pathological stenoses and aneurysms [1–13].
There are many studies about the flow in converging–diverging
rigid conduits [14–21] and distensible conduits with fixed cross

sections [22–28] separately as well as many other different
geometries and fluid and conduit mechanical properties [29–31].
There is also a considerable number of studies on the flow in
converging–diverging distensible conduits; although large part
of which is related to medical applications such as stenosis and

blood flow modeling [32–42].
Several methods have been used in the past for investigating

and modeling the flow in distensible converging–diverging

geometries; the majority are based on the numerical discretiza-
tion methods such as finite element and spectral methods
although other approaches such as stochastic techniques have

also been employed. However, due to the huge difficulties asso-
ciating this subject which combines tube wall deformability
with convergence–divergence non-linearities, most of these
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Nomenclature

a correction factor for axial momentum flux

b stiffness coefficient in the pressure-area relation
j viscosity friction coefficient
l fluid dynamic viscosity
m fluid kinematic viscosity

q fluid mass density
1 Poisson’s ratio of tube wall
A tube cross-sectional area at actual pressure

Ain tube cross-sectional area at inlet
Ao tube cross-sectional area at reference pressure
Aou tube cross-sectional area at outlet

E Young’s elastic modulus of the tube wall
f flow continuity residual function
ho tube wall thickness at reference pressure
J Jacobian matrix

L tube length
N number of discretized tube nodes

p pressure

p pressure vector
pi inlet pressure
po outlet pressure
Dp pressure drop

Dp pressure perturbation vector
Q volumetric flow rate
Qa analytic flow rate for rigid tube

Qe numeric flow rate for elastic tube
Qr numeric flow rate for rigid tube
r residual vector

R tube radius
Rmax maximum unstressed tube radius
Rmin minimum unstressed tube radius
t time

x tube axial coordinate (inlet at x ¼ 0 and outlet at
x ¼ L)
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studies are based on substantial approximations and modeling
compromises. Moreover, they are usually based on very com-
plex mathematical and computational infrastructures which

are not only difficult to implement and use but also difficult
to verify and validate. Also, some of these methods, such as
stochastic techniques, are computationally demanding and

hence they may be prohibitive in some cases. Therefore, sim-
ple, reliable and computationally low cost techniques are
highly desirable where analytical solutions are not available

due to excessive difficulties or even impossibility of obtaining
such solutions which is the case in most circumstances.

In this paper we propose the use of the lubrication approx-

imation with a residual-based non-linear solution scheme in
association with an analytical expression for the flow of
Navier–Stokes fluids in straight cylindrical elastic tubes with
fixed radius to obtain the flow rate and pressure field in a num-

ber of cylindrically-symmetric converging–diverging geome-
tries with elastic wall mechanical properties. The proposed
method combines simplicity, robustness and ease of implemen-

tation. Moreover, it produces solutions which are very close to
any targeted analytical solutions as the convergence behavior
in the investigated special cases reveals.

Although the proposed method is related to a single
distensible tube, it can also be extended to a network of inter-
connected distensible tubes with partially or totally converg-
ing–diverging conduits by integrating these conduits into the

network and giving them a special treatment based on the pro-
posed method. This approach, can be utilized for example in
modeling stenoses and other types of flow conduits with irreg-

ular geometries as part of fluid flow networks in the hemody-
namic and hemorheologic studies and in the filtration
investigations.

The method also has a wider validity domain than what
may be thought initially with regard to the deformability char-
acteristics. Despite the fact that in this paper we use a single

analytical expression correlating the flow rate to the boundary
pressures for a distensible tube with elastic mechanical proper-
ties, the method can be well adapted to other types of mechan-
ical characteristics, such as tubes with viscoelastic wall
rheology, where different pressure-area constitutive relations
do apply. In fact there is no need even to have an analytical
solution for the underlying flow model that provides the basic

flow characterization for the discretized elements of the con-
verging–diverging geometries in the lubrication approxima-
tion. What is actually needed is only a well defined flow

relation: analytical, or empirical, or even numerical [43] as long
as it is viable to find the flow in the discretized elements of the
lubrication ensemble using such a relation to correlate the flow

rate to the boundary pressures.
There is also no need for the geometry to be of a fixed or

regular shape as long as a characteristic flow can be obtained

on the discretized elements, and hence the method can be
applied not only to axi-symmetric geometries with constant-
shape and varying cross-sectional area in the flow direction
but can also be extended to non-symmetric geometries with

irregular and varying shape along the flow direction if the flow
in the deformable discretized elements can be characterized by
a well-defined flow relation. The method can as well be applied

to non-straight flow conduits with and without regular or
varying cross-sectional shapes such as bending compliant
pipes.
2. Method

The flow of Navier–Stokes fluids in a cylindrical tube with a

cross-sectional area A and length L assuming a slip-free incom-
pressible laminar axi-symmetric flow with negligible gravita-
tional body forces and fixed velocity profile is described by

the following one-dimensional system of mass continuity and
linear momentum conservation principles

@A

@t
þ @Q
@x
¼ 0 t P 0; x 2 ½0;L� ð1Þ

@Q

@t
þ @

@x

aQ2

A
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A
¼ 0 t P 0; x 2 ½0;L� ð2Þ
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In these two equations, Q is the volumetric flow rate, t is the

time, x is the axial coordinate along the tube length, a is the
momentum flux correction factor, q is the fluid mass density,
p is the axial pressure which is a function of the axial coordi-

nate, and j is the viscosity friction coefficient which is usually

given by j ¼ 2pam
a�1 where m is the fluid kinematic viscosity defined

as the ratio of the fluid dynamic viscosity l to its mass density
[44–46,27,47,48,21]. These relations are usually supported by a

constitutive relation that correlates the pressure to the cross-
sectional area in a distensible tube, to close the system in the
three variables A; Q and p and hence provide a complete

mathematical description for the flow in such conduits.
The correlation between the local pressure and cross-sec-

tional area in a compliant tube can be described by many math-
ematical constitutive relations depending on the mechanical

characterization of the tube wall and its response to pressure
such as being elastic or viscoelastic, and linear or non-linear.
The following is a commonly used pressure-area constitutive

elastic relation that describes such a dependency

p ¼ b
Ao

ffiffiffiffi
A
p
�

ffiffiffiffiffiffi
Ao

p� �
ð3Þ

where b is the tube wall stiffness coefficient which is usually

defined by

b ¼
ffiffiffi
p
p

hoE

1� 12
ð4Þ

Ao is the reference cross-sectional area corresponding to the

reference pressure which in this equation is set to zero for con-
venience without affecting the generality of the results, A is the
tube cross-sectional area at the actual pressure p as opposite to

the reference pressure, ho is the tube wall thickness at the ref-
erence pressure, while E and 1 are respectively the Young’s
elastic modulus and Poisson’s ratio of the tube wall. The
essence of Eq. (3) is that the pressure is proportional to the

radius growth with a proportionality stiffness coefficient that
is scaled by the reference area. It should be remarked that
we assume here a constant ambient transmural pressure along

the axial direction which is set to zero and hence the reference
cross-sectional area represents unstressed state where Ao is
constant along the axial direction.

Based on the pressure-area relation of Eq. (3), and using the
one-dimensional Navier–Stokes system of Eqs. (1) and (2) for
the time-independent flow by dropping the time terms, the fol-
lowing equation correlating the flow rate Q to the inlet and

outlet boundary areas of an elastic cylindrical tube with a con-
stant unstressed cross-sectional area over its axial direction can
be obtained

Q ¼
�jLþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2L2 þ 4ab

5qAo
ln Ain=Aouð Þ A

5=2
in � A5=2

ou

� �r

2a ln Ain=Aouð Þ ð5Þ

where Ain and Aou are the tube cross-sectional area at the inlet
and outlet respectively such that Ain > Aou. This relation,

which in essence correlates the flow rate to the boundary pres-
sures, has been previously [28] derived and validated by a finite
element scheme. As will be explained later on, Eq. (5) is used in

conjunction with Eq. (7) to characterize the flow in the dis-
cretized sections of the tube.

The residual-based lubrication approach, which is proposed

in the present paper to find the pressure field and flow rate in
converging–diverging distensible tubes, starts by discretizing
the tube in the axial direction into ring-like elements. Each
one of these elements is approximated as a single tube with a

constant radius, which averages the inlet and outlet radii of
the element, to which Eq. (5) applies. A system of non-linear
equations based on the mass continuity residual and boundary

conditions is then formed.
For a tube discretized into (N� 1) elements, there are N

nodes: two boundaries and (N� 2) interior nodes. Each one

of these nodes has a well-defined axial pressure value accord-
ing to the one-dimensional formulation. Also for the interior
nodes, and due to the incompressibility of the flow, the total
sum of the volumetric flow rate, signed (þ=�) according to

its direction with respect to the node, is zero due to the absence
of sources and sinks, and hence (N� 2) residual functions
which describe the net flow at the interior nodes can be

formed. This is associated with two given boundary conditions
for the inlet and outlet boundary nodes to form N equations.

A standard method for solving such a system is to use an

iterative non-linear simultaneous solution scheme such as
Newton–Raphson method where an initial guess for the inte-
rior nodal pressures is proposed and used in conjunction with

the Jacobian matrix of the system to find the pressure pertur-
bation vector which is then used to adjust the pressure values
and repeat this process until a convergence criterion based on
the size of the residual norm is reached. The process is based

on iterative solving of the following equation

JDp ¼ �r ð6Þ

where J is the Jacobian matrix, p is the vector of variables
which represent the pressure values at the boundary and inte-

rior nodes, and r is the vector of residuals which, for the inte-
rior nodes, is based on the continuity of the volumetric flow
rate as given by

fj ¼
Xm
i¼1

Qi ¼ 0 ð7Þ

where m is the number of discretized elements connected to
node j which is two in this case, and Qi is the signed volumetric

flow rate in element i as characterized by Eq. (5). Eq. (6) is then
solved in each iteration for Dp which is then used to update p.
The convergence will be declared when the norm of the resid-

ual vector, r, becomes within a predefined error tolerance. In
fact Eq. (6) is the result of a linearization scheme where the
components of the matrix equation are defined by Eq. (7).

More details about this solution scheme can be found in
[27,11].

3. Implementation and results

The proposed residual-based lubrication method was imple-
mented in a computer code and flow solutions were obtained

for an extensive range of fluid, flow and tube characteriza-
tions such as fluid viscosity, flow profile, and tube mechanical
properties. Five regular converging–diverging axi-symmetric
tube geometries were used in the current investigation; repre-

sentative graphic images of these geometries are shown in
Fig. 1, while the mathematical relations that describe the
dependency of the tube radius, R, on the tube axial coordi-

nate, x, for these geometries are given in Table 1. A generic
converging–diverging tube profile demonstrating the setting



(a) Conic (b) Parabolic

(c) Hyperbolic (d) Hyperbolic Cosine

(e) Sinusoidal

Fig. 1 Converging–diverging tube geometries used in the current investigation.

Table 1 The equations describing the dependency of the tube

radius R on the tube axial coordinate x for the five converging–

diverging geometries used in the current investigation. In all

these relations � L
2
6 x 6 L

2
and Rmin < Rmax where Rmin is the

tube minimum radius at x ¼ 0 and Rmax is the tube maximum

radius at x ¼ � L
2
as demonstrated in Fig. 2.

Geometry RðxÞ
Conic Rmin þ 2ðRmax�RminÞ

L jxj
Parabolic Rmin þ 2

L

� �2ðRmax � RminÞx2
Hyperbolic

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

min þ 2
L

� �2ðR2
max � R2

minÞx2
q

Hyperbolic cosine Rmin cosh
2
L arccosh

Rmax

Rmin

� �
x

h i
Sinusoidal RmaxþRmin

2

� �
� Rmax�Rmin

2

� �
cos 2px

L

� �

Fig. 2 Generic converging–diverging tube profile demonstrating

the coordinate system setting for the correlation between the axial

coordinate x and the tube radius R used in Table 1.
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Fig. 3 Axial pressure as a function of axial coordinate for a

converging–diverging elastic tube with conic geometry having

L ¼ 0:1 m, Rmin ¼ 0:005 m, Rmax ¼ 0:01 m, and b ¼ 236:3 Pa m.

The fluid properties are: q ¼ 1000 kg m�3 and l ¼ 0:01 Pa s while

the inlet and outlet pressures are: pi ¼ 1000 Pa and po ¼ 0:0 Pa.

The Poiseuille-type flow uses a rigid tube with the same unstressed

geometry and the same l and boundary pressures. The converged

flow rate for the elastic Navier–Stokes and rigid Poiseuille-type

flows are respectively: Qe ¼ 0:000255889 m3 s�1 and

Qr ¼ 0:000842805 m3 s�1 while the analytic flow rate for the rigid

tube as obtained from the first equation in Table 2 is

Qa ¼ 0:000841498 m3 s�1.
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of the coordinate system for the R–x correlation, as used in
Table 1, is shown in Fig. 2. These geometries have been used
previously [20,21] to find flow relations for Newtonian and
power law fluids in rigid tubes. A representative sample of
the flow solutions on distensible converging–diverging tubes
are also given in Figs. 3–7.

In all flow simulations, including the ones shown in Figs. 3–7,
we used a range of evenly-divided discretization meshes to
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Fig. 4 Axial pressure as a function of axial coordinate for a

converging–diverging elastic tube with parabolic geometry having

L ¼ 0:013 m, Rmin ¼ 0:0017 m, Rmax ¼ 0:0025 m, and

b ¼ 28059:0 Pa m. The fluid properties are: q ¼ 1100 kg m�3 and

l ¼ 0:006 Pa s while the inlet and outlet pressures are:

pi ¼ 2000 Pa and po ¼ 1000 Pa. The Poiseuille-type flow uses a

rigid tube with the same unstressed geometry and the same l and

boundary pressures. The converged flow rate for the elastic

Navier–Stokes and rigid Poiseuille-type flows are respectively:

Qe ¼ 6:58209� 10�5 m3 s�1 and Qr ¼ 6:62929� 10�5 m3 s�1 while

the analytic flow rate for the rigid tube as obtained from the

second equation in Table 2 is Qa ¼ 6:62051� 10�5 m3 s�1.
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Fig. 5 Axial pressure as a function of axial coordinate for a

converging–diverging elastic tube with hyperbolic geometry hav-

ing L ¼ 0:09 m, Rmin ¼ 0:004 m, Rmax ¼ 0:006 m, and

b ¼ 23:6 Pa m. The fluid properties are: q ¼ 800 kg m�3 and

l ¼ 0:002 Pa s while the inlet and outlet pressures are:

pi ¼ 1500 Pa and po ¼ 500 Pa. The Poiseuille-type flow uses a

rigid tube with the same unstressed geometry and the same l and

boundary pressures. The converged flow rate for the elastic

Navier–Stokes and rigid Poiseuille-type flows are respectively:

Qe ¼ 0:000147335 m3 s�1 and Qr ¼ 0:000934645 m3 s�1 while the

analytic flow rate for the rigid tube as obtained from the third

equation in Table 2 is Qa ¼ 0:000933394 m3 s�1.
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observe the convergence behavior of the solution with respect
to mesh refinement. In all cases we noticed an obvious trend of
convergence with improved meshing toward a final solution

that does not tangibly improve with further mesh refinement.
We also used in these flow simulations a rigid conduit flow
model with the same geometry and fluid and flow properties

where the flow in the rigid discretized elements was modeled
by Poiseuille equation. The purpose of this use of the rigid
model is to assess the solution scheme and test its convergence

to the correct solution because for Poiseuille-type flow with
rigid geometries we have analytical solutions, given in
Table 2, that correlate the flow rate to the pressure drop.
Poiseuille-type solutions can also provide a qualitative indica-

tor of the sensibility of the distensible solutions; for instance
we expect the deviation between the two solutions to decrease
with increasing the stiffness of the elastic tube. In all cases the

correct quantitative values and qualitative trends have been
verified.

Each one of Figs. 3–7 shows a sample of the numeric solu-

tions for two sample meshes used for the distensible flow
geometry alongside the converged Poiseuille-type solution for
the given fluid and tube parameters. The reason for showing

two meshes for the distensible geometry is to demonstrate
the convergence behavior with mesh refinement. In all cases,
virtually identical solutions were obtained with meshes finer
than the finest one shown in these figures.

It should be remarked that in all the distensible flow simu-
lations shown in Figs. 3–7 we used a ¼ 4=3 to match the rigid
Poiseuille-type flow profile [21] which we used, as indicated

already, as a test case. However, for the purpose of testing
and validating the distensible model in general we also used
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

Axial Coordinate (m)

A
xi

al
 P

re
ss

ur
e 

(P
a)

11-Element Elastic
> 50-Element Elastic
Rigid Poiseuille

Fig. 6 Axial pressure as a function of axial coordinate for a

converging–diverging elastic tube with hyperbolic cosine geometry

having L ¼ 0:7 m, Rmin ¼ 0:05 m, Rmax ¼ 0:08 m, and

b ¼ 3889:4 Pa m. The fluid properties are: q ¼ 700 kg m�3 and

l ¼ 0:0075 Pa s while the inlet and outlet pressures are:

pi ¼ 2500 Pa and po ¼ 700 Pa. The Poiseuille-type flow uses a

rigid tube with the same unstressed geometry and the same l and

boundary pressures. The converged flow rate for the elastic

Navier–Stokes and rigid Poiseuille-type flows are respectively:

Qe ¼ 0:0427687 m3 s�1 and Qr ¼ 1:4184 m3 s�1 while the analytic

flow rate for the rigid tube as obtained from the fourth equation in

Table 2 is Qa ¼ 1:416296 m3 s�1.
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Fig. 7 Axial pressure as a function of axial coordinate for a

converging–diverging elastic tube with sinusoidal geometry having

L ¼ 6:5 m, Rmin ¼ 0:2 m, Rmax ¼ 0:5 m, b ¼ 5064:2 Pa m. The

fluid properties are: q ¼ 900 kg m�3 and l ¼ 0:06 Pa s while the

inlet and outlet pressures are: pi ¼ 1800 Pa and po ¼ 300 Pa. The

Poiseuille-type flow uses a rigid tube with the same unstressed

geometry and the same l and boundary pressures. The converged

flow rate for the elastic Navier–Stokes and rigid Poiseuille-type

flows are respectively: Qe ¼ 0:396769 m3 s�1 and

Qr ¼ 8:74955 m3 s�1 while the analytic flow rate for the rigid tube

as obtained from the fifth equation in Table 2 is

Qa ¼ 8:73370 m3 s�1.
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an extensive range of values greater than and less than 4=3 for

a without observing incorrect convergence or convergence dif-
ficulties. In fact using values other than a ¼ 4=3 makes the
convergence easier in many cases [11].

An interesting feature that can be seen in Fig. 4 is that all
the pressure profile curves are almost identical as well as the
flow rates. The reason is that, due to the high tube stiffness
used in this example, the distensible tube solution converged

to the rigid tube Poiseuille-type solution. A more detailed com-
parison between the Poiseuille-type rigid tube flow and the
Table 2 The equations describing the dependen

for the rigid tubes with the five converging–dive

were previously [21] derived and validated.

Geometry QðDpÞ
Conic 3p2Dp

jqL
R

R2
minþR

�
Parabolic

2p2Dp
jqL

1
3RminR

0
@

Hyperbolic

2p2Dp
jqL

1
R2
minR

2
m

0
BB@

Hyperbolic cosine
3p2Dp
jqL

tanh

�
0
@

Sinusoidal 16p2Dp
jqL 2ðRmax

�

Navier–Stokes one-dimensional elastic tube flow with high
stiffness is shown in Fig. 8 where the results of Figs. 3–7 are
reproduced using the same fluid, flow and tube parameters

but with high tube stiffness by using large b’s. As seen in
Fig. 8 the elastic tube flow converges almost identically to
the Poiseuille-type rigid tube flow with increasing the tube wall

stiffness in all cases. This sensible and correct trend can be
regarded as another verification and validation for the resid-
ual-based method and the related computer code. Similar

results have also been obtained in [47] in comparing the rigid
and distensible models for the flow in networks of intercon-
nected straight cylindrical tubes. More detailed comparisons
between the rigid and distensible one-dimensional flow models

can be found in the aforementioned reference.
It should be remarked that the critical value of b at which

the distensible flow solution converges to the rigid flow solu-

tion depends on several factors such as the fluid and flow
parameters as well as the geometry of the tube and the pressure
field regime characterized by the applied boundary conditions

at the inlet and outlet where their size and the magnitude of
their difference play a decisive role. Another remark is that
the shape of the pressure profile curve is highly dependent

on the geometric factors such as L
Rmin

; L
Rmax

, and Rmin

Rmax
ratios. It

also depends on the fluid and tube mechanical properties, such
as fluid viscosity and tube wall stiffness, and the magnitude of
pressure at the inlet and outlet boundaries.

The opposite to what in Fig. 4 can be seen in Fig. 5 for the
hyperbolic geometry where we used very low stiffness and
hence the elastic model deviated largely from the rigid model.

This also affected the dependency of convergence rate on dis-
cretization where the discrepancy between the solutions of the
coarse and fine meshes was more substantial than in the other

cases for similar coarse and fine meshes. In general, the devia-
tion between the rigid and distensible flow models is maxi-
mized by reducing the stiffness, and hence increasing the
tube distensibility, while other parameters are kept fixed.

Another interesting feature is that in the flow solution of
Fig. 6 there is a big difference between the flow rate of the elas-
tic and rigid tubes. This can be explained largely by the signif-

icant deviation from linearity due to the large values of the
inlet and outlet boundary pressures, as well as the large size
cy of the flow rate Q on the pressure drop Dp
rging geometries of Table 1. These relations

3
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Fig. 8 Comparing the converged Poiseuille-type rigid tube flow (solid) to the converged elastic tube flow with high wall stiffness of the

given b (dashed) for the five examples of Figs. 3–7. In all the five sub-figures, the vertical axis represents the axial pressure in pascals while
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of their difference, with a relatively low stiffness. This indicates

that the rigid tube flow model is not a suitable approximation
for simulating and analyzing the flow in distensible tubes and
networks, as it has been done for instance in some hemody-

namic studies. More detailed discussions about this issue can
be found in [47].
In Fig. 9 we draw the geometric profile of the elastic tube

for the stressed and unstressed states for the five examples of
Figs. 3–7 where we plot the tube radius versus its axial coordi-
nate for these two states. As seen, these plots show another

sensible qualitative trend in these results and hence provide
further endorsement to the residual-based method.
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Finally, it is noteworthy that because the lubrication
approximation is based on discretizing the tube into sections
each with a constant unstressed radius, the effect of the curva-

ture, especially around the middle of the tube, on the flow is
not considered directly. However, as the discretization
improves by employing more refined meshes, the effect of cur-
vature will be considered indirectly by the smooth transition
from one part of the tube to the next where the difference in
radius between any two successive sections will decrease.
This can be shown by observing the convergence behavior as

a function of the mesh size in Fig. 10 where the percentage dif-
ference in Q relative to the solution on the finer mesh size is
plotted as a function of the number of discretized sections
for a typical hyperbolic geometry example. The plot clearly
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demonstrates the convergence to a final solution. This conver-
gence behavior suggests that the lubrication solution is
improving with increasing the number of sections and hence

effects arising from curvature and similar geometric factors
are becoming increasingly included.

4. Tests and validations

We used several metrics to validate the residual-based method
and check our computer code and flow solutions. First, we did

extensive tests on distensible cylindrical tubes with fixed radius
using different fluid, flow and tube parameters where the
method produced results identical to the analytical flow solu-

tions given by Eq. (5). Although this test is based on a simple
limiting case and hence it may be regarded as trivial, it pro-
vides sufficient validation for the basic approach and the reli-

ability of the code. We also investigated the convergence
behavior, outlined in the previous section, as a function of dis-
cretization; in all cases it was observed that the residual-based
method converges to a final solution with the use of finer

meshes where it eventually stabilizes without tangible change
in the solution with more mesh refinement. This convergence
behavior is a strong qualitative indicator for the accuracy of

the method and the reliability of the code. As indicated previ-
ously, we used evenly-divided regular meshes in all
simulations.

We also used the discretized Poiseuille-type flow in the same
converging–diverging geometry but with rigid wall mechanical
characteristics to validate the solutions, as discussed in the pre-

vious section. As seen, we observed in all cases the convergence
of the Poiseuille-type solutions on using reasonably fine
meshes to the analytical solutions with errors that are compa-
rable to the machine precision and hence are negligible as they

are intrinsic to any machine-based numerical method. Since
the elastic and rigid models are based on the same mathemat-
ical and computational infrastructure, the convergence of the

rigid flow model to the correct analytical solution can be
regarded as an indirect endorsement to the elastic model.
The convergence of the elastic model solution to the verified
rigid model solution with increasing tube wall stiffness is
another indirect support for the elastic model as it demon-
strates its sensible behavior.

As another way of test and validation, we produced a sam-
ple of lubrication-based one-dimensional finite element solu-
tions which are obtained by discretizing the converging–

diverging distensible geometries and applying the pressure
continuity, rather than the Bernoulli energy conservation prin-
ciple, as a coupling condition at the nodal interfaces [27,13] to

match the assumptions of the residual-based method which
couples the discretized elements by the continuity of pressure
condition [11]. The finite element results were very similar to
the residual-based results although the convergence behavior

was generally different. Broadly, the residual-based method
has a better convergence behavior in terms of accuracy and
speed as well as other beneficial features like lower computa-

tional cost and robustness although this may be dependent
on coding technical issues and implementation specificities.

With regard to the comparison between the residual-based

and finite element methods, they have very similar theoretical
infrastructure as they are both based on the same formulation
of the one-dimensional Navier–Stokes flow. In fact the resid-

ual-based method is a modified version of the previously pro-
posed [11] pore-scale network modeling method for the flow of
Navier–Stokes fluids in networks of interconnected distensible
tubes by extending the concept of a network to serially-con-

nected tubes with varying radii which represent the discretized
elements of the converging–diverging tubes. Hence the agree-
ment between the residual-based and finite element methods

may not be regarded as an entirely independent validation
method and that is why we did not do detailed validation by
the lubrication-based one-dimensional finite element.
5. Comparisons

As indicated previously, the advantages of the residual-based

method in comparison with other methods include simplicity,
ease of implementation, low computational costs, and reliabil-
ity of solutions which are comparable in their accuracy with

any intended analytical solutions based on the given assump-
tions, as the investigated limiting cases like rigid and fixed-ra-
dius tubes have revealed. These advantages also apply for the
residual-based method in comparison with the lubrication-

based one-dimensional finite element method plus a better
overall convergence behavior. The biggest advantage of the
finite element method, however, is its applicability to the tran-

sient time-dependent flow and more suitability for probing
other flow-related one-dimensional transport phenomena such
as the reflection and propagation of pressure waves. Therefore,

the lubrication-based one-dimensional finite element could be
the method of choice for investigating transient flow and wave
propagation in distensible geometries until proper modifica-
tions are introduced on the residual-based method to extend

it to these modalities. More details about the comparison
between the residual-based and finite element methods can
be found in [11].

The residual-based method, as indicated earlier, can also be
used for irregular flow conduits in general with cross sections
that vary in size and shape and even without converging–di-

verging feature and regardless of being cylindrically axi-sym-
metric as long as an analytical, or empirical, or even
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numerical [43] relation between the boundary pressures and
flow rate on a straight geometry with a similar cross-sectional
shape does exist. Therefore it can be safely claimed that the

residual-based method has a wider applicability range than
many other methods whose explicit or implicit underlying
assumptions apply only to restricted types of conduit

geometry.
With regard to convergence, each numerical method has its

own characteristic convergence behavior which depends on

many factors such as the utilized numerical solvers and their
underlying mathematical and computational theory, the nature
of the physical problem, the employed convergence support
techniques, and coding technicalities. Hence it is not easy to

make a definite comparison for the convergence behavior
between different numerical methods. However, we can say that
the residual-based method has in general a better rate and speed

of convergence in comparison with other commonly-used
numerical methods. More details about convergence issues
and convergence enhancement techniques can be found in [11].

On the other hand, the residual-based method has a num-
ber of limitations based on its underlying physical assump-
tions, as stated in Section 2, as well as limitations rooted in

its one-dimensional nature that restricts its applicability to
modeling axially-dependent flow phenomena and hence
excludes phenomena related to other types of dependency.
However, most of these limitations are shared by other compa-

rable methods.
6. Conclusions

A simple and reliable method based on the lubrication approx-
imation in conjunction with a non-linear simultaneous solu-
tion scheme based on the continuity of pressure and

volumetric flow rate with an analytical solution correlating
the flow rate to the boundary pressures in straight cylindrical
elastic tubes with constant radius is used in this paper to find

the flow rate and pressure field in distensible tubes with con-
verging–diverging shapes. Five converging–diverging axi-sym-
metric geometries were used for demonstrating the

applicability of the method and assessing its merit.
The method is validated by its convergence behavior with

finer discretization as well as comparing the equivalent
Poiseuille-based flow to the analytical solutions which were

obtained and validated previously. A sample of lubrication-
based one-dimensional finite element solutions have also been
obtained and compared to the residual-based solutions; these

results show very good agreement. The method was also tested
on limiting cases of elastic cylindrical tubes with fixed radius,
where it produced results identical to the analytical solutions,

as well as the convergence to the established rigid tube flow
with increasing tube wall stiffness.

The method can be extended to geometries other than cylin-
drically axi-symmetric converging–diverging shapes as long as

a flow characterization relation can be provided for the dis-
cretized elements; whether analytical or empirical or even
numerical. The method can also be extended beyond the use

in computing the flow in single tubes to compute the flow in
networks of interconnected distensible conduits which are,
totally or partially, characterized by having converging–di-

verging geometries, or variable cross-sectional shapes or curv-
ing structure in the flow direction to be more general.
Many industrial and medical applications, such as material
processing and stenosis modeling, can benefit from this
approach which is easy to implement and integrate with other

flow modeling techniques. Moreover, it produces highly accu-
rate solutions with low computational costs. An initial investi-
gation indicates that its convergence behavior in terms of

speed, accuracy and reliability is generally superior to that of
the traditional numerical techniques such as the one-dimen-
sional finite element especially with the use of convergence

enhancement techniques.
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