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The late Permian Emeishan large igneous province (ELIP) covers ~0.3 x 10° km? of the western margin
of the Yangtze Block and Tibetan Plateau with displaced, correlative units in northern Vietnam (Song Da
zone). The ELIP is of particular interest because it contains numerous world-class base metal deposits and
is contemporaneous with the late Capitanian (~260 Ma) mass extinction. The flood basalts are the
signature feature of the ELIP but there are also ultramafic and silicic volcanic rocks and layered mafic-
ultramafic and silicic plutonic rocks exposed. The ELIP is divided into three nearly concentric zones
(i.e. inner, middle and outer) which correspond to progressively thicker crust from the inner to the outer
zone. The eruptive age of the ELIP is constrained by geological, paleomagnetic and geochronological
evidence to an interval of <3 Ma. The presence of picritic rocks and thick piles of flood basalts testifies to
high temperature thermal regime however there is uncertainty as to whether these magmas were
derived from the subcontinental lithospheric mantle or sub-lithospheric mantle (i.e. asthenosphere or
mantle plume) sources or both. The range of Sr (Is; = 0.7040—0.7132), Nd (eng(t) = —14 to +8), Pb
(296pb/204ph; =~ 17.9—20.6) and Os (yos = —5 to +11) isotope values of the ultramafic and mafic rocks
does not permit a conclusive answer to ultimate source origin of the primitive rocks but it is clear that
some rocks were affected by crustal contamination and the presence of near-depleted isotope compo-
sitions suggests that there is a sub-lithospheric mantle component in the system. The silicic rocks are
derived by basaltic magmas/rocks through fractional crystallization or partial melting, crustal melting or
by interactions between mafic and crustal melts. The formation of the Fe-Ti-V oxide-ore deposits is
probably due to a combination of fractional crystallization of Ti-rich basalt and fluxing of CO,-rich fluids
whereas the Ni-Cu-(PGE) deposits are related to crystallization and crustal contamination of mafic or
ultramafic magmas with subsequent segregation of a sulphide-rich portion. The ELIP is considered to be
a mantle plume-derived LIP however the primary evidence for such a model is less convincing (e.g. uplift
and geochemistry) and is far more complicated than previously suggested but is likely to be derived from
a relatively short-lived, plume-like upwelling of mantle-derived magmas. The emplacement of the ELIP
may have adversely affected the short-term environmental conditions and contributed to the decline in

biota during the late Capitanian.
© 2013, China University of Geosciences (Beijing) and Peking University. Production and hosting by
Elsevier B.V. All rights reserved.

1. Introduction

earth and biological sciences to explain the physical transfer of
material from the mantle to the crust and its effect on the

The study of mafic continental large igneous provinces (LIPs)
requires the application of a broad range of disciplines within the
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biosphere. In the broadest sense continental mafic LIPs are large
(i.e. >0.5 x 10° km?) spatially contiguous regions of the continental
crust which host temporally and petrogenetically associated
igneous rocks predominated by mafic compositions (Sheth, 2007a).
The formation of LIPs is debated as some are considered to be
derived by deep-seated diapiric upwellings of high temperature
magmas (i.e. mantle plume) whereas others are considered to be
derived by relatively shallow mantle melting associated with ten-
sile stress in the overriding lithosphere (Jerram and Widdowson,
2005; Campbell, 2007; Saunders et al., 2007; Bryan and Ernst,
2008; Foulger, 2010). Regardless of their formation, LIPs are
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either directly or indirectly a consequence of plate tectonics and the
cooling of the Earth (Wilson, 1963; Morgan, 1971, 1972; White and
McKenzie, 1989, 1995; Coffin and Eldholm, 1994; Ernst and Buchan,
2003).

The emplacement and eruption of LIP magmas are often
coincident with mass extinctions as four of the major (i.e.
Cretaceous—Paleogene, Triassic—Jurassic, middle Permian and
Permian—Triassic) mass extinctions are contemporaneous with the
formation of the Deccan Traps, Central Atlantic Magmatic Province,
Emeishan large igneous province and the Siberia Traps (Raup and
Sepkoski, 1982; Rampino and Stothers, 1988; Courtillot et al.,
1999; Wignall, 2001, 2005; Courtillot and Renne, 2003; White
and Saunders, 2005; Wignall et al., 2009). The emission of partic-
ulate and gasses (i.e. SO, and CO;) from the erupting lavas as well as
country rock degassing may be sufficient to induce climate change,
cause a reduction in sunlight and inhibit photosynthesis and/or
induce acid rain (Wignall, 2001; Ganino and Arndt, 2009). However
not all LIPs are coincident with biotic crises and therefore the
relationship may not be clear-cut (Courtillot and Renne, 2003;
Shellnutt et al, 2011a). Although LIPs may contribute to
ecosystem collapse they are also important sites for economic de-
posits of precious and base metals (Pirajno, 2000; Borisenko et al.,
2006; Ernst, 2007; Zhang et al., 2008a, b). In many cases the ore
deposits are orthomagmatic (i.e. layered intrusions, volcanogenic
massive sulphide) but due to the large volume of hot magmas
passing through the crust it is possible to form a variety of types
including skarns and hydrothermal copper and gold.

The late Permian Emeishan large igneous province (ELIP) is
relatively small compared to the Siberian Traps or Central Atlantic
Magmatic Province but is the focus of a tremendous amount of
geological, geochemical, paleomagnetic, geochronological and
biostratigraphic research during the past three decades. In spite of
its stature as a ‘smaller’ large igneous province, the ELIP is an
important geological feature of SW China not only because it hosts
a number of world-class orthomagmatic Fe-Ti-V oxide deposits and
series of smaller economically important Ni-Cu-(PGE) sulphide
deposits but also the eruption of the Emeishan flood basalts is
contemporaneous with the late Capitanian—early Wuchiapingian
mass extinction (i.e. end-Guadalupian) indicating that there may be
a link between the two (Zhou et al., 2002a; Zhang et al., 2006a, b;
Ganino and Arndt, 2009; Sun et al., 2010; Shellnutt et al., 2012a).
Beyond the flood basalts, economic and biogeological importance,
the ELIP contains a diverse set of igneous rocks including cumulate
mafic-ultramafic layered intrusions, picrites and the full spectrum
of volcanic and plutonic silicic rocks (i.e. andesites, trachytes, rhy-
olites, syenites, granites). The fact that the magmatic plumbing
system of the ELIP is well exposed at the surface is relatively special
because the plutonic-hypabyssal rocks are not often observed
within continental mafic LIPs thus providing a nearly complete
account of its development. The bulk of the geological and petro-
logical research, including evidence of structural doming of the
crust and high temperature picritic lavas, suggests that the ELIP was
formed by a mantle plume. Consequently it is considered to be one
of the best examples of a mantle plume-derived LIP and can be used
as a benchmark for comparison with other continental mafic LIPs
(Campbell, 2005).

The numerous studies have produced a general understanding
on the formation of the ELIP but recently many of the old views are
giving way to new ideas which challenge the conventional ortho-
doxy. Specifically that the ELIP shows evidence for doming of the
crust or that it was derived by a mantle plume is questioned as well
as the ongoing debate regarding the formation of the flood basalts
and oxide-ore deposits (Song et al., 2001, 2004, 2008a; Xu et al.,
2001, 2004; He et al., 2003; Zhou et al., 2005; Ganino et al., 2008;
Utskins-Peate and Bryan, 2008; Sun et al., 2010; Shellnutt and

Jahn, 2011; Shellnutt et al., 2011b; Zhong et al., 2011a; Kamenetsky
et al,, 2012). The objective of this paper is to provide an overview of
the major features and issues regarding the formation of the ELIP.
The paper is divided into seven parts which focus on a specific
topic. The first part discusses the basic geological background of the
ELIP including its context within the geology of China. The second
part discusses the age and duration ELIP including the uncertainties
between geochronological techniques and interpretations. The
third part discusses the formation of the non-mineralized
magmatic rocks. The fourth part focuses on the structural fea-
tures, i.e. evidence for a fossil plume head and crust doming, and
the effect that magmatism may have had on the late middle
Permian ecosystem. The metallogenesis of the ELIP is the focus of
the fifth part, specifically the formation of the Ni-Cu-(PGE) sulphide
and the Fe-Ti-V oxide deposits as well as some thoughts on the
potential formation of rare earth element (REE) deposits. The sixth
section attempts to bring all of the information together outlined in
the previous sections and provide a synthesis of the ELIP. The final
section discusses future research directions and opinions of ELIP-
related topics.

2. Geological background

China is composed of three major Precambrian blocks and
smaller terranes which have been amalgamating since ~1850 Ma
or earlier (Fig. 1). In the east, the Archean North China Block (NCB)
also known as the Sino-Korean Craton is bounded to the North by
the Central Asia Orogenic Belt (CAOB), a Proterozoic to Paleozoic
fold and thrust belt, and to the South by the middle Triassic Central
Orogenic Belt (Qinling-Dabie Orogenic Belt). To the west of the NCB
and the north of the Tibetan Plateau is the Tarim Block which is a
Paleoproterozoic stable craton. Southeast of the Tibetan Plateau is
the South China Block, a composite craton of the Yangtze Block and
the Cathaysia Block (Fig. 1).

The NCB consists of two major Archean continental fragments
surrounded by Paleoproterozoic orogenic belts (Zhao et al., 2005,
2006). From the late Paleoproterozoic to the Paleozoic shallow
marine carbonates were deposited on many parts of the NCB.
During this time, the southern margin was a site of volcanic arc
accretion and granitic magmatism (1400—1000 Ma). During the
Neoproterozoic extensive rift basins were formed along the
northern and southern margins of the NCB (Wang and Mo, 1995; Li,
1998).

To the south of the Central Orogenic Belt is the South China
Block (SCB) which comprises the Archean—Proterozoic Yangtze
Block to the northwest and the Paleo-Mesoproterozoic Cathaysia
Block to the southeast (Wang and Mo, 1995; Chen and Jahn, 1998).
These two blocks are in contact along the Jiangshan-Shaoxing fault
zone and likely collided during the late Mesoproterozoic
(~1000 Ma) although this is debated (Hsu et al., 1990; Chen and
Jahn, 1998). To the immediate west of the SCB is the Tibetan
Plateau. The Tibetan Plateau consists of four distinct terranes, the
Lhasa, Qiangtang, Yidun and Songpan-Ganze, a late Triassic—early
Jurassic thrust sequence composed of 10 km thick marine sedi-
ments (Bruguier et al., 1997; Yan et al.,, 2003). Many of these ter-
ranes were accreted during the Paleozoic to Mesozoic and were
deformed during the India-Eurasia collision (Wang and Mo, 1995;
Yin and Harrison, 2000).

Southwestern China comprises the western margin of the
Yangtze Block to the east and the eastern most part of the Tibetan
Plateau to the west (Fig. 1). The Yangtze Block consists of Meso-
Proterozoic granitic gneisses and metasedimentry rocks which
have been intruded by Neoproterozoic (~800 Ma) granites and
mafic rocks (Zhou et al.,, 2002b; Zhao and Zhou, 2007). The
Neoproterozoic granites are overlain by a series of marine and
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Figure 1. Major tectonic divisions of China (modified from Zhang et al., 1988).

terrestrial strata of the late Neoproterozoic (~600 Ma) to the
Permian (Yan et al., 2003). The largest, single geological feature of
SW China is the late Permian ELIP and is located at the western
edge of the Yangtze Block near the boundary with the Songpan-
Ganze terrane (Figs. 1 and 2). The wedge shape distribution of
ELIP rocks is likely related to Mesozoic and Cenozoic faulting
associated with the development of the Songpan-Ganze terrane
and the India-Eurasia collision (Chung and Jahn, 1995; Chung
et al, 1997, 1998). The ELIP covers an area of at least
0.3 x 10% km? of SW China and northern Vietnam (Song Da zone)
and consists of mafic and ultramafic volcanic rocks, spatially
associated felsic plutons and layered mafic-ultramafic intrusions,
some of which host giant Fe-Ti-V oxide and Ni-Cu sulphide de-
posits and is subdivided into three roughly concentric zones (i.e.
inner, intermediate and outer) which correspond to crustal
thickness estimates and differential seismic velocity layers
(Fig. 2a and b). The centre of the ELIP is known as the inner zone
and has the thickest crust which progressively thins from the
intermediate to outer zone (Zhong et al., 2002; Xu et al., 2004;
Zhou et al., 2005). The volcanic piles range in thickness from
10 to 5.0 km in the western half and 0.2—2.6 km in the
eastern half and consist mostly of flood basalts with picrites in
the lower half and basaltic-andesites and silicic volcanic rocks
in the upper half. The volcanic rocks erupted at equatorial
latitudes of eastern Pangaea within one normal-polarity cycle
suggesting rapid emplacement (Huang and Opdyke, 1998; Ali
et al., 2002; Zheng et al., 2010). The ELIP is an important host
of Ni-Cu-(PGE) sulphide and Fe-Ti-V oxide mineral deposits. In
the central part, namely the Panxi region, of the ELIP there are
abundant giant orthomagmatic Fe-Ti-V oxide deposits which
contribute 35.2% Ti and 6.7% V of the total global production of
these metals (Zhou et al., 2005). There are economic to sub-
economic Ni-Cu-(PGE) and PGE deposits within the Panxi region
but are also found in the outer parts of the ELIP (Song et al.,
2003).

3. Age and duration of magmatism

Flood basalts have erupted regularly throughout the Earth’s
history on the order of about 1 every 20 million years for continents
but possibly as often as 1 per 10 million if oceanic plateaux are also
considered (Coffin and Eldholm, 2001; Ernst et al., 2005; Bryan and
Ernst, 2008). The area and volume of a given flood basalt province is
primarily dependent on the duration of volcanism, which is related
to the rate of heat loss, material available to melt, and the medium
(i.e. subaerial or subaqueous) into which the lavas erupt. Conse-
quently, determining the start of magmatism is much easier than
determining when it ended but most continental flood basalt
provinces are active for <10 million years with some lasting up to
50 million years whether they are punctuated or continuous (Bryan
and Ernst, 2008). The initiation of ELIP volcanism is well con-
strained by both biostratigraphic and radiometric techniques
however the cessation of magmatism is unclear and continues to be
debated.

The sedimentology and biostratigraphy constrains the eruption
of the Emeishan flood basalts to the late middle Permian (He et al.,
2007, 2010a; Sun et al., 2010). The Emeishan basalts erupted onto
the middle Permian fusulinid-bearing Neomisellina-Yabeina zone
of the carbonate Maokou Formation which suggests they erupted
no early than 263 Ma (He et al., 2003, 2010b). The deposition of the
Xuanwei formation at 257 + 4 Ma marks the end of subaerial
volcanism in the region indicating that it probably lasted for <10
million years (He et al., 2007). Paleomagnetic data collected from
basalt sections at Duge, Zhijin, Ebian and Yanyuan show evidence
for an early period of normal magnetic polarity followed by reverse
polarity suggesting a relatively rapid (i.e. <1.5 Ma) emplacement
coinciding within one normal-polarity episode thereby reducing
the likely eruption duration by nearly three times (Huang and
Opdyke, 1998; Thomas et al., 1998; Ali et al,, 2002, 2005; Zheng
et al,, 2010). Furthermore, Thompson et al. (2001) and Xu et al.
(2001) both noted the absence of weathered flow tops in most
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Figure 2. (a) Regional distribution of the Emeishan large igneous province showing the concentric zones (dashed red lines) of the ELIP and location of Ti-V oxide and Ni-Cu-PGE
sulphide deposits (modified from Tao et al., 2010). (b) Seismic P-wave velocity (km/s) structure of the lower crust and upper mantle beneath the western Yangtze Block. The profile
is from Lijiang (A) to Zhehai (B) (modified from Xu et al., 2004).
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sections beneath the overlying sediments may be due to rapid
emplacement and burial.

The geological and paleomagnetic data indicate that the
Emeishan basalts erupted during the late middle Permian which
lasted for ~2 million years or less however the radiometric ages of
all magmatic rocks reveal a more complicated situation. There are
well over 50 published radiometric age dates of volcanic and
plutonic rocks which are interpreted to be a part of the ELIP and
range from ~236 Ma to ~266 Ma (Table 1). The large range of
radiometric age dates for ELIP-related rocks is in direct conflict with
arapid emplacement model (Fig. 3). The range of dates may, in fact,
be an artifact of different radiometric methods used, misinter-
preting rocks, poor data processing and the rock type (i.e. volcanic
vs. plutonic). The reported 4°Ar-3°Ar ages of the Emeishan basalts
range between 246 4+ 4 Ma and 256 + 0.8 Ma and were initially
interpreted to be pene-contemporaneous with the Siberian Traps
and the end-Permian mass extinction. However zircon U/Pb dates
of plutonic rocks consistently yielded ages around 260 Ma although
there are a number of results which yielded ages between 251 Ma
and 255 Ma (Fig. 3). The young “°Ar-?Ar basalt ages were consid-
ered to be an artifact of post-emplacement thermal resetting
caused by regional tectonic events (e.g. Longmenshan thrust belt
and the North China-South China collision) however, more likely,
they were not corrected for systematic bias inherent in the K-Ar
system that results in younger ages (Ali et al., 2004; Renne et al.,
2010, 2011; Shellnutt et al., 2012a). The first high precision
zircon chemical abrasion ID-TIMS geochronology results from a
suite of diabase dykes and granitic rocks yielded ages tightly cluster
between 257.6 + 0.5 Ma and 259.6 + 0.5 Ma and currently is the
best emplacement age available for the ELIP (Shellnutt et al.,
2012a).

The volcanic rocks likely erupted over the course of a few million
(i.e. <2 Ma) years however that does not necessarily mean that
plutonic magmatism ended as abruptly. There are many published
zircon U/Pb age dates of ELIP rocks that have post-257 Ma ages and
are used as evidence to suggest that plutonic magmatism
continued for another 20 Ma or so (Zhong et al., 2007, 2009, 2011a;
Shellnutt and Zhou, 2008; Shellnutt et al., 2008; Xu et al., 2008; Luo
et al.,, 2013). However the relatively large (i.e. >2 Ma) error on some
age dates does not permit greater constraint than 10 Ma and thus it
cannot be verified if plutonism actually continued beyond the
volcanism. Furthermore, two syenitic intrusions that were dated
using the ID-TIMS methods have shown that rocks which were
previously considered to be ~252 Ma are actually ~259 Ma and
diabase dykes that were considered to be ~242 Ma are between
257 and 259 Ma thus casting doubt on an excessively long
magmatic duration (Shellnutt et al., 2012a). It is possible that
plutonic magmatism continued beyond the volcanism if the heat
source dissipates slowly over the course of a few million years but it
is unlikely that ELIP magmatism continued for an additional 20
million years. Therefore, providing a heat source is available, it is
possible that underplated mafic ELIP rocks could have served as a
source for post-ELIP magmas which may have similar geochemical
characteristics as the ELIP rocks (Xu et al., 2004; Shellnutt et al.,
2008).

4. Magmatic rocks of the Emeishan large igneous province

Mafic continental large igneous provinces represent the physical
and chemical transfer of material from the mantle to the crust
(Coffin and Eldholm, 1994; Sheth, 2007a; Bryan and Ernst, 2008).
The nature of the mantle melting is a debated issue and is primarily
focused on whether LIPs are formed by hot, deep-seated upwelling
of mantle material (i.e. mantle plume) or if they are merely formed
as a consequence of shallow decompression melting in areas where

the lithosphere is under extension (Richards et al., 1989; Campbell
and Griffiths, 1990; Griffiths and Campbell, 1991; Sheth, 1999;
Favela and Anderson, 2000; Ernst and Buchan, 2003; Campbell,
2005; Ernst et al.,, 2005; Natland and Winterer, 2005; Saunders
et al,, 2007; Bryan and Ernst, 2008; Foulger, 2010). There are a
number of geological, geochemical and thermal criteria which
indicate whether a given LIP is generated by a mantle plume. The
main geological features associated with mantle plume-derived LIP
include: short duration of magmatism (e.g. <1 Ma), the eruption of
ultramafic lavas, thermal anomalies, voluminous flood basalts and
doming of the crust (Campbell, 2007). Some of the criteria are
difficult to assess, in particular the eruption duration and doming of
the crust. Furthermore, determining the thermal history of an
ancient LIP is problematic however it can be surmised by the
presence of ultramafic lavas and by calculating their mantle po-
tential temperatures (Herzberg and O’Hara, 2002; Herzberg et al.,
2007; Herzberg and Asimow, 2008). The ELIP is considered to be
a mantle plume-derived large igneous province and exhibits, to
varying degrees, the criteria outlined for mantle plume-LIPs
although there is evidence that the subcontinental lithospheric
mantle (SCLM) may be a contributing source and that the mantle
plume model is too simplistic (Song et al., 2001, 2004, 2008a; Xu
et al., 2001, 2004, 2007a, b; He et al., 2003, 2007; Xiao et al.,
2004; Shellnutt and Zhou, 2007; Shellnutt et al., 2008; Shellnutt
and Jahn, 2011; Kamenetsky et al., 2012). This section summa-
rizes the magmatic features of the ELIP.

4.1. Ultramafic volcanic rocks

High temperature ultramafic volcanic rocks are recognized
within the inner zone of the ELIP at Binchaun, Yongsheng, Ertan,
Muli, Dali, Jinping, and Lijiang (Polyakov et al., 1991; Glotov et al.,
2001; Hanski et al., 2004, 2010; Hou et al., 2006; Zhang et al.,
20063, b; Wang et al,, 2007; Ali et al, 2010; He et al,, 2010c;
Kamenetsky et al., 2012). There are also correlative units in the
Song Da zone of northern Vietnam which was tectonically trans-
posed by ~600 km sinistral offset during the Paleogene activation
of the Ailao Shan-Red River fault system (Chung et al., 1997). The
rocks are regarded as picrites as they contain between 14 wt.% and
27 wt.% MgO but, in some cases, their composition and textures (i.e.
spinifex) bear some resemblance to the komatiites of Gorgona Is-
land (Hanski et al., 2004; Kamenetsky et al., 2012). The picrites are
found at various stratigraphic levels within the volcanic piles
however they are typically found no higher than the lower half
which suggests they were amongst the earliest eruptive rocks (Xu
et al,, 2001; Hanski et al,, 2004; Zhang et al., 20063, b; Li et al,,
2010).

The whole rock composition of primary mantle-derived ultra-
mafic rocks can be used to estimate their eruption temperatures
and mantle potential temperatures (McKenzie and O’Nions, 1991;
Albarede, 1992; Herzberg and O’Hara, 2002; Herzberg et al.,
2007; Herzberg and Asimow, 2008). The eruption and mantle po-
tential temperatures (T}) of the ELIP picrites have been estimated
using different techniques by Xu et al. (2001), Zhang et al. (2006a,
b), Ali et al. (2010) and He et al. (2010c). Xu et al. (2001), using REE
inversion, have suggested that the mantle potential temperatures
are >1550 °C whereas Zhang et al. (20064, b), using the empirical
estimate method of Albarede (1992), calculated a T, of
1630—1690 °C. In contrast, both He et al. (2010c) and Ali et al.
(2010) using PRIMELT2 calculated the initial MgO values of the
picrites to be >20% which corresponds to eruption temperatures of
~1440 °C and a mantle potential temperatures between ~ 1540 °C
and 1610 °C. The wide-range of estimates is perhaps a little
disconcerting regarding the precision of the T, but the fact that the
temperatures are consistently >1540 °C suggests that, no matter
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Table 1

Summary of reported age dates from the Emeishan large igneous province.
Sample Rock type Method Material Age (Ma) Reference
GS03-092 Syenite 206pp 238y Zircon 259 + 5 Shellnutt et al. (2009)
GS04-016 Syenite 206pp 238y Zircon 258 + 4 Shellnutt et al. (2009)
GS05-056B Gabbro 206pp 238y Zircon 261 +2 Shellnutt et al. (2009)
TH-14 Granite 206pp 238y Zircon 261 +2 Xu et al. (2008)
LQ-3 Nepheline syenite 206pp 238y Zircon 262 + 4 Luo et al. (2007)
GS04-077 Mafic dyke 206pp 238y Zircon 261 +5 Shellnutt and Jahn (2011)
MY-5 Pyroxene syenite 206pp 238y Zircon 260 + 4 Xu et al. (2008)
GS05-065 Syenite 206pp 238y Zircon 260 + 2 Shellnutt and Zhou (2007)
HG-1 Granite 206pp 238y Zircon 255+ 4 Xu et al. (2008)
ALH-0401 Granite 206pp 238y Zircon 251+ 6 Zhong et al. (2007)
GS03-122 Syenite 206pp 238y Zircon 252 +3 Shellnutt and Zhou (2008)
WB-0604 Syenite 206pp 238y Zircon 253 +2 Zhong et al. (2009)
SL-2 Diorite 206pp 238y Zircon 260 + 4 Xu et al. (2008)
HC-2 Quartz syenite 206pp 238y Zircon 266 + 5 Xu et al. (2008)
GS04-119 Mafic dyke 206pp 238y Zircon 242 +2 Shellnutt et al. (2008)
Panzhihua Picritic dyke 206pp 238y Zircon 2614 + 4.6 Hou et al. (2013)
BC-Tu#-3 Rhyolitic tuff 206pp 238y Zircon 238 + 3 Xu et al. (2008)
20BS-116 Basalt 206pp 238y Zircon 260 +5 Fan et al. (2008)
SCHL-66 Ultramafic dyke 206pp 238y Zircon 262 +3 Guo et al. (2004)
TH-1 Gabbro 206pp 238y Zircon 263 + 4 Shellnutt et al. (2011b)
Mianhuadi Metagabbro 206pp 238y Zircon 259.6 + 0.8 Zhou et al. (2013)
CD-0401 Granite 206pp 238y Zircon 261 + 4 Zhong et al. (2007)
HGF-01 Gabbro 206pp 238y Zircon 2593 +1.3 Zhong and Zhu (2006)
DS-01 Gabbro 206pp 238y Zircon 260 + 0.8 Zhong and Zhu (2006)
PZH72 Leucogabbro 206pp 238y Zircon 263 +3 Zhou et al. (2005)
7J]-3 Sediments 206pp 238y Zircon 257 + 3 He et al. (2007)
SW-5 Sediments 206pp 238y Zircon 260 + 5 He et al. (2007)
Xinjie Gabbro 206pp 238y Zircon 259 + 3 Zhou et al. (2002)
FL14 Diorite 206pp 238y Zircon 258 + 3 Zhou et al. (2006)
FL7 Diabase 206pp 238y Zircon 260 + 3 Zhou et al. (2006)
LM18 Gabbro 206pp 238y Zircon 263 + 3 Zhou et al. (2008)
Zb4 Diorite 206pp 238y Zircon 261 +1 Zhou et al. (2008)
MY6 Syenite 206pp 238y Zircon 262 +2 Zhou et al. (2008)
20BS-71 Basalt 4OAr*°Ar Whole rock 253.6 + 0.4 Fan et al. (2004)
20BS-99 Basalt 40Ar30Ar Whole rock 2554 + 0.4 Fan et al. (2004)
20BS-119 Basalt 40Ar30Ar Whole rock 2562 + 0.8 Fan et al. (2004)
20BS-76 Basalt 206pp 238y Zircon 253.7 + 6.1 Fan et al. (2004)
EM-90 Basalt 4OAr[*°Ar Whole rock 2515+ 0.9 Lo et al. (2002)
EM-PZHO1 Syenite 4OAr3°Ar Biotite 2546 +1.3 Lo et al. (2002)
EM-37 Basalt 40Ar20Ar Whole rock 252 +1.3 Lo et al. (2002)
EM-MMGO05 Syenite 4OAr[*°Ar Biotite 252 +1.3 Lo et al. (2002)
EM-PZH11 Syenite 40Ar/3°Ar Biotite 2516+ 1.6 Lo et al. (2002)
EM-86 Trachyte 4OAr/*°Ar Hornblende 2528 +1.3 Lo et al. (2002)
EM-15 Basalt 4OAr[*OAr Whole rock 2559 + 5.7 Lo et al. (2002)
Guanxi Basalt 206pp 238y Zircon 257 +£7 Lai et al. (2012)
Ch-97-90 Pyroxeneite 40Ar/3°Ar Phlogopite 254+ 5 Boven et al. (2002)
Jinbaoshan Webhrlite 206pp 238y Zircon 260.6 + 3.5 Tao et al. (2009)
Jinbaoshan Hornblendite 206pp 238y Zircon 260.7 + 5.6 Tao et al. (2009)
CD-0701 Mafic enclave 206pp 238y Zircon 2595 + 2.7 Zhong et al. (2011)
CD-0703 Mafic enclave 206pp 238y Zircon 259 + 3.1 Zhong et al. (2011)
BM-0703 Gabbro 206pp 238y Zircon 2582 +22 Zhong et al. (2011)
TJ-0602 Syenite 206pp 238y Zircon 2585 + 2.3 Zhong et al. (2011)
TJ-0401 Syenite 206pp 238y Zircon 257.8 + 2.6 Zhong et al. (2011)
CD-0401 Granite 206pp 238y Zircon 2562 + 1.5 Zhong et al. (2011)
WB-0703-1 Gabbro 206pp 238y Zircon 2579 +24 Zhong et al. (2011)
WB-0703-1 Gabbro 206pp 238y Zircon 255.4 + 3.1 Zhong et al. (2011))
WB-0701-1 Syenodiorite 206pp 238y Zircon 2594 + 1.1 Zhong et al. (2011)
WB-0701-6 Syenodiroite 206pp 238y Zircon 2592 + 1.3 Zhong et al. (2011)
20BS-76 Basalt 206pp 238y Zircon 259 + 4 Fan et al. (2008)
WB-702 Syenodiorite 206pp 238y Zircon 2578 +2.3 Zhong et al. (2011)
WB-705 Syenodiroite 206pp 238y Zircon 259.8 + 1.6 Zhong et al. (2011)
WB-0604 Syenite 206pp 238y Zircon 2558 + 1.8 Zhong et al. (2011)
HG-0701 Gabbro 206pp 238y Zircon 258.7 + 2 Zhong et al. (2011)
HG-0703 Gabbro 206pp 238y Zircon 2589 + 2.1 Zhong et al. (2011)
ALH-0401 Granite 206pp 238y Zircon 256.8 + 2.8 Zhong et al. (2011)
ALH-0702 Granite 206pp 238y Zircon 2562 +3 Zhong et al. (2011)
TH-0701 Gabbro 206pp 238y Zircon 258.8 +2.3 Zhong et al. (2011)
GS03-111 Mafic dyke 206pp 238y Zircon 2576 + 0.5 Shellnutt et al. (2012a)
GS05-005 Mafic dyke 206pp 238y Zircon 2592 + 0.4 Shellnutt et al. (2012a)
GS03-105 Mafic dyke 206pp 238y Zircon 2595 + 0.8 Shellnutt et al. (2012a)
GS05-067 Syenite 206pp 238y Zircon 259.6 + 0.5 Shellnutt et al. (2012a)
DHS-1 Syenite 206pp 238y Zircon 259.1 £ 0.5 Shellnutt et al. (2012a)
GS05-059 Syenite 206pp 238y Zircon 2589 + 0.7 Shellnutt et al. (2012a)
GS04-143 Granite 206pp 238y Zircon 2584 + 0.6 Shellnutt et al. (2012a)
JW-1 Ignimbrite 206pp 238y Zircon 263 +4 He et al. (2007)

CT-2 Clayey tuff 206pp 238y Zircon 260 + 4 He et al. (2007)
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the precision, the estimates are at least 150 °C above the Tp, esti-
mates of primitive MORB values and thus indicative of a high
temperature regime (Herzberg et al., 2007; Ali et al., 2010).

The ELIP picritic rocks can be subdivided into LREE-enriched,
LREE-depleted and may be further subdivided into high-Ti
(TiOy = 11-24 wt%) and low-Ti (TiO; = 0.6—1.6 wt.%) varieties
(Hanskietal., 2004, 2010; Zhang et al., 20063, b; Wang et al., 2007; He
etal,, 2010c; Lietal., 2012). Liet al. (2010) however suggested that the
picrites at Muli are better divided into three groups (i.e. Type-1, Type-
2A and Type-2B) on the basis of ygs and eng(t) and to a lesser extent
HFSE data. Type-1 picrites are characterized as having yos = +7.5
to +11.5 and eng(t) = +6 to +8 whereas the Type-2 picrites have
Yos = —4.2 to —0.3 and eng(t) < +6.5. The yos (i.e. Yos = —2.4 to —0.9)
values reported by Zhang et al. (20083, b) from Lijiang area are more
similar to the Type-2 Muli picrites of Li et al. (2010). The Pb isotope
data (i.e. 2°6Pb/?9%Pb = 17.933—18.883; 2°’Pb/2%4Pb = 15.513—15.589;
208pp,204pp, — 37.93—38.85) of the picritic rocks were reported by
Zhang et al. (20064, b) indicate that they are similar to oceanic hot-
spots (i.e. Indian Ocean) and the Siberian Traps.

The formation of the ultramafic lavas is a ‘hotly’ debated topic.
Similar to the ELIP as a whole, the basic facts are accepted but the
details are contested. For example, there is general agreement that
the ultramafic rocks erupted relatively early, they are primitive,
high temperature melts and that they represent a large (i.e. >20%)
amount of melting from a garnet-bearing mantle source (Hanski
et al, 2004, 2010; Zhang et al., 2005, 2006a, b; Wang et al,,
2007; Kamenetsky et al., 2012). However there are different in-
terpretations regarding the nature and origin of the source.
Kamenetsky et al. (2012) have suggested that the two series (i.e.
high-Ti and low-Ti) of picrites are derived from separate mantle
sources, a peridotite source for the low-Ti series and a garnet
pyroxenite for the high-Ti series, and originate from the

subcontinental lithospheric mantle which may be comprised of
variable proportions of eclogite, garnet pyroxenite and peridotite
rather than a deep-seated mantle plume source or asthenospheric
source. In contrast, the prevailing view is that the ultramafic rocks
are pristine primitive melts from the starting plume head that are
in some cases, modified via interactions with one of or a combi-
nation of crustal material and lithospheric mantle melts and AFC
processes (Hanski et al., 2004, 2010; Zhang et al., 2006a, b, 2008a,
b; Wang et al., 2007; He et al., 2010c; Li et al., 2010). Wang et al.
(2007) suggested that the differences in the Ti- and LREE-
varieties are explained by higher degrees of anhydrous melting
at shallow mantle depths (i.e. LREE-depleted) and the mantle
source modified by subducted oceanic crust (i.e. LREE-enriched).
Some of the picrites, although certainly not all, show the
most depleted Sr-Nd-Os isotope signatures (i.e. Is; 0.7040;
end(t) = +8; yos = +11) in the entire ELIP and implies there is a
depleted mantle (i.e. sub-lithosphere) component in some of the
rocks (Hanski et al., 2004; Li et al., 2010, 2012). Therefore it is
possible that some picrites represent original depleted mantle
material which was modified by interactions with crustal material
and possibly an SCLM component whereas other picrites are
derived from an SCLM source.

4.2. The Emeishan flood basalts

The flood basalts are the signature feature of the ELIP and testify
to a widespread mantle melting event. The total maximum thick-
ness of basaltic flows is ~5 km located in the western portion (i.e.
Yunnan) of the ELIP whereas in the eastern portion (i.e. Guizhou)
total flow thickness is only a few hundred metres (Lin, 1985; Huang,
1986; Xu et al., 2001). The average flood basalt thickness
throughout the entire region is estimated to be ~700 m (Lin, 1985).
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The known area of the ELIP is considered to cover ~0.25 x 10° km?
with a total volume of ~0.3 x 10® km> however there are sug-
gestions that the volume was closer ~0.6 x 10° km? and that the
calculated total amount of material added to the crust was
~8.9 x 10% km?® (Lin, 1985; Wignall, 2001; Zhu et al., 2003). The
original area and volume of the ELIP can only be speculated because
the region has experienced substantial deformation associated
with the amalgamation of the North China, South China and
Indochina blocks during the early to middle Mesozoic and the early
Paleogene Indo-Eurasian collision. Many mafic LIPs, such as the
Siberian Traps or Central Atlantic Magmatic Province (CAMP), cover
an area >1 x 108 km? which dwarf the relatively modest size of the
ELIP. This is not to say the ELIP is insignificant but rather that size is
not a prerequisite in order to be geologically significant.

The early themes of Emeishan basalt studies was that they
appeared to be readily divisible into two main compositional
groups, with further sub-groupings (i.e. LT1, LT2, HT1, HT2 and
HT3), on the basis of their TiO, wt.% and Ti/Y ratio and that there
is a spatial-temporal distribution (Song et al., 2001; Xu et al,,
2001, 2004; Xiao et al., 2004; He et al.,, 2010c; Zheng et al.,
2010; Lai et al., 2012). The division into ‘high-Ti’ and ‘low-Ti’
groups corresponded to a petrological distinction as the ‘high-Ti’
(i.e. TiOy >2.5 wt.%) basalts were considered to be derived by low
degrees (<8%) of partial melting of the pristine source whereas
the ‘low-Ti’ basalts (i.e. TiOy < 2.5 wt.%) were considered to be
derived from either the subcontinental lithospheric mantle
(SCLM) or picritic magmas that assimilated upper crust (Xiao
et al.,, 2004; Wang et al., 2007; Fan et al., 2008; Song et al.,
2008; Zhou et al., 2008; He et al,, 2010). The inference is that
the type of basalt is indicative of the type of mineral deposit (i.e.
sulphide or oxide) which may be present in the immediate area
(Song et al., 2008a, 2009; Zhou et al., 2008; Wang et al., 2011). On
the other hand, Xu et al. (2007) argued, based on Os, Pb and Nd
isotope data, the opposite with the ‘high-Ti’ basalts are derived
from the SCLM whereas the ‘low-Ti’ basalts are derived from the
mantle plume source. The Ti-classification scheme, including the
various sub-groupings, and hence the petrological connotation
does not appear to be as robust as initially indicated (Hao et al.,
2004; Hou et al, 2011; Shellnutt and Jahn, 2011). The Ti-
classification scheme is somewhat arbitrary and that there is, in
fact, a continuous spectrum of compositions rather than two
distinct groups (Fig. 4).

The geographic distribution of the Emeishan basalts between
the inner and outer zones has led to speculation that there is a
consistent spatial, temporal and chemical relationship where the
‘higher-Ti’ basalts are located mostly in the outer zone and the
‘lower-Ti’ basalts are located mostly in the inner zone (Xu et al.,
2001, 2004). The implication is that the ‘higher-Ti’ basalts
represent the last eruptive rocks however the spatial-
compositional variation is debatable and may not exist. It is
known that some ‘high-Ti’ basalts are present within the inner
zone however they were considered to be young as the ‘low-Ti’
basalts are typically the basal flows in this area. Although there
are many stratigraphic profiles with basal ‘low-Ti’ basaltic flows
(e.g. Binchuan, Ta Khoa, Chieng Ngam, Yangliuping, Ertan) there
are almost an equal amount of sections which have basal ‘high-Ti’
flows, for example, Heishitou, Panzhihua, Longzhoushan,
Yanyuan Suoi Chat and Doi Bu (Xu et al., 2001, 2003; Song et al.,
2006; Qi and Zhou, 2008; Qi et al., 2008; Zheng et al., 2010; Anh
et al., 2011; Shellnutt and Jahn, 2011). Additionally, ‘high-Ti’ mafic
dykes have ages between 257 Ma and 260 Ma indicating that
they are no more or less likely to be older or younger than other
intrusive rocks in the inner zone (Shellnutt et al., 2012a). The
concentration of the Fe-Ti oxide within the inner zone is also at
odds with the spatial-compositional distribution because they

are considered to have ‘high-Ti’ basaltic parental magmas and
paleomagnetic data suggest that there is no definitive temporal
relationship between the eruption of the ‘low- and high-' Ti ba-
salts (Zhou et al., 2008; Pang et al., 2009, 2010, 2013; Zheng et al.,
2010; Shellnutt and Jahn, 2011). If there is a temporal-spatial-
compositional relationship of the Emeishan basalts then more
definitive evidence is required.

The Emeishan basalts are chemically similar to many conti-
nental tholeiities however the ‘higher-Ti’ basalts are more similar to
OIB than the ‘lower-Ti’ basalts (Fig. 5). The whole rock Sr and Nd
isotopes of the Emeishan basalts indicate that they could be derived
from a heterogeneous mantle source, for example mixing between
two distinct isotopic sources, and/or experienced variable degrees
of crustal assimilation (Fig. 6). The typical range of the eng(t) values
of the Emeishan basalts is between —5 and +6 as both the ‘high-Ti’
basalts (i.e. eng(t) = —3.6 to +4.8) and the ‘low-Ti’ basalts (i.e.
end(t) = —14.2 to +6.4) completely overlap. Assuming the pristine
end-member source of the Emeishan basalts has an eng(t) value
of +7, then more than 20% assimilation of Yangtze Block upper
crustal rocks is required to reproduce the isotope trend observed in
Fig. 6a. So much crustal assimilation is unlikely to occur because the
rocks would no longer be basaltic in composition and assimilation
would induce crystallization in the host magma before more
assimilation could occur (Glazner, 2007). Furthermore, many
Emeishan basalts that have low eng(t) values (i.e. eng(t) > 0) also
have trace element ratios, such as Th/Nbpy;, Nb/La, Ta/Yb that do not
indicate so much crustal contamination is needed (Fig. 7). In other
words, crustal contamination is not an end-member component in
the Emeishan source material and that it likely occurs in varying
proportions according to the precise emplacement conditions (e.g.
location, country rock, amount of source melting, temperature).
The major implication is that the Emeishan source is likely to be
heterogeneous. The 2°6Pb/294Pb; (18.3—20.6) ratios, positive A8/4
(67.7—83.0) and A7/4 (0.96—11.0) appear to support a heteroge-
neous source because Fan et al. (2008) interpreted the data as ev-
idence for HIMU- and EM1-components and thus mantle plume-
lithosphere interactions (Fig. 6b—d).

The source of the basalts, as with the ultramafic rocks, is a highly
debated issue. There are suggestions the basalts are derived either
directly from the SCLM or from sub-lithospheric source or as de-
rivative melts from the picritic rocks (Song et al.,, 2001, 2004,
20083, b; Xu et al.,, 2001; Hanski et al., 2004; Xiao et al., 2004;
Hou et al., 2006; Wang et al., 2007; Fan et al., 2008; Zhou et al,,
2008; Wang et al., 2011). Isotope data and trace elements can
usually distinguish between possible source contributions but in
the case of the ELIP they are not particularly insightful. The total
range of eng(t) for all of the mafic and ultramafic rocks is —10 to +8.
The large range of Nd-isotopes is the same with the Sr (Is;
=0.7040—0.7132), Os (yos = -5 to +11) and Pb isotopes
(%%6pp2%4ph; = 17.9-19.7). Even if samples are screened for
contamination there is still a large range. Trace elements are no
more or less useful as there is a continuous compositional range
across all of the basalts (i.e. ‘high- and low-Ti’) and the chemical
trends which could be interpreted as crustal assimilation could in
fact represent mixing between a subducted sediment component
(e.g. GLOSS) and the mantle source (Fig. 7a—c). Therefore crustal
assimilation, fractional crystallization of picritic magmas, amount
of source melting, heterogeneous mantle, SCLM and mantle plume
source cannot be individually ruled out as mechanisms or sources
which have contributed to the basalt genesis. In other words, there
is no consensus on the formation of the basalts beyond the fact that
they were derived either indirectly or directly form some part of the
mantle at 260 Ma. In all likelihood both lithospheric and sub-
ithospheric mantle sources were tapped and that crustal assimi-
lation occurred in some instances.
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Figure 4. Frequency distribution plots of (a) Ti/Y showing the 500 division line and (b) TiO, (wt.%) showing the 2.5 wt.% division, (c) Sm/Yb ratio vs. Ti/Y of the Emeishan basalts
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4.3. Silicic rocks

The silicic volcanic and plutonic rocks of the ELIP are a volu-
metrically minor (i.e. <5%) component but testifies to the diversity
of magmas that can be produced within large igneous provinces. In
general, silicic volcanic rocks are commonly exposed in the upper
portions of the flood basalt stratigraphy whereas the plutonic rocks
typically remain buried with the rest of the magmatic pluming
system. The ELIP is an excellent region to study the silicic rocks
because both the volcanic and plutonic rocks are well exposed.

The silicic volcanic rocks of the ELIP are found within the upper
third of the stratigraphy within the inner and Song Da zones. The
silicic rocks classify as andesites, trachy-andesite, trachyte, rhyolite

and ignimbrite and range in composition from peraluminous, met-
aluminous and peralkaline (Shellnutt and Jahn, 2010; Xu et al., 2010;
Anh etal., 2011). The peralkaline rocks have positive enq(t) values, Eu/
Eu* < 1, LREE-enriched and have distinct negative primitive mantle
normalized Ba, Sr and Ti anomalies. The geochemical data suggest
that these rocks are derived by fractional crystallization of mafic
magmas resembling the Ti-rich Emeishan basalt with minimal, if any,
crustal assimilation (Shellnutt and Jahn, 2010; Xu et al., 2010). In
contrast, the metaluminous to peraluminous rocks have eng(t) < 0,
Eu/Eu* < 1, LREE-enriched and have negative primitive mantle
normalized Sr and Ti anomalies. Anh et al. (2011) have suggested that
the metaluminous to peraluminous rocks represent extensive frac-
tionation of higher-Ti Emeishan basaltic magma but, unlike the
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peralkaline rocks, assimilated crustal material. The stratigraphic po-
sition of the silicic rocks is consistent with a fractionation hypothesis
because crust-derived melts should be closer to the lower portions of
the volcanic pile (c.f. Shellnutt et al., 2012b).

The plutonic rocks of the ELIP range in composition from syenitic
to granitic and, similar to the volcanic rocks, have alumina saturation
indices (ASI) of peralkaline, metaluminous and peraluminous
(Shellnutt and Zhou, 2007; Shellnutt et al., 2011b). The ASI values for
the granitic rocks provide a relatively robust system for initial
petrogenetic interpretations as the peralkaline rocks are considered
to be derived by fractional crystallization of Emeishan mafic magmas,
the metaluminous are either derived from mixing of mafic magmas
and crustal material (i.e. hybrid) or by partial melting of underplated
mafic rocks (i.e. mantle-derived) and the peralumuinous rocks are
derived by crustal melting (Table 2) (Luo et al., 2007; Shellnutt and
Zhou, 2007, 2008; Zhong et al., 2007, 2009, 2011a; Xu et al., 2008;
Shellnutt et al., 20093, b, 2011¢, Shellnutt and lizuka, 2012).

The peralkaline granitic rocks are defined by their chemical
characteristics as having Eu/Eu* < 1.0, eng(t) > +1.5; positive zircon
en(t) values, negative Ba, Sr and Ti primitive mantle normalized
anomalies and higher (i.e. >890 °C) temperature estimates
(Shellnutt and lizuka, 2011). The peralkaline rocks typically do not
show much evidence for crustal assimilation although there is at
least one pluton (i.e. Cida) where this may be the case (Zhong et al.,
2007; Shellnutt et al., 2011c; Luo et al., 2013). The mantle-derived
metaluminous granitoids are characterized by Eu/Eu* > 1.0, eng(t)
values > +1.5; positive zircon eyg(t) values, depleted Th-Upy and Zr-
Hfpyy anomalies and positive Bapy; anomalies and lower (i.e.
<900 °C) temperature estimates whereas the hybrid metaluminous
rocks do not have definitive chemical characteristics partially due
to their mixed nature and the fact that few of these rocks have been
identified but they have Eu/Eu* = 1.0, eng(t) = —0.7 to +1.4 and
zircon epf(t) = +1.4. The last group of granitic rocks are typically

peraluminous but can be metaluminous and have characteristics
such as Eu/Eu* < 1.0, negative eng(t) values, negative Nb-Ta prim-
itive mantle normalized anomalies, and LREE enrichment with flat
HREE chondrite normalized patterns. The peraluminous rocks are
considered to be derived by crustal melting associated with the
injection of high temperature Emeishan magmas (Shellnutt et al.,
2011c¢). The zircon Hf isotopic data from the mantle-derived gran-
itoids rocks have eyf(t) = +9 which are higher than crustal-derived
Emeishan granites but lower than depleted mantle (Xu et al., 2008;
Shellnutt et al., 2009b). Furthermore the mantle-derived granitoids
do not show compelling evidence (e.g. trace element ratios) for
crustal assimilation and the eggt) values may be representative of
their mafic parental source (Shellnutt et al., 2009b).

The formation of the silicic plutonic and volcanic rocks, in
contrast to the basalts, is simpler in many respects. Simply put, the
silicic rocks are either derived directly or indirectly (e.g. partial
melting or fractional crystallization) from mafic magmas/rocks, by
crustal melting or mixing of mafic magmas and crustal material. The
petrogenesis of the silicic rocks can be more easily constrained than
the basalts using Sr-Nd-Pb-Hf isotopes and trace element ratios.

5. Structural features and ecological impact of the Emeishan
large igneous province

5.1. High velocity layers in the crust

Perhaps one of the most intriguing evidence in support of a
mantle plume model for the ELIP is the differential high seismic
layers within the Yangtze Block beneath the region considered to be
the epicenter of magmatism (i.e. inner zone). The same region is
shown to have thicker average crust than the middle and outer
zones (Xu et al,, 2004; Xu and He, 2007; Chen et al., 2010). The
interpretation is that the deep high seismic velocity layers



J.G. Shellnutt / Geoscience Frontiers 5 (2014) 369—394

20— 7T T T T 7T T T T

Ultramafic -
High-Ti basalts |
- Low-Ti basalts _|

+12

eNd,

¥
& S
TTTTTTTTTTTTTTTTT

1 1 1 | 1 1 | | 1 | 1 1

0.702 0.704 0.706 0.708 0.710 0.712 0.714
“Sr/ sr,

initial

15.8

15.7

15.6

15.5

207P b/204 Pb(n

16.4

15.3

16.0 19.0 22.0

206P b/204 Pb(T)

17.0 18.0 200 21.0

7SI/

379
b T T T T T T T T LT T
0.708F m - — —LoNd array —
0.706[
0.7041
0.7021
1 1 1 1 1 1 1 1 1 1 1
16.0 17.0 18.0 19.0 200 21.0 22.0
d 205Pb/204pb(T) ]
40.0L i
c 39.0L i
o
a
S L i
&
& 38.0h i
L
37.0L o
[ 4% N N R TR S N SR SR
16.0 17.0 18.0 19.0 20.0 21.0 22.0
ZOGPb/ZOAPb(T)

Figure 6. (a) Sr-Nd plot showing the known range of Emeishan ultramafic and mafic volcanic rocks. (b) 8Sr/®Srinitiar vs. 2°°Pb/2%4Pbyr) plot of the Emeishan basalts from Guangxi
and ultramafic rocks from Lijiang (western ELIP). (c) 2°’Pb/2**Pby) vs. 2°6Pb/2*4Pbry of the Emeishan basalts from Guangxi and ultramafic rocks from Lijiang (western ELIP). (d)
208pp204pp 1y vs. 206Pb/204Pbyry of the Emeishan basalts from Guangxi and ultramafic rocks from Lijiang (western ELIP). Emeishan ultramafic and mafic data taken from Xu et al.
(2001), Xiao et al. (2003, 2004), Song et al. (2004, 2008a, b), Hou et al. (2006), Wang et al. (2007), Fan et al. (2008), Qi et al. (2008), Qi and Zhou (2008), Shellnutt and Jahn (2011),
Anh et al. (2011), Kamenetsky et al. (2012) and Lai et al. (2012). EMI and HIMU range taken from Zindler and Hart (1986). GLOSS (global subducting sediment) values taken from
Plank and Langmuir (1998) and Chauvel et al. (2008). FOZO range taken from Hart et al. (1992) and Campbell (2007). The range of Yangtze Block lower crust rock compositions taken

from Wang et al. (2007).

represent the fossilized mantle plume head whereas the lower
crust high velocity layers represent underplated mafic and ultra-
mafic rocks from the plume head which fed the surface flows and
shallow crustal intrusions (Fig. 2b). The seismic data interpretations
coupled with the crustal thickness is a very elegant explanation for
and is consistent with what would be expected from a mantle
plume model however there is a possible alternative explanation
(Campbell, 2007).

The crustal seismic layers cannot be completely attributed to the
ELIP. For example, the seismic layers could represent a mixture of
mafic and ultramafic material from an earlier magmatic event. The
western margin of the Yangtze Block was the site of either long-
lived subduction-related magmatism or mantle plume-related
magmatism during the Neoproterozoic (Li et al., 1999; Zhou et al.,
2002b; Zhao and Zhou, 2007). The reason for the magmatism is
irrelevant, because, whatever the cause, there are significant
amounts of mafic and felsic plutonic rocks along the entire western
margin of the Yangtze Craton. Given that most of the Neo-
proterozoic felsic and mafic intrusive rocks found within ELIP inner

zone have continental-arc affinity, it is very possible that magmas
accumulated in the lower crust of the Yangtze Block during this
time and served as a source or contaminant for the ELIP basalts
(Zhao and Zhou, 2007). The Emeishan basalts have eng(t) values
ranging from —14.2 to +8.0 which encompasses both varieties of
basalts and most of the ultramafic rocks. The Tppy model ages range
between 640 and 2400 Ma. The large range in Nd isotope compo-
sition is explained, in most cases, as either evidence for crustal
contamination or an isotopically heterogeneous source. If the
samples with minimal or no evidence for crustal assimilation (i.e.
Th/Nbpy < 3 and eng(t) < +2), are considered then the Tpy model
ages have a more restricted range (i.e. 640 Ma to 1400 Ma) which
partially overlaps with the age of the Neoproterozoic rocks. The Tpy
values suggest that the Emeishan source, in comparison to the
emplacement age, is an ancient reservoir. The Tpy ages could
support a mantle plume model in the sense that the mantle ma-
terial is coming from a deep source that was last modified around
900 Ma or it could mean a source which was mixed with an ancient
(subduction?) component at ~900 Ma.
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Table 2
Summary of chemical characteristics of ELIP silicic rocks.
Type Genesis ASI Eu/Eu*  eng(t) enr(t) Tz (°C) Bapm Nb-Tapyy  Examples
Mantle  Fractional Weakly peralkaline  <1.0 +1.5 to+3.4 +87+04t0+92+1.0 860+ 17 —ve None Baima, Taihe,
crystallization 897 + 14 Panzhihua
940 + 21 (Dianchang), Cida?
953 + 62
Partial Melting Metaluminous >1.0 +1.3 to+3.2 +58 £03to+8.6+02 723+18 +ve None Woshui, Huangcao
and Daheishan
Crust Crust Peraluminous to <1.0 —-6.7to -39 -26+04 767 £ 14  +veor —ve —ve Ailanghe,
Metaluminous Yingpanliangzi
Hybrid  Crust + Mantle = Metaluminous =1.0 —-0.7to+14 +14+09 +ve None Maomaogou, Salian

Data is complied from Luo et al. (2007), Shellnutt and Zhou (2007, 2008), Zhong et al. (2007, 2009), Xu et al. (2008), Shellnutt et al. (2009a, b, 2011c). ASI is the alumina
saturation index (Al/Ca—1.67P + Na + K); Eu/Eu* = [2*Euyn/(Smy + Gdy)] normalized to C1 chondrites of Sun and McDonough (1989); Tz, is the zircon saturation thermometry;
Bapy and Nb-Tapy indicate the presence of anomalous primitive mantle normalized values.

It is likely that the high velocity seismic layers represent the
fossilized remnants of the Emeishan magmas however there is no
age constraints on these layers. Therefore the high velocity layers
could represent pure Emeishan material, pure Neoproterozoic ma-
terial or an accumulation of both and there remains a possibility that
the underplated Neoproterozoic rocks may have modified the
original Emeishan magmas during their emplacement and is the
reason why the basalts have higher-Ti concentration than most LIPs.

5.2. Flexure of the crust

It is theorized that the excessive heat (i.e. 100—350 °C above
ambient conditions) from a mantle plume is suitable, depending on
the exact thermal conditions, to induce maximum uplift of the
surface directly beneath the plume head to an area within a 200 km
radius. The amount of vertical displacement may be in excess of
~1 km (Griffiths and Campbell, 1991; Campbell, 2005). Flexure and
doming of the crust prior to flood basalt eruption is considered to
be one of the most compelling physical evidence for the presence of
an ancient mantle plume (Cox, 1989; Campbell and Griffiths, 1990;
Griffiths and Campbell, 1991; Rainbird, 1993; Farnetani and
Richards, 1994; White and McKenzie, 1995; Campbell, 2005,
2007; Ernst et al.,, 2005; Saunders et al., 2005, 2007). It is also
one of the most debated topics in LIP research as evidence for uplift
and doming may not be as robost as purported nor necessary
(Burov and Guillou-Frottier, 2005; Elkins and Tanton, 2007; Sheth,
2007b; Utskins-Peate and Bryan, 2008).

The ELIP is considered to be one of the best examples of mantle
plume-induced surficial uplift and doming (Campbell, 2005, 2007).
The progressive thickening of the Maokou limestone from the inner
zone to the outer zone of the ELIP encapsulates the evidence for
uplift and subsequent erosion and redisposition (Fig. 8a) (He et al.,
2003, 2007; 2010a, b). However, the uplift model for the ELIP has
come under scrutiny and alternative ideas have been presented
(Utskins-Peate and Bryan, 2008, 2009; Ali et al., 2010; Sun et al.,
2010; Utskins-Peate et al., 2011). The evidence against uplift is
twofold: (1) that uplift either did not occur before volcanism or that
pre-eruption uplift is muted (Ali et al., 2010; Sun et al., 2010) and
(2) that the flood basalts were emplaced at sea-level and that
previously interpreted alluvial fan sediments are actually hydro-
magmatic deposits (Utskins-Peate and Bryan, 2008, 2009; Utskins-
Peate et al., 2011). The core of the debate is focused on whether the
geological evidence presented by He et al. (2003, 2007, 20104, b) is
actually documenting uplift not whether the ELIP is or is not a
mantle plume-derived LIP (Ali et al., 2010).

There is further geological evidence which argues against
plume-induced uplift of the surface. The Panzhihua layered gabbro
complex located in the Panxi region of the inner zone has intruded

Sinian (~600 Ma) aged marbles whereas the granite portion,
located stratigraphically above the gabbro of the complex intruded
Emeishan flood basalts (Shellnutt and Jahn, 2010). The geological
relationships indicate there is a conundrum. In order for the granite
to intrude the basalts they must have erupted first. That means the
basalts either erupted onto something which was overlying the
Sinian limestones or directly on top of them. In either case the
entire Paleozoic up to the Maokou limestones is missing (He et al.,
2010a). Since the Panzhihua complex is intrusive, albeit shallow,
the whereabouts of the Paleozoic rocks is unknown. The Paleozoic
rocks could have been eroded before the deposition of the Maokou
limestone or they were never deposited in the first place because
they were above sea-level. If the Paleozoic rocks were eroded then
why and how did conditions change so that the Maokou limestone
could be deposited just before the Emeishan basalts erupted and
why was the Paleozoic section preserved elsewhere (i.e. Dulong-
Song Chay) on the Yangtze Block (Yan et al., 2006)? Perhaps the
easiest explanation is that the Paleozoic rocks were not deposited
because the inner zone was probably a topographic high (Fig. 8b),
e.g. similar to the modern day Mascarene Plateau, and sea level may
not have been sufficiently high to allow for deposition of carbonate
rocks until the late Capitanian. The sea-level curve by Haq and
Schutter (2008) show that the short-term sea-level change
(Fig. 9) was the highest at the Capitanian—Wuchiapingian bound-
ary which is contemporaneous with the eruption of Emeishan ba-
salts onto the Maokou limestones (Gradstein et al., 2004; He et al,,
2007, 2010a; Sun et al., 2010). If sea-level increased during the late
Capitanian and the inner zone (i.e. Chuandian old land) was a
topographic high then carbonate rocks would be deposited in sync
with the increasing sea-level and thus given an appearance of a
dome shape (Fig. 8b). If the ‘topographic high’ model is correct then
it would also be consistent with thick crust beneath the inner zone
of the ELIP because after uplift the dome would eventually erode
away and presumable the Yangtze crust would become relatively
thinner over time (Xu et al., 2004). Whatever the case may be, e.g.
uplift or not, the argument against uplift is compelling and will
require more evidence to refute but until such evidence is pre-
sented it will probably remain one of the most contentious debates
in ELIP studies.

5.3. Effect on the late Permian ecosystem

There is a tendency to connect biological crises or mass ex-
tinctions with the eruption of subaerial or subaqueous flood basalts
with contemporaneous or pene-contemporaneous volcanic
(Rampino and Stothers, 1988; Courtillot et al., 1999; Wignall, 2001,
2005; White, 2002; White and Saunders, 2005). In many cases
there is compelling evidence to link specific volcanic episodes to a
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Figure 8. (a) Model of uplift and doming of the crust due to the arrival of the Emeishan mantle plume based on He et al. (2003, 2007, 2010a). (b) Alternatively the area around the
western Yangtze Block was a topographic high and subsequent sea-level change allowed for deposition of carbonate rocks prior to the arrival of the Emeishan mantle plume.

decline in biota however there are many large igneous provinces
(e.g. Tarim, Panjal, Karoo, Ethiopia, Columbia River) in which there
is no association with ecosystem collapse. The basic premise is that,
due to rapidly emplaced basaltic magmas, dramatic climatic
changes occur at a pace which is faster than then ability of an
ecosystem to adapt (Rampino and Stothers, 1988; Wignall, 2001).
Whether the volcanism is responsible for a ‘nuclear winter’ sce-
nario, exacerbates ‘greenhouse’ conditions or changes marine wa-
ter chemistry is debated (Wignall, 2001; Saunders, 2005; Self et al.,
2005). Some of the most severe mass extinctions such as the end-
Permian, Cretaceous—Tertiary and Triassic—Jurassic are contem-
poraneous with major flood basalt eruptions.

Compared to the end-Permian mass extinction the late Cap-
itanian mass extinction (~263 Ma) affected less genera but it was
contemporaneous with the earliest eruption of the Emeishan flood
basalts and as a consequence is considered to have been the cause
of or at least contributed to the decline in biota at that time
(Wignall, 2001; Zhou et al., 2002a; He et al., 2007; Ganino et al.,
2008; Retallack and Jahren, 2008; Ganino and Arndt, 2009;
Shellnutt et al., 2012a). If the atmosphere is to be affected by
magmatism then emplacement rates have to be considerably fast. It
is suggested that the emplacement of ELIP magmas into carbonate-
rich country rocks and a rapid emplacement (i.e. <2 Ma) was suf-
ficient to contribute significant enough amounts of CH4 and thus

induce a climate change or affect marine chemistry to the point
where some genera would be vulnerable and die out (Ganino and
Arndt, 2009; Shellnutt et al., 2012a).

It is possible that the ELIP either directly caused or accelerated
the late Capitanian mass extinction however there are larger
eruptions of flood basalts which clearly had no effect on global
ecosystems (e.g. Tarim). The reason why some LIPs are contempo-
raneous with mass extinctions could be related to random condi-
tions which cannot easily be predicted such as: parental magma
composition, geographic location, composition of country rock, or
vulnerability of species. The fact that continental flood basalts erupt
on average of once per 20 Ma then the frequency of mass extinc-
tions will undoubtedly match, at some point, with the formation of
an LIP. So it seems that the ELIP may have erupted at the right time,
in the right place and within the right country rocks (i.e. carbonate
rocks).

6. Metalllogenesis of the Emeishan large igneous province
6.1. Ni-Cu sulphide and PGE deposits
The magmatic sulphide deposits are concentrated within ul-

tramafic and/or mafic intrusive rocks and are found throughout the
entire ELIP. The deposits contain variable proportions of Ni, Cu and
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Figure 9. Sea-level changes, glacial intervals (grey rectangles) and eruption of continental flood basalts (red) during the of the Permian (modified from Haq and Schutter, 2008).

platinum group elements (PGE) within sulphide minerals or plat-
inum group minerals (Zhong et al., 2002; Song et al., 2003, 2005,
2008a; Wang and Zhou, 2006; Wang et al., 2011). The propensity
of sulphide and/or PGE deposit to form is suggested to be linked
with the type (i.e. ‘low-Ti’) of parental magma (Song et al., 2003,
2008a, 2009; Zhou et al., 2008; Wang et al., 2011). Song et al.
(2005) grouped the sulphide and PGE deposits into four genetic
types based on petrogenetic processes and host rock and mineral
associations. The four-types of deposits are (1) Ni-Cu-(PGE) by in
situ sulphide segregation, (2) PGE-enriched layers within layered
intrusions, (3) Ni-Cu sulphide related to sulphide-bearing mush
and (4) PGE sulphide ores in ultramafic rocks. Native Cu and Au
deposits have also been identified but the appear to be related to
post-ELIP hydrothermal processes (Wang et al., 2006a, b; Zhang
et al,, 20064, b; Zhu et al., 2007).

6.1.1. Ni-Cu-(PGE) sulphide deposits

The best example of this type of sulphide deposit is found in the
Yangliuping area of Sichuan where numerous mafic-ultramafic sills
(e.g. Yangliuping, Zhengziyanwuo, Xiezuoping, Dagiangyanwuo)

have intruded mid to late Paleozoic metasedimentary rocks (Song
et al.,, 2003). The sills range in size but are generally 2 km long and
up to 300 m thick and composed of serpentinite (40—60%), talc
schist (25—45%), tremolite schist (10—30%) and a minor amount of
gabbro (5—7%) indicating substantial post-emplacement alteration
and metamorphism occurred (Song et al., 2003). The sills (i.e. Yan-
gliuping and Zhengziyanwuo) are estimated to contain 0.27 Mt of Ni,
0.10 Mt of Cu and 35 tons of PGE (Song et al., 2005). The ore bodies
are found as either: (1) disseminated within the serpentinite, (2)
massive ores within the footwall of the country rock (i.e. Paleozoic
marble) or (3) mineralized veinlets within the intrusions (Song et al.,
2003). The sills are considered to have formed from magmas which
are compositionally similar to the basalt in the immediate area
(Song et al., 2003, 2006). The general model is that basaltic magmas
were emplaced and began to fractionate. The residual liquid be-
comes more evolved and at the same time volatiles (i.e. S, CO, CO,)
from the country rocks will be fluxing the magma system. The CO
and CO; would decrease the magma oxidation state, and coupled
with the decrease in magma temperature, crystallization and
assimilation of S, promote S-oversaturation and sulphide
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immiscibility and the segregation and concentration of Ni, Cu and
PGE within the sulphide liquid (Song et al., 2003). The sulphide
liquid would concentrate at the bottom of the chamber and form the
massive sulphide deposits whereas the disseminated and veinlet
deposits represent sulphide liquid which was transported with the
silicate magma during continued injection of new batches of magma
and dispersed.

6.1.2. PGE-rich layers within layered intrusions

There are at least two mafic-ultramafic layered intrusions which
host PGE-enriched layers. The Hongge and Xinjie intrusions are
located in the central part of the Panxi region. The Hongge layered
mafic-ultramafic intrusion contains PGE-rich layers in lower parts
but is also the second largest Fe-Ti-V oxide deposit after Panzhihua.
The Hongge intrusion is comprised of three main zones with four
cycles which consist of variable proportions of olivine, clinopyr-
oxene, magnetite, chromite and plagioclase with additional minor
amounts of apatite, orthopyroxene and ilmenite (Zhong et al.,
2002). The lower olivine zone (i.e. LOZ) is composed mostly of
olivine, magnetite, clinopyroxene with hornblende and some
plagioclase in the upper parts. The middle clinopyroxene zone (i.e.
MCZ) begins with an olivine clinopyroxenite layer at the base and
ends with a plagioclase clinonpyroxenite at the top. The upper
gabbro zone in compositionally more evolved and contains more
plagioclase. There are intermittent bands of magnetite starting
from the lower MCZ and ending near the top of the UGZ. The LOZ
does not contain an oxide-rich layer but lower part of the zone has a
PGE-enriched layer and the boundary between the LOZ and MCZ is
another PGE-enriched horizon. The LOZ is considered to be cycle I,
the MCZ has cycles Il and IIl and the UGZ is cycle IV. Each cycle is
recognized by abrupt reversals in major and trace elemental values
which indicate periods of crystallization and magma recharge
suggesting Hongge was an open magma system (Zhong et al., 2002,
2003, 2005). The whole rock Sr-Nd isotopes (Is; = 0.7059—-0.7072;
end(t) = —2.7 to +1.0) indicate that wall rock assimilation played a
role in the segregation of sulphide-rich liquid and the formation of
the PGE-rich layers but the repetitive formation of the oxide-rich
layers are likely forming due to crystallization and magma
recharge (Pang et al., 2008a; Bai et al., 2012a, b). The parental
magma or magmas of the Hongge system is unknown but it was
likely a mixture of more primitive mafic or ultramafic and basaltic
magmas because the LOZ contains relatively minor amounts of
plagioclase, bulk Mg* increases abruptly at the cycle II-III bound-
ary and the primitive mantle normalized PGE patterns of the
magnetite-rich layers are similar to the ELIP picrites (Zhong et al.,
2005; Bai et al., 20124, b).

The Xinjie mafic-ultramafic layered intrusion is similar to the
Hongge intrusion in terms of its isotope variability (e.g.
Isy = 0.7056—0.7074; eng(t) = —4.1 to +2.8), cyclic ultramafic-mafic
layered nature and presence of PGE-rich layers at the base followed
by Fe-Ti oxide-rich layers in the middle to upper portion (Zhong
et al., 2004, 2011b; Wang et al., 2008a; Zhu et al., 2010). The
intrusion consists of three cyclic zones of ultramafic (i.e. wehrlite,
clinopyroxenites) to mafic (i.e. gabbro) rocks which have variable
proportions of clinopyroxene, olivine, plagioclase, oxide minerals
(i.e. magnetite, ilmenite, ferrichromite, chromite), hornblende and
sulphide minerals. The parental magma composition is unknown
and whether it is mafic or ultramafic is debated (Zhong et al., 2004,
2011b; Wang et al., 2008a; Zhu et al., 2010). There are abrupt
chemical and mineralogical changes between each cycle which is
interpreted to represent injection of a new magma (Zhong et al.,
2004, 2011b). The formation of the PGE deposits in the lower
portions of the intrusion is thought to be due to wall rock
assimilation-induced sulphide segregation but it is possible that
the crystallization of magnetite may have caused subsequent S-

saturation and allowed the PGE to partition into sulphide minerals
(Zhu et al., 2010). The oxide-rich layers on the other hand are
probably due to simple crystallization processes and magma
recharge (Wang et al., 2008a).

6.1.3. Ni-Cu sulphide-bearing mush

The sulphide mush-type of deposit is considered to be the most
important type of sulphide deposit in the ELIP (Song et al., 2005).
The deposits are typified by the Limahe and Baimazhai intrusions
which contain 0.1-3 Mt of Ni ore and composed of gabbros,
wehrlites, olivine peridotites, pyroxenites and massive sulphide
ores (Wang and Zhou, 2006; Wang et al., 20064, b; Pu et al., 2007;
Sun et al., 2008; Tao et al., 2008, 2010; Zhang et al., 2009). The basic
premise for the sulphide mush-type of deposit is that a mafic or
ultramafic silica saturated, Mg-rich and S-undersaturated magma
assimilated country rock at depth in a staging chamber (Wang and
Zhou, 2006; Wang et al., 20064, b; Sun et al., 2008; Tao et al., 2008,
2010). The magma became S-saturated due to contamination
(6*4S = +2.4%, to +5.4%,; Yos(t) = < +263; Is; > 0.7075; eng(t) < 0)
from the country rock and promoted crystallization of mafic silicate
minerals and thus the sulphide-rich portion settled to the base of
the chamber. The precise mechanism of sulphide transportation or
concentration may be different between Limahe and Baimazhai but
they represent dynamic magma systems. In the case of the Bai-
mazhai deposit, the upper part of the chamber is silicate-rich and
expelled whereas the lower portion is a mixture of silicate and
sulphide and subsequently the entire system is squeezed allowing
for the complete expulsion of the more evolved silicate magma and
the zonation of the silicate and sulphide-rich mixture (Wang and
Zhou, 2006; Wang et al., 20064, b).

6.1.4. PGE sulphide ores within ultramafic rocks

The PGE sulphide ore deposit is mainly described from the Jin-
baoshan ultramafic sill located east of Dali in Yunnan Province and
is ~5 km long, 1 km wide and variably thick ranging between 20
and 150 m. The sill intrudes Devonian dolomite which overlies the
Proterozoic basement rocks of the Yangtze Block. The stratigraphy
of the intrusion is rather simple as it is composed of wehrlite with
intermittent layers of disseminated sulphide Pt-Pd mineralization
at quasi regular intervals whereas there is a 5—15 m layer of
chromite in the middle of the intrusion. There are gabbros located
in the upper portion of the intrusion but probably not petroge-
netically related to the Jinbaoshan parental magmas and horn-
blende pyroxenite is occasionally found at the margins (Wang et al.,
2005, 2008b, 2010; Tao et al, 2007, 2009). Nevertheless,
Brozdowski et al. (2004) divided the Jinbaoshan intrusion into six
units which are based on variations in mineralogy and textures (i.e.
grain size, mode). The concentration of the Pt + Pd typically ranges
from 1 ppm to 5 ppm with occurrences as high as 17 ppm whereas
Ni and Cu have grading of ~0.21% and ~ 0.16% respectively. The
total amount of Pt + Pd is ~45 tons (Tao et al., 2007; Wang et al.,
2008b). The two main economic horizons are referred to as Ky
and K3 and range in thickness from 4 m to 16 m. The K; horizon is
located at the base of the intrusion whereas the K5 is located at the
base of the fifth horizon (Brozdowski et al., 2004). The Jinbaoshan
intrusion is likely derived from a Mg-rich, Ti-poor tholeiitic
parental magma and, according to Tao et al. (2007), represents a
residual assemblage formed by the magmatic dissolution of
plagioclase due to multiple pulses. Wang et al. (2005) suggested
there is limited evidence (i.e. eng(t) = —0.1 to +0.8, yos(t) = +20.7
to +77.8, 534S = 0.6 to 2.8%,) for crustal contamination. It is thought
that sulphide saturation of the parental magma occurred at depth
due to olivine and chromite crystallization and that the subsequent
immiscible sulphide droplets were transported and accumulated in
the Jinbaoshan sill through successful magma pulses (Tao et al,,
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2007; Wang et al., 2010). Hydrothermal fluids likely contributed to
the formation or redistribution of some of the PGE concentration
(Wang et al., 2008b, 2010).

6.2. Fe-Ti-V oxide-ore deposits

The orthomagmatic Fe-Ti-V oxide deposits of the ELIP are a
substantial economic resource. There are at least five world-class
magmatic oxide deposits within the Panxi region of the inner zone.
Zhou et al. (2005) reported ~7% and ~ 35% of global production of
V and Ti respectively is from China with most of the metals origi-
nating from the layered gabbroic complexes of the ELIP. Between
the Panzhihua, Hongge, Baima and Taihe deposits there is an esti-
mated 2530 Mt of Fe, 680 Mt of Ti and 28.5 Mt of V (Ma et al., 2003;
Zhong et al., 2005). The deposits can be divided into two groups
based on their compositions and stratigraphy. For example, the
deposits at Hongge and Xinjie may have originated from more
primitive parental magmas but were certainly subject to open
system magmatic processes (i.e. recharge, assimilation) whereas
the Panzhihua, Baima and Taihe deposits likely originated from
more evolved parental magmas (i.e. basaltic) and were compara-
tively less influence by open system magmatic process. Further-
more the Panzhihua, Baima and Taihe gabbros are petrogenetically
related to isotropic peralkaline quartz-bearing granitoids whereas
the others do not appear to be so.

The formation of the Panzhihua, Baima and Taihe gabbro-
granitoid-ore complexes, like many aspects of the ELIP, is a highly
debated issue. For instance, some considered the gabbro-ore to be
exclusive from the formation of the neighboring granitic rocks
whereas others suggest they are part of the same intrusion
(Shellnutt et al., 20093, 2011b; Zhong et al., 2009, 2011a; Shellnutt
and Jahn, 2010). Furthermore the formation of the actual ore de-
posit and host gabbro is widely debated as well and may involve a
number of magmatic processes such as silicate immiscibility, frac-
tional crystallization, fluxing of CO,-rich fluids, and have either a
basaltic or ultramafic parental magma (Zhou et al., 2005; Zhang
et al.,, 2006a, b, 2009; Ganino et al., 2008, 2013a, b; Pang et al.,
2008a, b, 2009, 2010, 2013; Ganino and Arndt, 2009; Shellnutt
et al., 2009a, 2011b; Shellnutt and Jahn, 2010; Hou et al., 2012a,
b, 2013; Shellnutt and Pang, 2012).

The main geological and geochemical features of each intrusion
include: Fe-Ti-V oxide-ore deposits in the lower stratigraphic
layers, mineral assemblage (cumulus olivine, clinopyroxene and
plagioclase with interstitial titanomagnetite 4 apatite 4 sulphide
minerals), similar isotope composition (i.e. eng(t) = +2 to +4,
Isy = 0.7045 t0 0.7055, eyf(t) = +7 to +10), LILE (except Ba and Sr)-
and HFSE-(except Eu) depletion and are temporally and spatially
associated with peralkaline quartz granitoids. The major features of
the three gabbroic intrusions are similar enough to suggest that
they underwent similar processes of formation although each
intrusion undoubtedly had some unique developments that are
more of a function of initial parental magma composition and
location of emplacement.

Some of the issues regarding the genesis of the gabbros are
easier to explain. The variability of mineral chemistry and zonal
nature of each intrusion suggests that they represent open system
magma chambers and that multiple magma pulses occurred but
they could not be completely open as there is relative isotope ho-
mogeneity indicating magma homogenization likely occurred
(Pang et al., 2009, 2010, 2013; Shellnutt et al., 2011b; Shellnutt and
Pang, 2012; Song et al., 2013). Pang et al. (2009) identified that
there is a Zr-depletion problem with the cumulate gabbros. In other
words the gabbroic intrusions are too poor in bulk Zr, and other
HFSE, to represent a parental magma composition unless an
evolved residual liquid was removed. The geochemical, temporal,

spatial and the isotopic similarity between the neighboring per-
alkaline granitic rocks and the cumulate gabbros is very strong
evidence that there is a petrogenetic link between the rock types
and that they are part of the same igneous complexes (Shellnutt
and Zhou, 2007; Shellnutt et al.,, 2009a, 2011b; Shellnutt and
Jahn, 2010). The original parental liquid for the gabbroic in-
trusions is largely speculative because the chilled margins are not
commonly exposed or have been modified by magma-country rock
interactions. In most cases the parental liquids are considered to be
‘high-Ti’ Emeishan basalt (Table 3). It is thought that the gabbros
are derived from ‘high-Ti’ Emeishan basalt because of the evolved
compositions of the olivine (e.g. <Fogy) and clinopyroxene (e.g.
Mg* < 80) and the trace element budget. Simply stated, if the
original parental magma equals the gabbro plus the ore body plus
the granitic rocks at various proportions the bulk composition must
be basaltic due to the low forsterite values of the olivine and the
HFSE budget (Zhou et al., 2005; Pang et al, 2008a, b, 2009;
Shellnutt et al., 2009a, b, 2011a, b, ¢; Zhang et al., 2009; Shellnutt
and Jahn, 2010). Consequently, an ultramafic (i.e. ferropicrite)
parental magma is not likely suitable for the layered gabbroic in-
trusions (i.e. Panzhihua, Baima, Taihe) but is probably more likely
for the layered mafic-ultramafic intrusions (i.e. Xinjie, Limahe,
Hongge), although the basaltic magma may have formed from an
ultramafic parental liquid. The more intriguing issues are related to
the ore body formation.

The oxide-ore deposits in the gabbros are considered to be
related to one or more of silicate immiscibility or CO»-fluid fluxing
to induce oxygen enrichment or crystallization (Zhou et al., 2005;
Ganino et al.,, 2008, 2013a, b; Shellnutt et al., 2011b; Zhou et al,,
2013). Silicate immiscibility is thought to be a possible rock form-
ing process where a ferrous (i.e. Fe-rich basalts) silicate liquid will
separate from a siliceous (i.e. granitic) silicate liquid (Philpotts,
1976, 1982; Charlier and Grove, 2012). Zhou et al. (2005, 2013)
suggested that the oxide-ore zone of the Panzhihua-type gabbros
formed by immiscibility where the oxides crystallized from the
ferrous silicate liquid and segregated out form the ore deposits.
Although silicate immiscibility can occur in terrestrial rocks, it
seems that it is not a major magma/rock forming process as the
definitive evidence is usually identified from melt inclusions on the
order of micron scale (Watson, 1976; Veksler et al., 2006, 2007).
Furthermore the necessity to invoke immiscible separation to form
oxide minerals and concentrate them into an ore deposit is in
conflict with the interstitial titanomagnetite textures. After crys-
tallization of olivine, plagioclase and clinopyroxene, the residual
liquid composition from an original high-Ti basaltic parental
magma will be enriched in Fe, Ti and incompatible elements and
therefore will start to crystallized titanomagnetite in abundance. It
could be said that the Fe-Ti-HFSE-rich residual liquid resembles a
ferrous silicate liquid but in of itself did not necessarily formed by
silicate immiscibility. Additionally the trace element partitioning of
silicate immiscibility seems to be at odds as the ferrous silicate
liquid will be enriched in incompatible elements as compared with
the siliceous liquid (Watson, 1976; Veksler et al., 2006). The fact the
contemporaneous, incompatible element-enriched, Mg-Ti-Ba-Sr-
Eu-depleted peralkaline quartz granitic rocks are located a few
hundred metres away from the cumulate gabbros is rather
compelling evidence that they represent the residual liquids after
fractional crystallization of a mafic parental magma. The same
geological and geochemical relationship is true for the Baima and
Taihe intrusions.

Ganino et al. (2008, 2013a, b) have suggested that the release of
CO,-rich fluids from the adjacent Sinian marbles allowed the host
magma to be even more oxidizing and contributed to the en masse
crystallization of titanomagnetite in the Panzhihua intrusion and
the formation of the oxide-ore deposit. There is little doubt that the
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Table 3

Estimates for the parental magma compositions of the Fe-Ti-V oxide-bearing layered mafic-ultramafic intrusions.
Intrusion Panzhihua? Panzhihua® Hongge/Panzhihua® Hongge? Xinjied Taihe® Baima®
Si0, (wt.%) 42.6 49.18 45.83 47.28 46.24 50.45 44.64
TiO, 3.99 2.94 4.85 3.51 3.08 2.61 3.48
Al,03 15.8 11.53 15.62 9.93 8.69 12.36 13.79
Fe,0% 12.67 12.19 16.41
FeO* 15.6 14.41 14.5
FeO 11.36
Fe,03 2.23
MnO — 0.19 0.23 0.18 0.19 0.20 0.22
MgO 5.99 8.74 7.18 9.39 13.93 7.44 6.95
Cao 11.9 10.54 7.52 11.22 9.83 9.95 10.18
Na,O 245 2.28 3.26 1.76 1.53 2.61 240
K20 0.31 1.12 141 1.15 1.00 141 1.09
P,05 0.69 0.31 0.51 0.29 0.26 0.30 0.35
LOI 0.5 0.5 0.5
Total 99.2 100 100.01 99.12 99.25 100 100
Mg* 46 57.8 53 58 67 54.8 45.6
V (ppm) 385 335
Cr 890 1505
Co 54 54 52
Ni 115 115 85
Sr 548 550 780
Nb 30.8 24 31
Ba 498 475 590
Ta 2.1 1.6 1.7

4 Zhou et al. (2005).

b Shellnutt et al. (2011b).

¢ Pang et al. (2008a).

4 Bai et al. (2012b). Mg* = 100*[Mg?*/Mg?*+Fe?"] where FeO! = 0.8998*Fe,05.

parental magma of the Panzhihua complex interacted with the
marble country rock as the contact relationship is exposed and
there are xenoliths within the lower part of the intrusion but
whether there was enough carbonate-fluid assimilated to directly
induce titanomagnetite crystallization is another issue (Zhou et al.,
2005; Pang et al., 2008a, b, 2009). Panzhihua may be unique in this
respect because there are no carbonate country rocks in the im-
mediate vicinity at Baima and Taihe and therefore questions the
need to add CO,-rich fluids to assist in the formation of the oxide
deposits. It is possible that the parental magmas for the Baima and
Taihe complexes passed through carbonate rocks before they were
emplaced but there is no evidence for it at the moment. There is
also the issue with the oxidation state of the neighboring granitic
rocks. The Panzhihua and Taihe peralkaline granites have a mineral
assemblage (i.e. aenigmatite and ilmenite) indicative of reducing
oxidation conditions whereas the Baima peralkaline syenite has an
oxidizing assemblage (i.e. magnetite, quartz and titanite) (Shellnutt
and lizuka, 2011). The oxidation conditions of a magma are by no
means fixed and will change during crystallization and thus con-
ditions of the granites may be different from the gabbros but if
O-enrichment through fluxing by CO,-rich fluids is necessary to
invoke oxide-ore formation then why are the Panzhihua and Taihe
granites forming under reducing conditions if they are the residual
liquids? If it is simply because that by the time the residual silicic
liquid formed in Panzhihua and Taihe, the magma was relatively
‘depleted’ in oxygen then why is the Baima syenite mineralogy
indicative of oxidized conditions since there is no evidence for CO,-
fluid fluxing? Furthermore the development of oxide-rich layers in
the Xinjie and Hongge intrusions does not appear to require CO;
fluxing (Zhong et al., 2003, 2004). The necessity of CO,-fluid fluxing
for the formation of the oxide-ore deposits is uncertain because it
seems, with respect to the Baima, Taihe, Xinjie and Hongge
complexes, oxide-ore deposits would form nevertheless and
that the fluxing may simply accelerate the oxide crystallization
process.

One process which is consistently mentioned with respect to the
Panzhihua, Baima and Taihe complexes is fractional crystallization
(Zhou et al., 2005; Ganino et al., 2008; Pang et al., 2008a, b, 2009,
2010, 2013; Shellnutt et al., 2009a, 2011b; Zhang et al., 2009;
Shellnutt and Jahn, 2010; Zhong et al., 2011a; Hou et al., 2012a;
Shellnutt and Pang, 2012; Song et al., 2013). As mentioned previ-
ously, there is evidence for open system behavior and internal
redistribution of crystals but the overall process which is affecting
the magma system is crystallization and the consequences of an
evolving magma, specifically the major and trace element budget,
rather than assimilation, contamination or unusual magma type.
The discussion on immiscibility highlighted the fact that the trace
element budget of the layered gabbros is not sufficiently accounted
for unless a residual liquid is considered (Pang et al., 2009). The
obvious candidate for the residual liquid is the neighboring per-
alkaline granitic rocks (Shellnutt et al., 2011b). In each complex
there are intermediate (e.g. syenodiorite) composition rocks either
as a ‘transitional’ plutonic body, in the case of Panzhihua, or as
microgranular enclaves, in the case of Baima and Taihe (Shellnutt
and Jahn, 2010; Shellnutt et al., 2010). The overarching premise is
that a basaltic parental magma as represented by a ‘high-Ti’
Emeishan basalt is injected in the shallow crust and crystallizes
olivine, plagioclase and clinopyroxene (Fig. 10). Titanomagnetite
will crystallize as soon as conditions permit but the net result will
be that the residual liquid composition becomes more silicic
(Shellnutt and Zhou, 2007; Shellnutt et al., 2011b). Assimilation of
CO;y-rich fluids or other crustal material and/or internal redistri-
bution may or may not be necessary to form the deposits but it is
unlikely that the parental magma was picritic.

6.3. Potential of rare earth element deposits
The Panxi region of the Emeishan large igneous province, spe-

cifically from Mianning to Dechang, is one of the richest REE-
deposit areas of southwestern China. There are numerous Eocene
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Figure 10. Proposed petrogenetic model of the formation of the Panzhihua, Baima and Taihe magmatic Fe-Ti-V oxide-bearing layered intrusions. (a) Emplacement of a parental
magma resembling a Ti-rich Emeishan basalt with an initial amount of suspended crystals. (b) Settling and in situ crystallization of cumulate olivine, plagioclase and clinopyroxene
with possible fluxing of CO, from the surrounding country rocks. Additional magmas may or may not be injected. (c) After a period of fractionation, a lighter alkali-rich (white)
residual magma migrates to the top of the magma chamber. At this point the magma chamber is likely oxygenated and crystallizes massive amounts of magnetite (black) in the
lower part of the magma chamber while the silicic liquid forms in the upper part of the magma chamber. (d) Solidification and stratification of the BIC gabbroic unit into four zones

and formation of the granitic rocks.

(40 Ma) to Miocene (10 Ma) alkalic-granite/syenite and carbonatitic
plutons throughout this region some of which (e.g. Maoniuping)
contain significant REE mineralization (Niu et al., 2003; Hou et al.,
2009; Xu et al., 2012). The common mineral assemblage within the
Eocene to Miocene granites includes bastnasite, fluorite, barite and
aegirine-augite. The Mianning-Dechang alkalic granites and sye-
nites share many chemical characteristics with the alkalic granit-
oids from western Mongolia and the ELIP in particular the
peralkaline rocks (Kovalenko et al., 1995; Shellnutt and Zhou, 2007;
Hou et al,, 2009). Currently, there are few, if any, REE-deposit
directly associated with the alkalic granitoids of the ELIP however
their mineral assemblages suggest there may be potential for
mineralization either as hydrothermal-magmatic or as depositional
deposits (Niu et al., 2003).

The abundance of HFSE in the ELIP peralkaline granitoids (i.e.
Panzhihua, Baima, Taihe) is known to be as high 0.3 wt.% and the
host rocks contain REE-ore minerals (i.e. bastnasite). The plutons,
both metaluminous and peralkaline, of the ELIP were intruded by
high temperature mafic dykes which were likely hot enough to
induce partial melting and remobilization of REEs within the per-
alkaline rocks and thus could create economic concentrations
similar to magmatic-hydrothermal deposits (Shellnutt et al., 2008).
Alternatively, and perhaps more likely, late stage magmatic fluids
derived from the alkaline granitoids could have concentrated the
HFSE and formed enriched-veins or veinlets of REE-rich minerals

(Salvi and Williams-Jones, 2005). The identification of magmatic
chevkinite within the Woshui metaluminous pluton suggests there
could be another type of REE-deposit in the region (Shellnutt and
lizuka, 2013). Although the Woshui pluton was also intruded by
mafic dykes, the bulk REE content is likely to be too low for eco-
nomic concentrations but there remains a possibility that eroded
material from the pluton could accumulate in the neighboring
basins and valleys and be a potential for ion-adsorption clay de-
posits. In addition to the detritus from the Woshui pluton, material
from the Baima pluton could also be added and possibly increase
the likelihood REE-rich material could be deposited (van Olphen,
1959; Kanazawa and Kamitani, 2006; Bao and Zhao, 2008).
Therefore the alkalic rocks of the ELIP are a potential target for
magmatic-hydrothermal deposits or they may have acted as a
source for possible ion-adsorption clay deposits.

7. Tectonomagmatic synthesis of the Emeishan large igneous
province

A unifying theory of the formation of the ELIP is a difficult issue
to address because the available data and geological evidence
dictate that some studies are more likely to be correct than other
studies. For example the range of Sr-Nd-Pb-Os isotopes of
Emeishan rocks does not permit any resounding conclusion on the
type of mantle source and therefore it could be said that a sub-
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lithospheric mantle source, or a subcontinental lithospheric
mantle source or both are involved. Furthermore the effects of
crustal contamination can mask the features of the original mantle
source. This section brings together the main geological and
geochemical features of the ELIP in order to constrain its likely
tectonomagmatic history.

During the late Capitanian to early Wuchiapingian the Yangtze
Block was a stable carbonate platform at tropical latitudes. It is
uncertain what the topography (i.e. flat or undulatory) of the car-
bonate platform was but the modern day Mascarene Plateau may
be a good analog because it is possible that some portion of the
Yangtze Block was exposed whereas most of the platform was
submerged. The Emeishan volcanic rocks erupted along with for-
mation of several plutonic complexes. Huang and Opdyke (1998),
Thompson et al. (2001) and He et al. (2003, 2007) suggested that
volcanism was short-lived, probably within one magnetic reversal
cycle or <3 Ma (Ali et al.,, 2005; Zheng et al., 2010; Shellnutt et al.,
2012a). A short duration is consistent with eruption rates and
emplacement models for many large igneous provinces (Coffin and
Eldholm, 1994; Bryan and Ernst, 2008). Age dates and correlations
of mafic and acidic layers near the Permo-Triassic boundary of
Southwest China have suggested that the ELIP may have extended
beyond the late Permian but is not likely a part of the main effusive
period (Fan et al., 2004; Kamo et al., 2006). It is unlikely that ELIP
magmatism was continuously active for ~20 Ma as CA-ID-TIMS
results show that some of the rocks previously dated at ~252 Ma
are in fact ~259 Ma (Shellnutt et al., 2012a). Verification of the late
Permian ages (i.e. 252 Ma) and Triassic ages (i.e. 240 Ma) is required
but it is possible that underplated mafic rocks related to the ELIP
served as a source for post-260 Ma magmas.

Zones
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Asthenosphere Mantle

Fe-Ti-V oxide
deposits and
layered complexes

Low-Ti basalt/
i Ni-Cu-(PGE)
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High-Ti
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The volcanic and the plutonic rocks are likely derived from
magmas generated from a mantle plume source (Fig. 11). Some
magmas were subsequently contaminated by various amounts of
crustal material. The major and trace elemental and isotope
composition of the Emeishan magmatic rocks indicate that the
source was heterogeneous and possibly volatile-rich as is the case
for some Ti-rich basaltic rocks (Pilet et al., 2005, 2008). The sub-
continental lithospheric mantle may or may not be involved but
probably cannot be discerned with ease due to the isotopic het-
erogeneity of the rocks and the fact that the source may have been
volatile-rich (e.g. COy, F) and contaminated with crustal material
(e.g. GLOSS). The volatiles could be from the original source or
mixing within an enriched component (i.e. GLOSS) or simply due to
low amount of partial melting. Whether uplift and doming of the
crust occurred is not a prerequisite for the formation of the flood
basalts and may or may not have occurred (He et al., 2003, 2007,
20104, b; Utskins-Peate and Bryan, 2008; Ali et al., 2010; Sun
et al,, 2010). The injection of mafic magmas induced partial melting
of the Yangtze Block which led to the formation of the per-
aluminous to metaluminous silicic rocks whereas mingling be-
tween mafic magmas and crustal melts produced other
metaluminous silicic rocks (Shellnutt et al., 2011c). The mafic
magmas which did not erupt but reached shallow crustal levels (i.e.
<3 km) crystallized and formed the cumulate layered mafic-
ultramafic complexes some of which produced both volcanic and
plutonic peralkaline silicic rocks (Fig. 11). The formation of ore
deposits within the layered intrusions is dependent on the depth of
emplacement, the original parental magma composition, amount
and timing of crustal assimilation including country rock volatile
fluxing. It is possible, providing that magmatism was short-lived,
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Figure 11. At 260 Ma the ELIP plume head arrives at the base of the lithosphere possibly inducing uplift of the crust and decompressional melting of the plume source. Mafic
magmas are injected into the lower crust/upper mantle forming chambers and the HVLC layer. Some magmas erupt onto the surface whereas others reach relatively shallow depths
and form the oxide-ore bearing layered intrusions and sulphide ore bearing intrusions. The continuous injection of mafic magmas likely induced partial melting of the crust which
leads to the formation of the crust-derived silicic plutons and possible the hybrid silicic plutons.
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Figure 12. A simplified block model of the regional tectonic positions of the North China Block and Indochina Block to the South China Block during the emplacement of the ELIP

(260 Ma).

that country rock degassing contributed to climatic changes which
adversely affected global ecosystems.

The cause of the ELIP is uncertain. It could simply be due to the
random formation of a mantle plume related to global plate tec-
tonics or it could be due to the plate dynamics of the North China-
South China-Indochina Block (Fig. 12) (Shellnutt et al., 2008; Jian
et al.,, 2009). The current location of the Panxi region is along a
marginal boundary between the Yangtze Block and the Songpan-
Ganze terrain of the Tibetan Plateau and does not correspond with
an intra-plate setting. The composition of basaltic and A-type
granitic rocks has long been used as evidence for within plate mafic
magmatism (c.f. Pearce and Cann, 1973; Pearce et al., 1984). The
composition of the Panxi plutons and the mafic dykes are consis-
tent with a rifting environment or within plate setting. The
geological evidence is a little more complicated due to Mesozoic to
Cenozoic tectonic over printing in SW China. After emplacement of
the ELIP, which undoubtedly was a within plate extensional setting
(He et al,, 2003; Xu et al., 2004), the SCB moved northward into
Eurasia around 231 Ma which caused widespread deformation of
the western margin of the Yangtze Block thereby destroying the
outer margin and creating an appearance of a margin setting of the
modern ELIP (Fig. 12) (Bruguier et al., 1997). Many LIPs are associ-
ated with continental break-up and mantle plumes (Coffin and
Eldholm, 1994; Courtillot et al., 1999; Ernst et al., 2005) but not
all are related to both (Sheth, 1999, 2005a, b; McHone, 2000). The
emplacement of the ELIP was tensional however it was unlikely to
have caused the Yangtze Block to split. This presents an interesting
problem and leads to the question: did the Yangtze Block split?
Considering that many continental break-ups occur along plate
margins or suture zones it is suggested that the location of the
Emeishan mantle plume was not concomitant with a major litho-
spheric inhomogeneity (i.e. a plate margin or tectonic suture zone)
(Courtillot et al., 1999). Also, the impending collision between the
NCB and the SCB may have prevented complete plate break-up as
the extended plate would have simply been pushed back together
upon collision. It is generally agreed that the majority of Emeishan
flood basalts erupted within a short period around 260 Ma so it is
likely that ELIP-related extension stopped shortly thereafter.

8. Future directions

Considering the amount of research that has been published
over the past 20 years on the ELIP, the question is: where do we go
from here? In my opinion there is plenty of whole rock, major and
trace elemental data, isotope data and paleomagnetic studies to
constrain the formation of the ELIP and that additional geochemical

studies may not change the overall state of knowledge. Further-
more, the evidence for uplift and doming of the crust prior to the
eruption of the Emeishan basalts may be debated in literature
continuously and is beginning to resemble scientific ‘trench-war-
fare’ where enormous amounts of energy and capital are invested
into solving the problem but the advancement in knowledge will be
minimal and, most importantly, the probability of a breakthrough
will be low. However the identification of mantle plumes and their
consequences is a first order geoscience problem and thus the ELIP
may be a ‘frontline’ region to examine or test mantle plume theory
for years to come.

I believe studies on the ELIP should focus on refinement and
detailed investigations of magma-scale or mineral-scale issues.
Microanalytical techniques applied to mineral/melt inclusions of
accessory minerals (e.g. apatite, fluorite) may provide evidence for
the original parental compositions of some of the plutonic rocks or
possibly highlight some of the processes which are ongoing during
crystallization or ore formation. The poor age precision on the
emplacement of the ELIP must be refined. Current in situ zircon U-
Pb techniques provide ‘good enough’ results but require better
precision and thus CA-ID-TIMS mineral (i.e. zircon or baddeleyite)
could be applied to constrain the duration of magmatism more
precisely. Specifically the latest Permian and Triassic ages of ‘ELIP-
related’ rocks must be verified. If the younger ELIP ages are verified
then it would be evidence in support of long-lived magmatism and
a time progression feature similar to the Hawaiian Islands-Emperor
seamount chain.

I believe more detailed work must be done on the ore deposits and
exploration of new types of deposits. In an ideal world this would
mean new drilling and cooperation between publically funded re-
searchers and private or state-owned companies. Some sites, like
Panzhihua are wonderfully exposed but Taihe and Baima are not or at
least not yet and there are other areas where a drill core may provide
value insight and possibly a new deposit. Finally, I think it would be
worthwhile to examine the possibility of REE-deposits associated
with the alkaline granitic rocks. If new ideas and challenges are not
met then ELIP research will become mundane and inconsequential.
Because of the excellent exposure of the ELIP plumbing system there
is an opportunity to find new information on how LIPs and their
magmatic systems develop which will have tremendous implications
for petrology, economic geology and mantle plume theory.
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