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A nonsingular bouncing cosmology can be achieved by introducing a fermion field with BCS condensation 
occurring at high energy scales. In this paper we are able to dilute the anisotropic stress near the 
bounce by means of releasing the gap energy density near the phase transition between the radiation 
and condensate states. In order to explain the nearly scale-invariant CMB spectrum, another fermion 
field is required. We investigate one possible curvaton mechanism by involving one another fermion field 
without condensation where the mass is lighter than the background field. We show that, by virtue of 
the fermion curvaton mechanism, our model can satisfy the latest cosmological observations very well 
in which the amplitude of the power spectrum of primordial curvature perturbation is determined by a 
ratio between the masses of two fermion species.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Nonsingular bouncing cosmologies can resolve the initial sin-
gularity and horizon problems of the hot Big-Bang theory. These 
types of cosmological scenarios appear in many theoretical con-
structions [1–21]. We refer to [22–24] for recent reviews of various 
bouncing cosmologies. Most nonsingular bounce models are based 
on the matter fields with integer spins, i.e. the bosonic sector of 
the universe. However, the fundamental particles that make up the 
macroscopic world are dominated by fermion fields, and it is inter-
esting to investigate their effects in the early universe. Recently, it 
was found in [26,25] that a nonsingular bounce can be achieved by 
means of a fermion field with a condensate state in the ultraviolet 
(UV) regime.

In this model, Einstein gravity is extended to have topologi-
cal terms, which present gravitational interactions with the Dirac 
fermions, and torsion, which leads to Four-Fermion current densi-
ties and therefore effectively contribute to a negative energy den-
sity that evolves as ∼ a6. In the infrared (IR) regime, the fermion-
field is dominated by its mass term which generates a matter-like 
contraction preceding the nonsingular bounce. Thus, this model 
nicely supports the paradigm of the matter-bounce scenario [27,
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28] that is necessary for generating a nearly scale-invariant power 
spectrum of primordial perturbations in the contracting phase.

While the bounce model realized by this nontrivial cosmologi-
cal fermion field can realize the matter-bounce scenario and pro-
vide a framework of generating power-spectrum of observational 
interest, it shares a common issue that exists in a large class of 
bouncing cosmologies. That is, their contracting phases are not sta-
ble against the instability to the growth of the anisotropic stress, 
which is known as the famous Belinsky–Khalatnikov–Lifshitz (BKL) 
instability issue [29]. In the context of scalar field cosmology, 
this issue can be solved if there exists a phase with a steep and 
negative-valued potential which dominates over the anisotropies 
in the contracting phase [30–33]. A concrete realization of such a 
new matter-bounce by using scalar fields was constructed in [34]
(see [35,36] for extended studies and [24] for a recent review).

In the present work we take a close look at the cosmological 
implication of a Dirac Fermion field and show that the new matter-
bounce scenario can be achieved in this model due to the gap en-
ergy released during the transition from a regular massive fermion 
state to the state of a Four-Fermion condensation. As the scale fac-
tor decreases, the vacuum expectation value of the fermion bilinear 
〈ψ̄ψ〉 grows as ∼ a−3 and evolves to a critical value that trig-
gers the condensation phase transition. Then, the value of 〈ψ̄ψ〉
is locked at the surface of a phase transition and therefore so is 
the scale factor. As a result, a large amount of gap energy density 
which dominates anisotropic stress near the bounce.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 

https://core.ac.uk/display/82354418?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.physletb.2015.04.026
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:yifucai@physics.mcgill.ca
mailto:marciano@fudan.edu.cn
http://dx.doi.org/10.1016/j.physletb.2015.04.026
http://creativecommons.org/licenses/by/4.0/
mailto:yifucai@physics.mcgill.ca
mailto:yifucai@physics.mcgill.ca
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2015.04.026&domain=pdf


98 S. Alexander et al. / Physics Letters B 745 (2015) 97–104
Based on this scenario, we study a new curvaton mechanism by 
considering another flavor of a fermion field in which the mass is 
much lighter than the background one. Fluctuations of this fermion 
field, originating from a quantum vacuum state, can form a scale-
invariant spectrum during the matter-like contracting phase. These 
fluctuations automatically dominate over the curvature perturba-
tion at large length scales since those of the background field are 
suppressed by its mass term. Therefore, our two-flavor fermion 
field model provides a fermion curvaton mechanism for generating 
a scale-invariant power spectrum of primordial curvature pertur-
bation which can explain the CMB temperature anisotropies [37]. 
Moreover, by studying primordial tensor perturbations, we find 
that, by virtue of this mechanism, there exists a large parameter 
space for the tensor-to-scalar ratio to be consistent with the latest 
experiments, such as the BICEP2 data [38].

The paper is organized as follows. In Section 2, we briefly re-
view the bouncing cosmology by means of the fermion condensate. 
Then, in Section 3 we present the detailed study on the theoretical 
constraint from primordial anisotropies. To address the instability 
issue arisen from primordial anisotropies, in Section 4 we analyze 
the cosmological implication of the gap energy density restored 
in the fermion field and numerically show that this part of con-
tribution can give rise to a period of contraction. Afterwards, in 
Section 5 we study the primordial gravitational waves generated in 
this model. We conclude with a discussion in Section 6. Through-
out the paper we take the sign of the metric to be (+, −, −, −)

and define the reduced Planck mass through κ ≡ 8πG = 1/M2
p .

2. The bounce cosmology with fermion condensate

We start by briefly reviewing the cosmology of the fermion 
condensate model. Consider a universe filled with a fermion field, 
one can write down the action as

S = SGR + Sψ, (1)

where the Einstein–Hilbert action is expressed in terms of the 
mixed-indices Riemann tensor RIJ

μν = F IJ
μν [ω̃(e)] (F IJ

μν being the 
field-strength of the metric-compatible Lorentz-connection ω̃IJ

μ(e))

SGR = 1

2κ

∫
M

d4x|e|eμ
I eν

J RIJ
μν, (2)

the Dirac action Sψ on curved space–time reads

Sψ = 1

2

∫
M

d4x|e|
(

ψγ I eμ
I ı∇̃μψ − mψψψ

)
+ h.c., (3)

and finally the interacting part of the theory is:

S Int
ψ = −ξκ

∫
M

d4x|e| J L
ψ J M

ψ ηLM, (4)

which only involve the axial vector current Jψ of the ψ fermionic 
species. The term in Eq. (4) can be either accounted as a phe-
nomenological term, or can be derived from a gravitational theory 
with torsion, such as the Kibble–Holst–Einstein–Cartan theory — 
see e.g. Ref. [25], and references therein, for a derivation of the 
interaction term in (4). In both cases, ξ can be treated as a free 
parameter [25].

Varying the action with respect to the vierbein can yield the 
following energy–momentum tensor

T ψ
μν = 1

ψγI e
I
(μı∇̃ν)ψ + h.c. − gμνLψ. (5)
4

Using comoving coordinates for a Friedmann–Lemaître–Robertson–
Walker (FLRW) universe, we can solve the Euler–Lagrange equa-
tions of the system using the ansatz for the fermion field ψ =
(ψ0, 0, 0, 0), and find that

ψ̄ψ = nψ

a3
. (6)

Using the Fierz identities, we can then write the first Fried-
mann equation taking into account the contributions due to the 
fermionic field:

H2 = κ

3
mψ

nψ

a3
+ ξ

κ2

3

n2
ψ

a6
. (7)

One can see the first term in the above expression corresponds 
to the regular phase of the fermion field which is dominated by 
the mass term. The second term appears when the fermion field 
enters the condensate state with ξ < 0. When applied to the cos-
mological background, the fermion condensate state can effectively 
contribute to a negative energy density and hence cancels the en-
ergy densities from regular matter fields. Therefore, a nonsingular 
bouncing solution is achieved.

To be explicit, for a universe filled with a single fermion field ψ
as described above, one can derive the solution of the scale factor 
of the metric as:

a =
(

3

4
κmψnψ(t − t0)

2 − ξκ nψ

mψ

) 1
3

. (8)

In this solution, one can see that the universe shrinks to the mini-
mal size when t = t0, i.e. a0 = (− ξκnψ

mψ
)1/3, which is real if ξ < 0.

To end this section, we would like to comment that in the usual 
Minkowski space–time, the fermionic fields in quantum field the-
ory do not carry negative energy based on the Fermi statistics, 
otherwise the energy density of these fields cannot be bounded 
from below. In a cosmological background, by taking into account 
the high-order fermionic interactions, the energy density of the 
fermionic fields is able to decrease effectively at high energy scales. 
However, the energy density in our model is bounded from be-
low due to the presence of the bouncing behavior. Thus, one ex-
pects that the bouncing solution can guarantee the stability of this 
model. Note that, this does not conflict with the argument of no 
negative energy in flat space–time. As is well known, the limit 
of flat space–time is equivalent with the limit of weak gravita-
tional field with a vanishing Newtonian constant G . In this limit, 
it is evident that the interaction term in (4) vanishes and hence 
the theory reduces to a free field fermion action. In this regard, 
the model under consideration is well behaved in the flat-space 
limit.

3. Constraint from the anisotropic instability

A general challenge for bouncing cosmologies is to ensure that 
the contracting phase is stable against the instability to the growth 
of anisotropic stress, whose energy density grows as a−6. This 
is the famous BKL instability issue of any cosmological mod-
els involving a contracting phase. In particular, for the matter-
bounce cosmology, the background energy density scales as a−3

and hence, one needs to introduce a mechanism to suppress the 
growth of this unwanted anisotropies in the contracting phase. In 
the model of fermionic bounce, the energy density contributed by 
the fermionic condensate evolves also as a−6 but with a negative 
sign. In this case, whether the model is stable depends on the ini-
tial condition one chooses, namely, it is marginally stable if initially 
the contribution of the anisotropic stress is much lower than that 
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of the fermionic condensate. We perform an estimate on the theo-
retical constraint from the anisotropic instability.

In general, the anisotropic stress originates from the cosmic 
fluid through the decomposition of the energy stress tensor as fol-
lows,

Tμν = (ρ + P )uμuν + gμν P + πμν, (9)

where the uμ is the 4-velocity, ρ the energy density, P the pres-
sure, and π the anisotropic stress tensor. The latter is related to 
the shear tensor σi j through

σ̇ i
j + 3Hσ i

j = 1

M2
p
(π i

j − 1

3
δi

jπ
k
k ). (10)

The existence of the shear tensor leads to a backreaction to the 
background energy density, contributing by

ρA = 1

2
σ i

jσ
j

i . (11)

By inserting the energy stress tensor into the above expression, 
one can easily estimate the contribution of the anisotropy in the 
model of fermionic bounce, which is roughly expressed as

ρA ∼ Tr(γiγ j)

M2
p

ψ̄ψ〈δψ̄δψ〉, (12)

where we have taken the average spatial derivative of the fermion 
fluctuation in the order of the Hubble rate. From this expression, 
it is easy to see that the energy density from the anisotropic stress 
in the current model also evolves as a−6 as ψ ∼ a−3/2. Then, to 
compare with the background equation of motion provided in the 
previous section, one can easily find that the model is marginally 
stable against the anisotropic instability only when

〈δψ̄δψ〉/M2
p � m. (13)

In this case, the background universe will be of the FLRW form.
Following the analysis of Ref. [25], we have the relation be-

tween the power spectrum of curvature perturbation and the cor-
relation function of the fermion fluctuations as

Pζ � O (1)
〈δψ̄δψ〉

4ψ̄ψ
, (14)

for the single fermion field model. Thus we can eliminate the cor-
relation function in the constraint equation (13). One can estimate 
the upper bound by making use of the maximal value of the ψ̄ψ , 
which is the fermion density at the bounce n0. Correspondingly, 
one derives the following constraint

m 	 4Pζ n0/M2
p, (15)

for the mass of the fermion field. As a simple estimate, one may 
take Pζ ∼ 10−9 and n0 � M3

p , and then the constraint becomes 
m 	 10−9 Mp . However, one also needs to fine tune an extremely 
small value for the mass parameter at the very beginning of mat-
ter contraction so that the power spectrum generated in this stage 
is nearly scale invariant. To be specific, if we expect that primor-
dial perturbations generated during matter contraction can cover 
at least 10 e-folds for the CMB sky, the corresponding mass is 
required to be m � 10−30n0/M2

p . The constraint would be much 
more stringent if we consider the number of e-folds of primordial 
perturbations to be larger. As a result, it is difficult to reconcile the 
above two constraints consistently.

A solution of solving this anisotropy problem is to introduce 
a period of contraction in which the universe is dominated by 
a matter field with an equation of state parameter much larger 
than unity. To achieve this, one introduces a scalar field with a 
negatively valued exponential potential. However, in the model of 
fermionic bounce, we will find that the gap energy stored in the 
phase transition can realize this large barytropic index, as will be 
shown in the next section.

Note that, in the model of fermi-bounce, we assumed that the 
universe was initially large and empty without specifying a flat ge-
ometry. In this regard, the universe started the evolution from low 
energy states where the fermion field was also sitting around the 
vacuum state. Along with the contraction, the effective energy den-
sity contributed by the spatial curvature scales as a−2 while the 
fermionic density scales as a−3. Consequently, the energy density 
of the fermion field would dominate over the background evolu-
tion very soon and the effects of curvature term become secondary. 
In the meanwhile, the energy scale of the fermion field would 
become higher and higher due to the cosmic contraction. After ar-
riving at a critical scale, the fermion field would evolve into the 
state of fermion condensate and trigger the ekpyrotic phase and 
then the nonsingular bounce. The above process can be viewed as 
the pre-history of the fermi-bounce cosmology.

4. Fermion-bounce cosmology

We consider in this section a variant of the model addressed 
in [25]. We first take a closer look at the cosmic evolution during 
the phase transition which connects the matter contraction and 
the phase of the fermion condensate. We show that the gap energy 
stored in this stage can help to realize a period of fermionic con-
traction and hence, the unwanted anisotropy generated in matter 
contraction would be diluted out. Furthermore, in order to meet 
with the constraint from the scale invariance of power spectrum, 
we make use of the curvaton mechanism by including one extra 
fermion field. The mechanism we are presenting works then as we 
were introducing a “curvaton fermionic field”, instead of curvaton 
scalar field.

4.1. Erasing anisotropic stress from the phase transition

In the previous study of the fermion bounce model [25], it is 
assumed that the gap energy is secondary during the phase tran-
sition. Along with the cosmic contraction, the value of the fermion 
bilinear increases and evolves to a critical value that is about to 
trigger the fermion condensate phase. If we take a closer look at 
the physical implication of the phase transition, it is interesting to 
observe that during this period, the gap energy can be released 
to increase the energy density of the universe and hence the am-
plitude of the Hubble rate. In the meanwhile, however, the value 
of the fermion bilinear ψ̄ψ does not necessarily vary dramati-
cally. This implies, the scale factor of the universe can vary slowly 
during the phase transition and therefore a period of fermionic 
contraction is achieved. Correspondingly, we expect that the phase 
transition connecting the regular fermion phase and the fermion 
condensate phase can be used to give rise to the fermionic-matter 
bouncing solution.

We depict the shape of the potential for the fermion field in the 
sketch plot in Fig. 1. In the figure, when ψ̄ψ lies in the left side 
of the green dot lines, the potential is a linear function and thus 
simply a mass term. In the right side of the green dot lines, the 
potential bends into a negative value due to the fermion conden-
sate effect. The narrow regime separated by these two green dot 
lines corresponds to the phase transition stage. One can easily see 
that the gap energy can be released in this stage while the value of 
ψ̄ψ is almost conserved. The potential for the fermion field with 
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Fig. 1. A sketch of the potential V as a function of the bilinear ψ̄ψ . Along with the 
variation of ψ̄ψ , the field space is separated into three regimes: the regular massive 
fermion, the fermion condensate, and the phase transition regime that connects 
the previous two. We find that the gap energy stored in the phase transition can 
effectively lead to a period of matter-bounce phase. (For interpretation of the colors 
in this figure, the reader is referred to the web version of this article.)

the above properties may be parameterized as the following form,

V = mψψ̄ψ
1 − tanh[α(ψ̄ψ − (ψ̄ψ)∗)]

2

+ [mψ(ψ̄ψ)∗ + �ρ + ξκ(ψ̄ψ − (ψ̄ψ)∗)2]

× 1 + tanh[α(ψ̄ψ − (ψ̄ψ)∗)]
2

(16)

where α is introduced to smooth the slope of the potential near 
the phase transition and �ρ represents for the gap energy density. 
Additionally, (ψ̄ψ)∗ denotes the value of the fermionic bilinear 
term around the phase transition.

In this section, we numerically examine the dynamics of the 
model under consideration. We show the evolutions of the Hubble 
parameter H and the Equation of State (EoS) w of the background 
universe in Fig. 2. In particular we choose the model parameters 
as follows: mψ = 10−8, ξ = −1 × 10−5.5, α = 50, (ψ̄ψ)∗ = 0.08, 
�ρ = 10−7.5, mχ = 10−10, all dimensional parameters being of 
Planck units. We use the blue solid line to depict the Hubble pa-
rameter and the green solid line to represent for the EoS. From the 
evolution of the Hubble parameter, one can read that the universe 
transits from a contracting phase to an expanding one smoothly 
and when t = 0, a nonsingular bounce takes place. The EoS w
initially equals zero, which implies that the universe behaves as 
a dust-like one during the contraction. Then w evolves to above 
unity and correspondingly the background universe evolves into 
the matter-bounce phase for a while. At the bouncing point, w de-
creases dramatically and evolves to negative infinity.

Having known the dynamics of the Hubble parameter, one can 
integrate out the evolutions of the scale factor and then the scalar 
bilinear ψ̄ψ exactly. In order to better understand the background 
fermion field, we numerically track its dynamics throughout the 
whole evolution as shown in Fig. 3. From the figure, one can ex-
plicitly find that the bilinear ψ̄ψ reaches the maximal value at the 
bouncing point.

We would like to point out that the background theory con-
sidered in the present work is not UV complete and thus there 
always exists an energy scale beyond which the effective field de-
scription would be spoiled. However, the low energy effective field 
description is still trustable in this case. In particular, as read from 
Fig. 2, in our model the energy scale for the bounce is at most 
of order O (10−5) of the Planck scale, which is much lower than 
Fig. 2. Numerical plot of the evolutions of the Hubble parameter H and the back-
ground EoS w as a function of cosmic time in the model under consideration. In 
the numerical calculation, we take the values of model parameters as provided in 
the main text. All dimensional parameters are of Planck units. (For interpretation of 
the colors in this figure, the reader is referred to the web version of this article.)

Fig. 3. Numerical plot of the evolution of the bilinear ψ̄ψ as a function of cosmic 
time in the model under consideration. In the numerical calculation, we take the 
values of model parameters as provided in the main text. All dimensional parame-
ters are of Planck units.

the Planck scale. In addition, one can see that the background the-
ory would never evolve into strongly coupled regime by checking 
the value of the high-order coupling coefficient ξ which is of or-
der O (10−5) in the numerical estimates. Therefore, the background 
theory is always weakly coupled and the corresponding effective 
field description is preserved throughout the whole cosmological 
evolution in our model.
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4.2. A two-field model

In this section we show how to consistently generate a scale 
invariant scalar power spectrum with two fermion fields. We start 
from the action

S = SGR + Sψ + Sχ + S Int, (17)

where the Einstein–Hilbert action is expressed in terms of the 
mixed-indices Riemann tensor RIJ

μν = F IJ
μν [ω̃(e)]

SGR = 1

2κ

∫
M

d4x|e|eμ
I eν

J RIJ
μν, (18)

the Dirac action Sψ on curved space–time reads

Sψ = 1

2

∫
M

d4x|e|
(

ψγ I eμ
I ı∇̃μψ − mψψψ

)
+ h.c., (19)

and finally the interacting part of the theory is:

S Int
ψ = −ξκ

∫
M

d4x|e|
(

J L
ψ J M

ψ + J L
χ J M

χ

)
ηLM, (20)

which only involves the axial vector current Jψ of the ψ fermionic 
species.

The two Dirac Lagrangians respectively read

Lψ = 1

2

(
ψγ I eμ

I ı∇̃μψ − mψψψ
)

+ h.c. − ξκ J L
ψ J K

ψ ηLK, (21)

and

Lχ = 1

2

(
χγ I eμ

I ı∇̃μχ − mχχχ
)

+ h.c. − ξκ J L
χ J K

χ ηLK, (22)

and yield the energy–momentum tensors

T ψ
μν = 1

4
ψγI e

I
(μı∇̃ν)ψ + h.c. − gμνLψ, (23)

and

T χ
μν = 1

4
χγI e

I
(μı∇̃ν)χ + h.c. − gμνLχ . (24)

We can solve the Euler–Lagrange equations of the system us-
ing the ansätze for the fermion fields ψ = (ψ0, 0, 0, 0) and χ =
(χ0, 0, 0, 0), and find that

ψ̄ψ = nψ

a3
, χ̄χ = nχ

a3
. (25)

Using the Fierz identities, we can then write the first Friedmann 
equation taking into account the contributions due to the two 
fermionic species

H2 = ξ
κ2

3

n2
ψ

a6
+ κ

3
mψ

nψ

a3
+ ξ

κ2

3

n2
χ

a6
+ κ

3
mχ

nχ

a3
. (26)

The scale factor of the metric then reads

a =
(

3κ(mψnψ + mχnχ )

4
(t − t0)

2 − ξκ (n2
ψ + n2

χ )

(mψnψ + mχnχ )

) 1
3

, (27)

therefore its value in t0 is found to be

a0 =
(

− ξκ (n2
ψ + n2

χ )

mψnψ + mχnχ

) 1
3

�
(

−ξκ (n2
ψ + n2

χ )

mψnψ

) 1
3

. (28)
We may now consider the perturbations to the energy density 
which is

ζ = δρ

ρ + p
. (29)

Since we have two fermionic species with different values of the 
bare mass, the two contributions to the variation of the energy 
densities read

δρ = (mχ + ξκχχ) (δχ χ + χ δχ)

+ (
mψ + ξκψψ

) (
δψ ψ + ψ δψ

)
+ ξκ

[
ψγ5ψ(δψ γ5ψ + ψγ5δψ)

+ ψγ Lψ(δψγLψ + ψγLδψ)
]

+ ξκ
[
χγ5χ(δχ γ5χ + χγ5δχ)

+ χγ Lχ(δχγLχ + χγLδχ)
]
, (30)

while for the denominator of (29) reads

mχχχ + mψψψ + 2ξκ
(

J L
ψ J M

ψ + J L
χ J M

χ

)
ηLM. (31)

Whenever we meet the requirement

mψnψ 	 mχnχ , (32)

we end up having for the ζ variable

ζ � mχ (δχ χ + χ δχ)

mψψψ
. (33)

Therefore the autocorrelation function for ζ(t, �x) now reads

PS = 〈ζ(t, �x)ζ(t, �x)〉 = m2
χ

m2
ψ

χχ 〈δχδχ〉
4(ψψ)2

, (34)

having assumed that: i) mψ 	 mχ , so perturbations due to the ψ
field are suppressed at super-horizon scale, since their wavenum-
bers are more blue-shifted with respect to the perturbations of the 
χ field; ii) cross-correlation between perturbations of the two dif-
ferent fermionic species can be neglected, since they are due to an 
interaction involving a graviton loop, which is suppressed by the 
forth power of the Planck mass Mp .

The perturbations to the χ field can now be computed resort-
ing to the same kind of assumptions discussed in [25]. We note 
that the potential for the spinor bilinear contains high-order inter-
actions and thus the background theory is not canonical as in the 
usual Dirac action. However, the cosmological perturbations are 
free from this concern. For one thing, the equation of motion for 
the Fourier modes of the fermion fluctuations can be reformulated 
as a second order differential equation as will be shown in the fol-
lowing study. Moreover, the metric perturbations of scalar type in 
our model, which is of the most observable interest and has to 
be sourced by any arbitrary matter field, still keep the canonical 
form. In addition, from the analysis below, we can explicitly see 
that at perturbative level the fluctuation in our model is free of 
gradient and ghost instability, which often exists in other bounc-
ing cosmologies.

The scale factor for the metric, away from the bounce, reads 
again a(η) � η2/η2

0 , but now

η0 = [κ(mψnψ + mχnχ )]−1/2, (35)

which in the assumption (32) becomes

η0 � (κmψnψ)−1/2. (36)
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The equation for the perturbations of the χ field now reads(
γ I eμ

I ı∇̃μ − mχ − 2ξκχ gχg

)
δχ = 0, (37)

in which we may use the background solution χg so far recovered. 
We then reshuffle the equation of motion for the spinor perturba-
tions and densitize them(
γ I eμ

I ı∇̃μ − mχ − 2ξκ
√−g χ̃ gχ̃g

)
δ̃χ = 0. (38)

Using the background χ -fermion density, the latter equations re-
cast as(

ıγ μ∂μ − mχ a(η) − 2ξκ nχ

a2(η)

)
δ̃χ = 0. (39)

Following the procedure in [25], we can solve the Dirac equa-
tion (39) in terms of

f̃±h = 1√
2
[ũL,h(�k, η) + ũR,h(�k, η)],

g̃±h = 1√
2
[ṽ L,h(�k, η) + ṽ R,h(�k, η)]. (40)

These come from rescaling densitized spinors up to ũ = a3/2u
and ṽ = a3/2 v , in terms of their chiral and helical components

ũ(t, �k) =
∑

h

ũh(t, �k) =
∑

h

(
ũL,h(�k, η)

ũR,h(�k, η)

)
ξh, (41)

ṽ(t, �k) =
∑

h

ṽh(t, �k) =
∑

h

(
ṽ R,h(�k, η)

ṽ L,h(�k, η)

)
ξh, (42)

having introduced the helicity 2-eigenspinor, cast in terms of the 
unit vector �̂k, which reads

ξh = 1√
2(1 − h k̂z)

(
h(k̂x − ık̂y)

ık̂x − h k̂y

)
, �̂k · �σ ξh = h ξh, (43)

�σ denoting the Pauli matrices.
In terms of f̃h , we rewrite Eq. (39) as

f̃ ′′
±h + ω2(k, η) f̃±h = 0, (44)

with an effective frequency term being defined by

ω2(k, η) = k2 + m2
χa2 + ımχa′ + 2ξκnχ

(
mχ

a
− ı

a′

a3

)
. (45)

Since in our model χ plays the role of a curvaton which does not 
contribute to the background evolution, the condition mχ � mψ

holds and then one can neglect the second term of the effective 
frequency. In addition, the third and the last term are imaginary 
and thus can be smoothed out by taking the time-averaged evolu-
tion at super-Hubble scales.1 Finally, the effective frequency mainly 
depends on the gradient term k2 and the effective mass term 
2ξκnχmχ/a.

Afterwards, we can solve the above solution in two limits. First, 
we consider the gradient term to be dominant, which corresponds 
to the sub-Hubble scales with |kη| 	 1. In this limit, it is natural to 

1 One notices that the imaginary part can be automatically suppressed in the 
contracting phase far before the bounce and hence the initial states for fermionic 
perturbations are naturally close to the vacuum fluctuations in Minkowski space. 
Along with the contraction, the imaginary part appeared in (45) may disturb the 
scale invariance of perturbations before exiting the Hubble radius. Nevertheless 
these effects are controllable thanks to a fine tuning, by requiring that the imag-
inary part is at most of the same order of the real one.
impose the initial condition for the perturbation modes by virtue 
of a Wentzel–Kramers–Brillouin approximation, which then yields

f̃±h �
√

mχ

2k
e−ikη. (46)

This initial condition exactly coincides with the vacuum fluctua-
tions. Second, we study the asymptotic solution to the perturbation 
equation in the limit of |kη| � 1, i.e. at super-Hubble scales. To ap-
ply the relation a(η) � η2/η2

0 and Eq. (36), one can write down the 
effective mass term as

− γ

η2
with γ = −2ξnχmχ

nψmψ

. (47)

Then, the equation of motion yields another asymptotic solution, 
of which the leading term takes the form

f̃±h � c(k)η
2(1+γ −√

1+4γ )

3−√
1+4γ , (48)

where c(k) is a k dependent coefficient to be determined by 
matching the above two asymptotic solutions (46) and (48) at the 
moment of Hubble crossing. As a result, the asymptotic solution at 
super-Hubble scales is given by

f̃±h �
√

mχ

2k
(kη)

2(1+γ −√
1+4γ )

3−√
1+4γ . (49)

Substituting (49) into the expression (34) yields the power 
spectrum of primordial curvature perturbations as follows,

PS = m3
χnχ

m2
ψn2

ψ

k2

4π2a2
(kη)

4(1+γ −√
1+4γ )

3−√
1+4γ , (50)

where we have applied the relations in (25). It is interesting to 
notice that, when γ = 2 (i.e. ξ = −nψmψ/nχmχ ), the above power 
spectrum is exactly scale invariant and the corresponding ampli-
tude scales as η−2 during the matter contracting phase. Therefore, 
the scale invariant power spectrum generated in the fermion cur-
vaton mechanism is expresses as

PS = m3
χnχ

m2
ψn2

ψ

1

4π2a2η2
, (51)

during the matter contracting phase.
We eventually evaluate the above expression at the end of the 

matter contracting phase tE , at which the scale factor takes the 
value aE , which then becomes

PS = m3
χnχ

m2
ψn2

ψ

H2
E

16π2
, (52)

where ηE = 2/HE = 2/(aE H E) has been applied. Notice that the 
time tE is also the beginning of the phase transition, at which 
perturbations become constant already, throughout the rest of the 
primordial epoch, until these reenter the Hubble horizon.

If γ slightly deviates from 2 in (50), one can derive the follow-
ing expression for the spectral index

nS − 1 ≡ d lnPS

d ln k
� −2

3
(γ − 2), (53)

which accounts for the spectrum to be red-tilted.
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5. Predictions on primordial gravitational waves

In this section, we perform a calculation of the power spectrum 
of primordial gravitational waves in the present model. Note that, 
the evolution of primordial gravitational waves decouples from 
other perturbation modes at linear order and depends only on the 
background dynamics. Since our model provides an explicit real-
ization of the new matter-bounce scenario, we can directly follow 
the detailed calculation in [34] (see also [41]) and directly write 
down

PT = 1

ϑ2

H2
E

a2
E M2

p
, with ϑ = 8π(2q − 3)(1 − 3q), (54)

where HE and aE respectively denote the values of the comov-
ing Hubble parameter and of the scale factor at the end of matter 
contracting phase, just right before the phase transition. The coef-
ficient q is a background parameter associated with the contracting 
phase, and thus in our model is determined by the detailed proce-
dure of the phase transition, which typically is required to be less 
than unity.

From the perspective of theoretical consideration, if the uni-
verse evolves through the bounce without a fermionic contraction 
phase, the maximal amplitude of the Hubble rate is of order mψ√

ξ
. 

Thus, in our model, when the fermionic matter-bounce phase oc-
curs, the amplitude of the corresponding Hubble parameter has to 
be at most the same order of mψ√

ξ
. As an approximation, we can es-

timate the maximal case by suggesting, |H E | � mψ√
ξ

, and therefore, 
the corresponding power spectrum is approximately given by

PT � 1

ϑ2

m2
ψ

|ξ |M2
p
. (55)

Accordingly, following the definition r ≡ PT /PS , one can write 
down the tensor-to-scalar ratio of our model as follows,

r = 16π2

ϑ2

m2
ψ

m3
χ

n2
ψ

nχ M2
p
, (56)

where we have approximately taken the condition of scale invari-
ance γ � 2.

The latest cosmological observations indicate that PS � 2.2 ×
10−9 [37]. While for the tensor-to-scalar ratio the value r � 0.2
detected by BICEP2 [38] has been recently questioned in [39]
and [40], in which it has been shown that dust could still account 
for all or most part of the signal of the primordial gravitational 
waves.

We disregard the hypothesis of non-detection of gravitational 
waves in this analysis, and take into account a non-vanishing value 
for r consistent with the error bars, namely r ∼ 10−2. The values 
of PS and r so far discussed, one applied into Eqs. (52) and (56), 
require two further constraints. The first one turns out to be a 
constraint on the mass of the heavy species:

m2
ψ � 10−11 |ξ | M2

p . (57)

The assumption (32) implies large values of |ξ | = (nψmψ)/(nχmχ ), 
once in presence of a nearly scale-invariant power spectrum 
(γ � 2). The new constraint (57) can then be thought as linking 
the mass of the heavy species to the GUT scale, if a proper choice 
of ξ � 104 is done.

Combining Eqs. (52) and (56), we derive a further constraint

m2
ψ

m3

n2
ψ

n M2
∼ O (1). (58)
χ χ p
Once suitable values of the fermionic species’ densities have been 
fixed, the latter constraint can be shown to be achieved in this 
model, and to link the mass of the light species to the mass of the 
heavy one.

6. Conclusion

To conclude, in the present paper we have studied a nonsin-
gular matter-bounce universe, which has been achieved by intro-
ducing a background fermion field with a condensation occurring 
at high energy scales. In the literature, it was already found that, 
embedding a nonconventional spinor field into the FLRW universe, 
one can derive a wide class of cosmological solutions. A spinor 
field was indeed applied in the study of inflationary cosmology 
[42,43], dark energy models [44,45], and the emergent universe 
scenario [46,47]. Bearing in mind the purpose of realizing a con-
crete example of spinor matter-bounce cosmology that could be 
consistent with the latest cosmological data, we have shown how 
the gap energy density, eventually restored in the regular state 
of a cosmic fermion, can yield a short period of ekpyrotic phase 
during the contracting phase of the universe. The derivation of 
a nearly scale-invariant CMB power-spectrum requires the intro-
duction of another matter field. As in the ekpyrotic scenario, pri-
mordial anisotropies can be washed out during the universe’s con-
traction, if we consider a curvaton mechanism that involves one 
another fermion field (without condensation), of which the mass 
is lighter than the background field. Anisotropies can be neglected 
when the amplitude of the curvaton perturbations, to which they 
are associated, is found to be much smaller than the mass of the 
background spinor. The contribution from the latter particle to en-
ergy density perturbations can be indeed neglected, because of the 
mass hierarchy with curvaton spinor. The fermion curvaton mecha-
nism here developed enables this model to be consistent with the 
latest cosmological data. Furthermore, it bestows a framework in 
which realizing a see-saw mechanism endowed with phenomeno-
logical consequences in cosmology. Assuming for the relative abun-
dance of the heavy ψ fermions over the light χ fermions the value

nψ

nχ
� 107

m3
χ

nψ

(59)

might allow in this context the see-saw mechanism. Indeed, it 
would encode as the two fermions: i) a regular neutrino, account-
ing for the light χ species of this model, with a mass mχ <

10−3 eV that fulfills constraints from Big-Bang nucleosynthesis and 
it is still compatible with experimental data [48]; ii) a sterile neu-
trino, which corresponds to the background field i.e. the ψ species, 
with mass at the GUT scale for the choice of the ratio in (59). 
Smaller values than the GUT scale for the mass of the background 
species ψ may be easily accounted in this model.

We would like to end with a comment on the perturbation 
theory in the cosmology of fermion fields. For this type of cosmol-
ogy, the stress energy tensor can be treated as perfect fluid only 
at the background level. By taking into account the perturbations, 
however, the anisotropic components and the canonical momen-
tum ones can automatically appear in the stress-energy tensor. The 
presence of these new components would not alter the predictions 
on the curvature perturbations generated in the primordial era, but 
may affect the propagation of primordial gravitational waves. This 
is a very interesting topic which deserves a further investigation.
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