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Head motions during functional magnetic resonance imaging (fMRI) impair fMRI data quality and introduce
systematic artifacts that can affect interpretation of fMRI results. Electroencephalography (EEG) recordings per-
formed simultaneously with fMRI provide high-temporal-resolution information about ongoing brain activity as
well as head movements. Recently, an EEG-assisted retrospective motion correction (E-REMCOR) method was
introduced. E-REMCOR utilizes EEG motion artifacts to correct the effects of head movements in simultaneously
acquired fMRI data on a slice-by-slice basis. While E-REMCOR is an efficient motion correction approach, it in-
volves an independent component analysis (ICA) of the EEG data and identification of motion-related ICs. Here
we report an automated implementation of E-REMCOR, referred to as aE-REMCOR, which we developed to facil-
itate the application of E-REMCOR in large-scale EEG-fMRI studies. The aE-REMCOR algorithm, implemented in
MATLAB, enables an automated preprocessing of the EEG data, an ICA decomposition, and, importantly, an auto-
matic identification ofmotion-related ICs. aE-REMCORhas been used to perform retrospectivemotion correction
for 305 fMRI datasets from 16 subjects, who participated in EEG-fMRI experiments conducted on a 3 TMRI scan-
ner. Performance of aE-REMCOR has been evaluated based on improvement in temporal signal-to-noise ratio
(TSNR) of the fMRI data, as well as correction efficiency defined in terms of spike reduction in fMRI motion pa-
rameters. The results show that aE-REMCOR is capable of substantially reducing head motion artifacts in fMRI
data. In particular, when there are significant rapid headmovements during the scan, a large TSNR improvement
and high correction efficiency can be achieved. Depending on a subject's motion, an average TSNR improvement
over the brain upon the application of aE-REMCOR can be as high as 27%, with top ten percent of the TSNR im-
provement values exceeding 55%. The average correction efficiency over the 305 fMRI scans is 18% and the largest
achieved efficiency is 71%. The utility of aE-REMCOR on the resting state fMRI connectivity of the default mode
network is also examined. The motion-induced position-dependent error in the DMN connectivity analysis is
shown to be reduced when aE-REMCOR is utilized. These results demonstrate that aE-REMCOR can be conve-
niently and efficiently used to improve fMRI motion correction in large clinical EEG-fMRI studies.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Head motion has been recognized as a major source of artifacts in
fMRI data since early days of fMRI (e.g. Cox and Hyde, 1997; Friston
et al., 1995, 1996; Hajnal et al., 1994; Jiang et al., 1995). In task fMRI,
motion-induced artifacts often correlate with experimental tasks
(Hajnal et al., 1994), leading to inaccurate estimates of BOLD activity
levels and reduced significance of fMRI findings. This issue is particular-
ly important for frontal and prefrontal brain regions that usually exhibit
the largest motions. In resting-state fMRI, head movements introduce
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systematic changes in estimated fMRI functional connectivity strength
across the brain (Power et al., 2012; VanDijk et al., 2012). Such spurious
changes can lead to incorrect interpretations of the functional connec-
tivity results on the group level if the data is ineffectively preprocessed
(Power et al., 2012; Saad et al., 2013; Gotts et al., 2013; Jo et al., 2013).
The traditional fMRI motion correction approach bases on spatial co-
registration of 3D fMRI volumes (e.g. Friston et al., 1995; Cox and
Jesmanowicz, 1999). Despiking at the beginning of the preprocessing
pipeline further attenuates the fMRI motion effect (Jo et al., 2013;
Satterthwaite et al., 2013). The traditional approach implicitly assumes
that all motion occurs between the volume acquisitions (Cox and Hyde,
1997). Thus, it cannot adequately take into account effects of faster
intra-volumemovements (Beall and Lowe, 2014). It has been suggested
that a slice-based fMRI motion correction can be superior to the
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. The sketch of the automatic identification of ICs through the analyses of the mean
power spectral density, topographic map, and contribution to the EEG signal. Possible
blink and saccade ICs are removed from the motion ICs selection.
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traditional volume registration approach (Beall and Lowe, 2014;
Zotev et al., 2012).

Multimodal brain imaging, combining fMRI with simultaneous EEG
recordings (e.g. Mulert and Lemieux, 2010), offers new exciting oppor-
tunities for fMRI motion correction. Simultaneous EEG-fMRI combines
the advantages of the high temporal resolution of EEG and the high spa-
tial resolution of fMRI. While the artifact on the fMRI data can be mini-
mized with the use of MR-compatible EEG system, introduction of fMRI
environment related artifacts to the EEG data is inevitable. In particular,
cardioballistic and motion artifacts are exacerbated inside an MR scan-
ner. These artifacts can be reduced with designated hardware setup
(Bonmassar et al., 2002; Masterton et al., 2007), or corrected effectively
by independent component analysis (Srivastava et al., 2005; Mantini
et al., 2007).

Recently, we introduced a method for EEG-assisted retrospective
motion correction of fMRI data (E-REMCOR) that employs the EEG
array as a sensitive motion detector in addition to recording neuronal
activity (Zotev et al., 2012). In this method, voltage artifacts induced
in the EEG array leads due to head motion in a strong uniform mag-
netic field of an MRI scanner are used to define regressors describing
rotational head movements with millisecond temporal resolution.
E-REMCOR makes it possible to regress out the effects of rapid head
movements from unprocessed fMRI data on a slice-by-slice basis
prior to volume registration. Thus, E-REMCOR complements both the
traditional fMRI volume registration approach, which performs better
for slower head motions, and the RETROICOR method for slice-specific
correction of fMRI cardiorespiratory artifacts (Glover et al., 2000).
E-REMCOR does not require any specialized equipment (beyond the
Fig. 2. (a)–(f) The mean power spectral density of (a) a rapid head movement IC; (b) a cardio
(d) another rapid head movement IC with reflection points in the RM range; (e) a blink IC; (
right minima when the neighboring right minimum is below 8 Hz. (i)–(j): The rises of the NR
the difference between the maximum and minimum spectrum power below 4 Hz. Motion fr
MO peaks stand for the peaks found in the RM, CB and MO frequency ranges respectively. In
rise is the power difference between the peak G and the minimum between F and G. In (
between J and K. In (k), the rise of the reflection point H is the power difference between
S(v = 4.5 Hz).
EEG-fMRI instrumentation) and can be applied retrospectively to any
existing EEG-fMRI dataset.

Application of E-REMCOR involves an independent component anal-
ysis (ICA) of EEG data and identification of independent components
(ICs) corresponding to different head motions. This process requires a
close examination of the EEG recordings and a careful evaluation of
the IC properties. Therefore, an automation of E-REMCOR to enable a ro-
bust and efficient motion correction without human supervision is
desirable. In this paper, we describe such an automation extension of
E-REMCOR, which we refer to as aE-REMCOR. We explicitly detail the
quantitative criteria that effectively distinguish the different motion
ICs. We also evaluate its performance for a large number of EEG-fMRI
datasets. An improved automatic fMRI motion correction afforded by
aE-REMCOR would provide an additional incentive for recording EEG
during fMRI, and thus encourage a broader use of simultaneous EEG-
fMRI. It would also greatly benefit large clinical studies by improving
fMRI data quality and reducing numbers of subjects excluded due to
excessive motion.

Methods

E-REMCOR

The aE-REMCOR method is an automation extension of E-REMCOR.
E-REMCOR is based on the observation that voltage artifacts
(electromotive force, EMF) induced in EEG leads due to rigid-body
movements of the head in the uniformmagnetic field of anMRI scanner
can be analytically related to time derivatives of real-time rotational
head motion parameters (Zotev et al., 2012). Definition of the high-
temporal-resolution E-REMCOR regressors is independent of the fMRI
pulse sequence properties. The MR artifacts are removed from the EEG
data bymeans of the average artifact subtraction (Allen et al., 2000) be-
fore the EEG data are used for E-REMCOR.

Application of E-REMCOR for fMRI motion correction includes three
steps. First, an independent component analysis (ICA, e.g. Bell and
Sejnowski, 1995; Makeig et al., 1997) is performed for the EEG data:

Vi tð Þ ¼
XN
j¼1

bij F j tð Þ þ εi tð Þ; i ¼ 1:::N: ð1Þ

Here, {Vi(t)} are signals from N EEG channels, {Fj(t)} are the corre-
sponding independent components (ICs), {bij} are elements of the ICA
back-projection matrix, and εi(t) is an error term also including the
ith-channel's Gaussian noise The ICs Fk(t), k = 1...K, approximating
random-motion and/or cardioballistic (CB) artifacts VEMF

(i) (t) are

V ið Þ
EMF tð Þ≈

XK
k¼1

bik Fk tð Þ; i ¼ 1:::N;K ≤N: ð2Þ

The identification criteria for the random head motion are outlined
in Zotev et al., 2012. The quantitative classification of the criteria for
the random head motion, together with the cardioballistic motions
caused by cardiac pulsations, will be detailed in the following sections.

Second, eachmotion-related IC Fk(t) is band-pass filtered from 0.1 to
20 Hz and integrated over time (with constant Δt= 0.4 s) to yield two
E-REMCOR regressors, R1

(k)(t) and R2
(k)(t), having the same temporal
ballistic motion IC; (c) a mixture of cardioballistic motion and rapid head movement IC;
f) a saccade IC. (g)–(h): The rises of peaks B and E in (c) from their neighboring left and
peaks G and K in (c) and (e). (k): The rise of the reflection points in (d). In (a)–(f), S0 is

equency range (MO) refers to the combined frequency range of RM and CB. RM, CB and
(g)–(h), the peak rise is defined as the average of the left and right rises. In (i), the peak
j), the peak rise is the power difference between the peak K and the minimum value
H and I, and the rise of the reflection point I is the power difference between I and
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resolution as the EEG data:

R kð Þ
1 tð Þ ¼

Z t

t−Δt

Fk τð Þdτ; and R kð Þ
2 tð Þ ¼

Zt−Δt

0

Fk τð Þdτ: ð3Þ

Third, the E-REMCOR regressors are sub-sampled tomatch the acqui-
sition times {ts} for each slice in the fMRI dataset and linearly detrended.
Correction of motion artifacts in the unprocessed fMRI data is performed
bymeans of a linear regression procedure (with fit coefficients {β} and a
linear regressor RL) applied to each fMRI voxel's time course:

SfMRI tsð Þ ¼ β0 þ β1RL tsð Þ þ
XK
k¼1

βk1R
kð Þ
1 tsð Þ þ βk2R

kð Þ
2 tsð Þ

h i
þ ε tsð Þ: ð4Þ

Thus, the E-REMCOR motion correction is performed on a slice-by-
slice basis, and can be applied simultaneously with RETROICOR. It is
usually followed by the standard fMRI data processing with slice-time
adjustment and volume registration to correct effects of slower head
motions.

The purpose of aE-REMCOR is to automate and streamline the prac-
tical use of E-REMCOR for large datasets and/or groups of subjects.
We developed an advanced algorithm for automatic identification of
motion-related ICs, Eq. (2). The algorithm automatically characterizes
and recognizes the special features of the motion artifacts imposed on
themean power spectral density, topographic map, and EEG signal con-
tribution of the ICs as described in detail below. In the previous work,
the motion ICs were prepared with Brain Products, GmbH's Analyzer 2
proprietary software. The current automation procedure is imple-
mented in MATLAB, together with the MR artifact removal, the ICA
decomposition, and the IC integration, Eq. (3). The final motion correc-
tion step, Eq. (4), is performed for fMRI data in AFNI (Cox, 1996; Cox and
Hyde, 1997) using the 3dTfitter AFNI program.

Data acquisition

The studywas conducted at the Laureate Institute for Brain Research.
The research protocol was approved by the Western Institutional
Review Board (IRB). Eleven PTSD patients and five healthy controls
(mean age 31 ± 8 years, all male) participated in the study. The study
included three EEG-fMRI scanning sessions. Each session lasted for
about two hours and was separated approximately one week apart. In
each session, there were five real time fMRI neurofeedback (rtfMRI-nf)
training scans (Zotev et al., 2011) and two resting scans immediately be-
fore and after the rtfMRI-nf training scans. In this study, the scans with
missing fMRI slice markers, or mismatched EEG and fMRI scan numbers
were not considered, giving a total of 305 scans in the analysis,which in-
cludes 219 rtfMRI-nf training scans and 86 resting scans.

The experimental procedure and data acquisition parameters were
the same as described in Zotev et al., 2012. The EEG-fMRI experiments
were conducted on a GE Discovery MR750 3 TMRI scanner with a stan-
dard 8-channel receive-only head coil. A single-shot gradient-echo EPI
sequence with Sensitivity Encoding (SENSE) was employed for fMRI.
The following EPI imaging parameters were used: repetition time
TR = 2000 ms, echo time TE = 30 ms, FOV = 240 mm, 34 axial slices
per volume, slice thickness = 2.9 mm, slice gap = 0.5 mm, 96 × 96 ac-
quisitionmatrix, SENSE acceleration factor R=2, flip angle=90o, sam-
pling bandwidth = 250 kHz. Each fMRI run lasted 8 min 46 s. Three
EPI volumes (6 s) were excluded from the data analysis to allow the
fMRI signal to reach steady state. The EPI images were reconstructed
into a 128 × 128 matrix, so the resulting fMRI voxel size was 1.875 ×
1.875 × 2.9 mm3. Physiological pulse oximetry and respiration wave-
forms were also simultaneously acquired with fMRI. The EEG record-
ings were performed simultaneously with fMRI using a 32-channel
MR-compatible EEG system fromBrain Products GmbH. The EEG signals
were acquired with 16-bit 5 kS/s sampling providing 0.2 ms temporal
and 0.1 μVmeasurement resolution. The signalsweremeasured relative
to the standard reference (FCz) and were hardware-filtered between
0.016 Hz (10 s time constant) and 250 Hz during the acquisition.

EEG preprocessing and ICA

The EEG data, together with the information about event markers
and MRI slice markers, are loaded in MATLAB using the EEGLAB
(Delorme and Makeig, 2004) command pop_loadbv(). The MRI slice
markers are used to label the time period of the concurrent EEG and
fMRI measurements. Because the MR artifacts are strictly periodic
with the fMRI repetition time TR, they are efficiently removed from
the EEG data using the average artifact subtraction. The EEG data are
then low-pass filtered at 40Hz and downsampled to 250 S/s (4ms sam-
pling interval). Band-rejection filters (1 Hz bandwidth) are applied to
remove harmonics of the fMRI slice selection frequency, 17 Hz, as well
as the AC power line artifact at 60 Hz, and a vibration artifact at 26 Hz.

The ICA is performed on the preprocessed EEG data using the
Informax algorithm (Bell and Sejnowski, 1995) implemented in
EEGLAB (binica, Delorme and Makeig, 2004) to separate 31 ICs for
N=31 EEG channels. The ICs related to headmotions, Eq. (2), are iden-
tified automatically. The selected ICs are bandpass filtered from 0.1 to
20 Hz to exclude both the slowly and fast varying contributions that
may be unrelated to head motion (such as EEG instrumentation drifts).
The ICs are then used to define E-REMCOR regressors, Eq. (3).

Automatic identification of motion ICs

In aE-REMCOR, the ICs corresponding to headmotions are identified
automatically. An IC is recognized as motion-related if its mean power
spectral density, topographic map, and contribution to the EEG signal
manifest certain features that are generally observed for motion ICs.
Note that our original work on E-REMCOR focused on correction of arti-
facts corresponding to randomheadmovements so CB artifactswere re-
moved from the EEG data using the average artifact subtraction (Allen
et al., 1998). In the present paper, the CB artifacts are included in
the analysis together with the random-motion artifacts. The reason is
that a certain type of head motion can contribute to both random and
cardioballistic headmovements, so the two kinds of artifacts are not en-
tirely independent andmay be hard to separate (Zotev et al., 2012). The
inclusion of CB artifacts makes the E-REMCOR procedure more flexible,
but it does not, in general, eliminate the need for RETROICOR.

The aE-REMCOR automation algorithm is illustrated in Fig. 1. ICs re-
lated to rapid head motion and cardioballistic motions are recognized
when the criteria in the analyses of mean power spectral density, topo-
graphic map, and EEG signal contribution are simultaneously satisfied.
Eye blink ICs and saccadic ICs are also identified in addition to the
head motion ICs to ensure proper separation of head movement and
eye movement artifacts. The IC classification parameters used in this
paper are determined empirically across 305 EEG-fMRI scans from 16
subjects. The three sections below describe the quantification of the
characteristics and the identification of themotion ICs through the anal-
yses of mean power spectral density (Section 2.5), topographic map
(Section 2.6), and EEG signal contribution (Section 2.7).

Motion IC identification through power spectral density analysis

To better understand the physical origins of the ICs, themean power
spectral density of each IC is analyzed. In aE-REMCOR, the mean power
spectral density (S) is computed using the MATLAB function pwelch()
over time windows of 2.048 s length with 1.024 s overlap (512 and
256 data points with 4 ms sampling). The spectral resolution (Δν) is
0.244Hz. Fig.2 shows some typical spectra for the ICs related tomotions,
blink and saccade. Geometrically, the spectrumhas a negative convexity
feature at frequency ν when its second derivative at ν is less than zero
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(S″(ν) b 0). For the mean power spectral density of the ICs corre-
sponding to rapid head movement, it is observed for the frequency
range of 0.5–4.5 Hz that there is either a spectral peak or a negative
convexity feature without a spectral peak. For the ICs corresponding
to the cardioballistic (CB) motions, obvious spectral peaks are observed
in 2–7Hz part of the spectrum. To categorize the physical origin of an IC,
the spectrum is divided into different frequency ranges (Figs. 2(a)–(f)):
rapid head movement (RM: 0.5–4.5 Hz), cardioballistic motion (CB: 2–
Fig. 3. The topographical maps for (a) the IC corresponding to rapid headmovement in Fig. 2(a)
blink IC in Fig. 2(e); (d) the saccade IC in Fig. 2(f); (e) the example of a non-motion cardiac–re
primary polarity regions (|g(r)| N K) are enclosed in black solid lines and the geometrical c
enclosed in black dotted lines and the centers are marked with gray dots. Here (K, K′)
(a)–(e) explicitly with the geometrical centers marked as x±. (k)–(o) plot the secondar
(p)–(q) show the primary polarity regions around the positions of the nose in (c) and E± in
angle 35° from the vertical line joining the origin and the nose. (r)–(s) show the central reg
(f)–(g) and (k)–(l) are utilized in the identification of motion ICs. (p)–(s) are utilized in the b
line are the extension limit of the central region in the topography of a blink IC. Other symbols
7 Hz), blink and saccade (BS: 0.5–3 Hz), and neuronal alpha activity
(NR: 8–12 Hz). The BS and NR frequency ranges are examined so that
possible blink and saccade ICs, as well as ICs corresponding to EEG
alpha activity, can be identified and excluded from themotion IC candi-
dates. The spectrum beyond 12 Hz is not considered in the analysis.
Technical details of the automatic analysis of IC spectra are described
in the Supplementary materials (Section S1, Tables S1–S3).
; (b) the ICmixture of rapid headmovement and cardioballisticmotion in Fig. 2(c); (c) the
lated IC. The map boundary with width 0.2 is marked with magenta lines. In (a)–(e), the
enters are marked with white crosses. The secondary polarity regions (|g(r)| N K′) are
= (0.3, 0.1) are the threshold values. (f)–(j) plot the primary polarity regions of
y polarity regions of (a)–(e) explicitly with the geometrical centers marked as x±′.
(d) respectively. The points E± are defined at a distance 0.9 from the origin and at an

ions enclosed in white solid lines around the positions of the nose in (c) and E± in (d).
link and saccade ICs identification. In (r), the two angles θlim″ = 10° from the horizontal
are defined in Section S2.1.
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Motion IC identification through topographic map analysis

The spatial projection of an IC contribution onto the EEG channel
space forms the IC topographic map (Fig. 3(a)–(e)). The topographic
map of an IC is computed by spatially interpolating the corresponding
column of the ICA back-projection matrix {bij} in Eq. (1) using the
MATLAB function griddata(). When the head undergoes a simple
rigid-body rotation in the uniform magnetic field of the MRI scanner,
spurious conductive contours on the opposite sides of the EEG array
typically experience magnetic flux changes of opposite signs, giving bi-
lateral opposite polarities for EEG channels on the opposite sides of the
EEG array (Zotev et al., 2012). In principle, the IC contributions for such
opposite-side EEG channels should be of the same order of magnitude,
so that the topographic map remains bipolar if a sufficiently high mag-
nitude threshold is applied. In practice, bilateral opposite polarities with
asymmetric magnitudes are often observed in an IC mixture of random
and CB motions. Examples of topographic maps for motion ICs with
symmetric and asymmetric magnitudes are shown in Figs. 3(a) and
(b). It should be noted that not all cardiac-related ICs (McMenamin
et al., 2010) can be used for E-REMCOR, but only those that are clearly
cardioballistic in nature. For example, cardiac beats can be accompanied
by deformations of the soft padding underneath the subject's head
causing deformations of the EEG leads for the occipital EEG channels.
The resulting artifacts have periodicity of the cardiac activity and unilat-
eral topography, but their relation to the rigid-body head motion pa-
rameters is indirect and nonlinear. An example of the non-motion
cardiac-related IC is shown in Fig. 3(e).

In aE-REMCOR, topographic maps of various ICs are analyzed auto-
matically with certain requirements for IC polarity regions, including
positions of the polarity regions, minimum region areas and arc region
areas (Fig. 3(f)–(s)). Possible blink or saccade ICs are also identified by
Fig. 4. (a) The time course of the rapid head movement IC, F1(t), shown previously in Figs. 2(a)
time courses of the signal measured at electrode T7 and T8 before (black) and after (red) t
in Figs. 2(b) and 7(c). (f) The time course of the signal measured at electrode T7 (VT7(t)). (g)
after (red) the removal of the IC in (e). The dotted lines in (a) indicate the time period in (b).
than the threshold value F1,0 + 4σF1 (F1,0-4σF1). In (b), the green dashed lines plot the t
examination time period for the rapid head movement IC when the extremum of VT7(t) dur
(e), cyan and magenta line segments indicate the time periods when F1(t) is larger (smaller)
VT7,0 ± 4σT7,min(τ = 10 s). Here F1,0, σF1, VT7,0, σVT7 and σT7,min are defined in Eqs.(S4), (S5) a
time period for the cardioballistic motion IC when the signal at T7 during the indicated period
their topographic properties in addition to the motion IC candidates.
Technical details of the automatic analysis of IC topographies are de-
scribed in the Supplementary materials (Section S2, Tables S4–S5).
Motion IC identification through analysis of EEG signal contribution

Rapid and randomheadmovements produce prominent spikeswith
durations of no less than tens of milliseconds in the EEG signal time
courses, particularly for the electrodes near the edges of the EEG array.
Similar spikes are evident in the time courses of the corresponding
motion-related ICs. Removing the contributions of such motion-related
ICs from the EEG data reduces the spikes significantly. Cardioballistic
(CB) motions also produce signal spikes, which, however, are distrib-
uted more evenly across the EEG signal time course. Removal of the
cardioballistic IC contributions leads to a steady signal reduction at
the CB peak positions. EEG signals without the contribution of a particu-
lar IC, whichwe denote Vi'(t), can be obtained using Eq. (1)with the cor-
responding column of the back-projection matrix {bij} set to zero. The
signal reduction after the removal of a selected IC is thus equal to the
time course of that IC times the spatial projection constant for a given
EEG channel.

In aE-REMCOR, the signal reduction at the i-th electrode (|Vi(t)-
Vi′(t)|) after the removal of a particular IC is evaluated for the time pe-
riods corresponding to rapid head movements and/or cardiac beats.
This approach is illustrated in Fig. 4. To identify a motion IC candidate,
signal reduction criteria should be satisfied for a minimum number of
EEG electrodes located close to the edges of the EEG array. Technical de-
tails of the automatic analysis of IC contributions are described in the
Supplementary materials (Section S3, Tables S6-S8).
and 3(a). (b) The time course of the signal measured at electrode T7 (VT7(t)). (c)–(d) The
he removal of the IC in (a). (e) The time course of the cardioballistic motion IC shown
–(h) The time courses of the signal measured at electrode T7 and T8 before (black) and
In (a), the magenta line segments indicate the time periods when F1(t) is larger (smaller)
hreshold values VT7,0 ± 4σT7. Each magenta line segment (Tk) in (b) represents the
ing the indicated period in (a) is greater than VT7,0 + 4σT7 or smaller than VT7,0-4σT7. In
than F1,0 + 0.1σF1 (F1,0–0.1σF1). In (f), the green dashed lines plot the threshold values
nd (S7). Each cyan (or magenta) line segment T+,k (T-,k') in (f) indicates the examination
in (e) is bounded by the threshold values VT7,0 ± 4σT7,min(τ = 10 s).
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Analysis of aE-REMCOR performance

A set of EEG based motion regressors are constructed by time inte-
grating the selected motion ICs (Eq.(3)). These regressors are utilized
to correct for head movements in the fMRI dataset on a slice-by-slice
basis using AFNI 3dTfitter (Eq.(4)). The correction performance of
aE-REMCOR on the fMRI dataset is examined using temporal signal-
to-noise ratio (TSNR), motion parameters of the brain voxels, and im-
provement in the resting state fMRI (rs-fMRI) connectivity analysis.
The maximum displacements of the voxels for each brain volume, the
root mean square difference between an fMRI volume and the 1st vol-
ume, and the motion parameters (displacements dS, dL, dP in the supe-
rior–inferior, left–right and posterior–anterior directions, and rotation
angles yaw, pitch and roll about the above directions) are estimated
Fig. 5. The automatic results of aE-REMCOR with identified motion ICs in a scan with modera
identified motion IC. (d) The maximum displacement of the voxels (D) for each brain volume.
(f) The rotation angles roll, pitch, yaw and the displacements along the superior (dS), left (dL
slices of the brain along the axial direction without volume registration (upper plot) and wit
are respectively plotted in red and black lines.
by AFNI 3dvolreg. For each scan, the above motion parameters with
and without aE-REMCOR application are evaluated.

The temporal signal-to-noise ratio of an fMRI image is given by
(Bodurka et al., 2007)

TSNR rð Þ ¼ mean SfMRI r;nð Þ;n ¼ 1;…;NfMRI
� �

=std SfMRI r;nð Þ; n ¼ 1;…;NfMRI
� �

;

ð5Þ

where SfMRI(r,n) is the signal magnitude at the position r in the nth brain
volume of the fMRI dataset, and NfMRI is the total number of the brain
volume. The improvement of the TSNR(r) between the fMRI datasets
with and without aE-REMCOR application (ΔTSNR(r)), and the average
te rapid head movements. (a) The time courses, (b) spectra, (c) topographic maps of the
(e) The root mean square difference (rms) between an fMRI volume and the 1st volume.
) and posterior (dP) directions calculated by AFNI 3dvolreg. (g) The ΔTSNR plots on the
h volume registration (lower plot). In (d)–(f), the results with and without aE-REMCOR
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of ΔTSNR(r) over the brain.

ΔTSNRh i ¼ mean ΔTSNR rð Þ; r ∈ whole volume of the brainð Þ ð6Þ

are examined for each scan. To understand the combined effects of
aE-REMCOR and the standard fMRI preprocessing procedure, ΔTSNR
and 〈ΔTSNR〉 are also evaluated with the volume registration using
AFNI 3dvolreg applied to both the original and aE-REMCOR corrected
datasets.

In the rs-fMRI connectivity analysis, we compared the seed-based
(posterior cingulate cortex) default-mode network (DMN) connectivity
results performed with and without aE-REMCOR. When aE-REMCOR
was applied, it was employed before the fMRI preprocessing steps:
slice-timing correction, volume registration, and Talairach coordinate
registration (Talairach and Tournoux, 1998). Then the fMRI data was
spatially blurred to 4-mm FWHM and temporally bandpass filtered
at 0.01–0.08 Hz to reduce the effect of low-frequency drift and high-
frequency noise (Biswal et al., 1995; Lowe et al., 1998). The rs-fMRI
connectivity of the DMN was examined in 86 resting scans using
GLM-based correlation analysis (Friston, 2005; Van Dijk et al., 2010). A
spherical seed ROI with radius 5 mmwas centered at the posterior cin-
gulate cortex (PCC) (Talairach coordinate: (0,−51, 22) (Van Dijk et al.,
2010)). Nuisance covariates included cerebrospinal fluid signal, white
matter signal, and the 6 rigid body motion parameters (dS, dL, dP,
yaw, pitch and roll). We evaluated the correlation and the correlation
difference of the datawith andwithout aE-REMCOR.We also quantified
the correlation changes in medial prefrontal cortex (mPFC: (0, 49, 2)),
lateral parietal cortex (LatPar-L: (−45, −60, 32), LatPar-R: (43, −60,
29)), and hippocampal formation (HF-L: (−22, −19, −15), HF-R:
(22,−19,−15)) of the DMN (Van Dijk et al., 2010).

Results

Automatic identified motion ICs

Figs. 5-7 show the automatic results of aE_REMCOR with identified
motion ICs from scans with examples of moderate, significant and little
rapid head movements respectively. In each figure, the time courses,
spectra, and topographic maps of the selected motion IC, as well as the
motion information acquired with AFNI 3dvolreg and the TSNR im-
provement, are plotted. For the scan shown in Fig. 5, four motion ICs
are identified. The first three ICs are identified as cardioballistic mo-
tion ICs and the fourth is identified as the rapid head movement IC
(Supplementary Table S9). In this scan, the two kinds of motions are
well separated in the selected motion ICs with little mixing of the
other components. However, such a well separation of components is
not always the case with the ICA, especially when there are significant
motions during the scan.

Fig. 6 shows the results from a scanwith significant subjectmotions.
For this scan, five motion ICs are identified. The 1st, 2nd, 4th and 5th IC
(F1(t), F2(t), F4(t), F5(t)) are identified as the rapid head movement
ICs, and the 3rd IC (F3(t)) is identified as the cardioballistic motion IC.
The spectra, and topographic maps of the 1st and 3rd ICs are shown pre-
viously in Figs. 2(a), 3(a) and 2(c), 3(b). The time course of the 1st IC is
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shown in Fig. 4(a). In the time course of F3(t), in addition to the obvious
spikes caused by the rapid head movements, distinct cardiac pulses are
also observed (Fig. 6(h)). Indeed F3(t) is a significant mixture
of cardioballistic motion and rapid head movement components due
to the incomplete separation of the ICA. Thus a more accurate
Fig. 6.The automatic results of aE-REMCORwith identifiedmotion ICs in a scanwith severe rapid
motion IC. (d) The maximum displacement of the voxels (D) for each brain volume. (e) The r
rotation angles roll, pitch, yaw and the displacements along the superior (dS), left (dL) and po
the brain along the axial direction without volume registration (upper plot) and with volum
with and without aE-REMCOR are respectively plotted in red and black lines.
interpretation about the identification algorithm on the random
head and cardioballistic motions in Suplementary Table S9 is that
the algorithm actually estimates the dominant component of the IC,
instead of distinguishing each IC with only one physical origin.
headmovements. (a) The time courses, (b) spectra, (c) topographicmaps of the identified
oot mean square difference (rms) between an fMRI volume and the 1st volume. (f) The
sterior (dP) directions calculated by AFNI 3dvolreg. (g) The ΔTSNR plots on the slices of
e registration (lower plot). (h) The close-up of the red box in (a). In (d)–(f), the results
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TSNR improvement

The ΔTSNR with and without the volume registration using AFNI
3dvolreg are plotted on the slices of the brain along the axial direction
in Figs. 5(g) and 6(g). The figures show that larger ΔTSNR are obtained
on the brain edge regions, as these areas are affected the most by the
rapid head movement. Also, the motion correction in a particular time
period gives similar ΔTSNR pattern in alternative slices, since with the
SENSE acceleration factor = 2 used for the fMRI image acquisition, the
first half of the interleaved images are acquired in one time period, and
the remaining half of the interleaved images are acquired in the other
time period. In Figs. 5(g) and 6(g), the average improvements of the
TSNR over the brain (〈ΔTSNR〉) without volume registration are 6.5%
and 16.7% (5.4% and 13.1%with volume registration). The corresponding
top 10th percentile of ΔTSNR without volume registration reaches over
14.3% and 33.9% (14.6% and 28.2% with volume registration).

Fig. 7 shows the results from a scanwith little subjectmotion. For this
scan, one IC is identified as the cardioballisticmotion IC. No significant im-
provement is observed in TSNR (Fig. 7(g)), and 〈ΔTSNR〉without volume
registration is increased by 1.1% (1.4% with volume registration). While
aE-REMCOR is shown to be capable of substantially removing head
movements in the fMRI dataset in Figs. 5 and 6, it does not necessarily
improvemuch the image quality for the scanwith little headmovements
as themotion artifact in the fMRI data is small. Since a larger 〈ΔTSNR〉 can
be obtained in the scans with more severe motions, it is thus expected
that the efficiency of aE-REMCOR depends on the motion severity.
Figs. 5(d)–(f), 6(d)–(f) and 7(d)–(f) show the maximum displace-
ment of the voxels for each brain volume (D), the root mean square
difference between an fMRI volume and the 1st volume (rms), and the
motion parameters (roll, pitch, yaw, dS, dL, dP) calculated by AFNI
3dvolreg. The spikes in D, rms and the motion parameters indicate the
occurrences of the rapid head movements. With the application of aE-
REMCOR, the spikes in Figs. 5(d)–(f) and 6(d)–(f) are significantly re-
duced, and the fluctuations in Fig. 7 (d)–(f) are also slightly smoothed.

Efficiency of aE-REMCOR

The rapid change in the magnitude of the maximum displacements
of the voxels for each brain volume (Figs. 5(d), 6(d) and 7(d)) can be
used to characterize the severity of the head movements for the exam-
ination of the efficiency of aE-REMCOR. To measure the fluctuations of
the maximum displacement for the brain voxels (D), the second deriv-
ative d2D(n)/dn2 is calculated, where n is the number index of the brain
volume. The head movement severity is defined by the average magni-
tude of the second derivative over the entire scan, and is given by

f ¼ mean d2D nð Þ=dn2
���

���
.

Δtð Þ2;n ¼ 1;…;NfMRI

� �
: ð7Þ

Here Δt = 2 s is the time interval between the acquisitions of two
consecutive brain volumes, which is equal to the repetition time of the
fMRI scan. The motion severities with and without the application of



Fig. 7.The automatic results of aE-REMCORwith identifiedmotion ICs in a scanwith little headmovements. (a) The time courses, (b) spectra, (c) topographicmapsof the identifiedmotion
IC. (d) Themaximumdisplacement of the voxels (D) for each brain volume. (e) The rootmean square difference (rms) between an fMRI volume and the 1st volume. (f) The rotation angles
roll, pitch, yaw and the displacements along the superior (dS), left (dL) and posterior (dP) directions calculated by AFNI 3dvolreg. (g) TheΔTSNR plots on the slices of the brain along the
axial directionwithout volume registration (upper plot) andwith volume registration (lower plot). In (d)–(f), the results with andwithout aE-REMCOR are respectively plotted in red and
black lines.
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aE-REMCOR are denoted by f ′ and f respectively. Note that the motion
severity f signifies the fast changing spiky features of D instead of
the slowly varying components. It can be interpreted as the average
acceleration of the headmotions during the scan. Thus a larger f usually
indicates occasional or prolonged period of rapid head movements
during the scan. To distinguish these two situations, the kurtosis of
d2D(n)/dn2 is calculated:

κ f ¼ kurtosis d2D nð Þ=dn2= Δtð Þ2;n ¼ 1;…;NfMRI

� �
: ð8Þ

Kurtosis is a measure of non-Gaussianity. For prolonged period of
rapid headmovements, the distribution of d2D(n)/dn2 tends to become
more Gaussian by the Central Limit Theorem, giving a small κf and a
large f. The occasional rapid head movements, on the other hand, will
give rise to a large κf and a moderate f. Finally, a small κf and a small f
indicate the absence of significant head motions.

The aE-REMCOR was applied to 305 fMRI scans. The average im-
provement 〈ΔTSNR〉 is plotted against f in Fig. 8(a), (c), and the im-
provements ΔTSNR(r) at the upper (blue dots) and lower (red dots)
10th percentile are plotted in Fig. 8(b), (d). It should be noted that a
larger 〈ΔTSNR〉 can usually be achieved in the scans with large f and κf.
In other words, a higher aE-REMCOR efficiency can be obtained when
there are severe head movements during the scan. With aE-REMCOR,
the largest average improvement over the brain 〈ΔTSNR〉 goes up to
27%, and the corresponding top 10% of the ΔTSNR reaches over 55%.
The average 〈ΔTSNR〉 over the scanswith prolonged (f N 0.10) and occa-
sional (κf N 40) rapid head movements in Fig. 8(a) are 13.7% and 7.7%
(9.1% and 5.2% in Fig. 8(c)). This shows a higher correction performance
in scanswith prolonged rapid headmovements than in scanswith occa-
sional rapid head movements. In most cases when the subjects have no
significant motion (small f and κf), 〈ΔTSNR〉 increases slightly by a few
percent, indicating the effectiveness of aE-REMCOR in removing the
cardioballistic motions in the fMRI dataset.

The decrease in the motion severity Δf = f - f', which quantifies the
smoothing of the fluctuations in D after motion correction, is another
measure of the efficiency of the aE-REMCOR. For instance, if aE-
REMCOR removes all traces of motions, the maximum displacement of
the voxels for all brain volumes (D(n), n = 1, …, NfMRI), and hence f',
vanishes. In this limit, Δf/f = 1. In the other extreme, if the EEG based
regressors fail to carry any motion information, f' can be any number
larger than f depending on the performance of AFNI 3dTfitter. In this
case, Δf/f ≤ 0. In reality, there is an upper limit for the efficiency ratio
Δf/f. The ratio is smaller than one asD is unlikely to be zero after themo-
tion correction because of the noise and inaccurate representation of
motions in the EEG data and also the fMRI data. Fig. 9(a) plotsΔf against
f for the 305 scans, and Fig. 9(b) plots the efficiency ratio Δf/f. Similar to
the TSNR analysis, a higher efficiency ratio Δf/f can usually be achieved
when there are severe head movements during the scan (large f). The
maximum efficiency of the current aE-REMCOR algorithm can be ap-
proximated by the bounding slope of the plot, which is about 74%. The
average efficiency over the 305 scans is 18%, and the maximum effi-
ciency over the scans is 71%. aE-REMCOR is shown to be capable of im-
proving the TSNR and reducing the motion severity in scans with rapid
head movements and cardioballistic motions. Nevertheless one should
be cautious in using 3dTfitter for cardioballistic motion correction in



Fig. 8. The plots of (a), (c) the average improvement 〈ΔTSNR〉 against themotion severity f; (b), (d) theΔTSNR at the upper (blue dots) and lower (red dots) 10th percentile against f. The
ΔTSNR in (a)–(b) are calculated without volume registration. TheΔTSNR in (c)–(d) are calculated with volume registration (AFNI 3dvolreg). The color used in (a) and (c) is scaled to the
kurtosis of the second derivative of the maximum displacement D defined in Eq. (8).
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experiments with small signal-to-noise ratio, as any inefficient motion
correction will introduce relatively significant overcorrection in the
fMRI images.

rs-fMRI connectivity analysis.

The utility of aE-REMCOR to improve the rs-fMRI connectivity of the
defaultmode network (DMN) is examinedwith the seed-based correla-
tion analysis in this section. The motion severity parameters f and κf
Fig. 9. The plots of (a) Δf against themotion severity f; (b) the efficiency ratioΔf/f against f. The
displacement D defined in Eq.(8).
for the resting scans are summarized in Fig. 10. These parameters are
used to choose the scanning group with occasional rapid head move-
ments (κf N 40: the 7 scans in red circle) and the scanning group with
prolonged period of rapid head movements (f N 0.10: the 4 scans in
blue circle).

Fig. 11(a)–(b) plot the rs-fMRI DMN correlation maps for the scan
previously shown in Fig. 6. Stripes are observed in Fig. 11(a) for the
correlation map without aE-REMCOR. The stripes can be seen clearly
in the correlation difference (Fig. 11(c)). This stripe pattern originates
color used in (a) and (b) is scaled to the kurtosis of the second derivative of themaximum



Fig. 10. The summary of the motion severity parameters f and κf in resting scans. The
scans with κf ≥ 40 and f ≥ 0.1 to be used in the rs-fMRI connectivity analysis in
Figs. 11(d)–(f) are enclosed in red and blue lines.
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from the motion-induced signal loss in neighboring imaging slices as
discussed in Section 3.2. When aE-REMCOR is applied, the contrast of
the stripes reduces (Fig. 11(b)). Fig. 11(d)–(f) plot the group correlation
differences in scans with occasional (κf N 40), prolonged (f N 0.10), and
both kinds of rapid head movements (κf N 40 or f N 0.10). Similar
motion-induced stripes with a lower contrast can be observed. The
group correlation maps of the DMN for all resting scans are plotted in
Fig. 11(g) and (h). The corresponding group correlation difference
((h) - (g)) is shown in Fig. 11(i). When all the 86 resting scans are
considered, the motion-induced stripes disappear (Fig. 11(i)). This
shows the reduced significance of motion artifacts on the DMN con-
nectivity when sufficient scans with little head motion are considered.
Nevertheless, when the entire group of subjects exhibits significant
rapid head movements, slice-by-slice fMRI motion correction is partic-
ular important to improve the accuracy of the rs-fMRI connectivity
analysis. The centers of the ROIs in posterior cingulate cortex (PCC),
medial prefrontal cortex (mPFC), lateral parietal cortex (LatPar-L,
LatPar-R) and hippocampal formation (HF-L, HF-R) of the DMN
are marked with crosshairs in Fig. 11. The correlation difference at a
given ROI is denoted by ΔC(ROI's name). The correlation difference,
its percentage change relative to the original correlation value without
aE-REMCOR, and the p-value are calculated for different scanning
groups. For all scanning groups, a slight correlation decrease is ob-
served at the seed ROI: for κf N 40, ΔC(PCC) = −0.017 (−2.2%,
p = 0.004); for f N 0.10, ΔC(PCC) = −0.004 (−0.7%, p = 0.213);
for κf N 40 or f N 0.10, ΔC(PCC) = −0.012 (−1.7%, p = 0.003); for all
resting scans, ΔC(PCC) = −0.003 (−0.4%, p = 0.018). For the group
with κf N 40, a large correlation change is found at the hippocampal for-
mation ΔC(HF-R) = 0.019 (60.4%, p = 0.018). When all the resting
scans are considered, ΔC(mPFC) = 0.002 (1.1%, p = 0.451),
ΔC(LatPar-L) = −0.007 (−3.3%, p = 0.018), ΔC(LatPar-R) = −0.004
(−2.1%, p = 0.174), ΔC(HF-L) = 0.006 (8.8%, p = 0.027), and
ΔC(HF-R) = 0.008 (12.6%, p = 0.005). The changes are statistically
significant in PCC, LatPar-L, HF-L, and HF-R.

Discussions

In this paper, automatic categorization algorithms were developed
to provide quantitative descriptions and analyses on the features ob-
served in the mean power spectral density, topographic map and signal
contribution of an identified IC in the EEG data acquired simultaneously
with fMRI. The algorithm aims to mimic the manual selection of the ICs
related to headmovements by adequately choosing the features that are
commonly observed in the motion ICs. The effectiveness of the algo-
rithm can bemeasured by its accuracy of reproducing themanual selec-
tion. From the examination of a total of 9455 ICs in 305 scans, there
were 1045 true identification of motion ICs (TP), 8370 true identifica-
tion of non-motion ICs (TN), 9 false identification of motion ICs (FP),
and 31 false identification of non-motion ICs (FN), giving a precision
PIC = TP/(TP + FP) = 99.15%, recall RIC = TP/(TP + FN) = 97.12%,
and F-score = 2PICRIC/(PIC + RIC) = 98.12%.

The present categorization algorithm is utilized to select the motion
ICs for the purpose of correcting head motions on slice-by-slice basis in
the fMRI dataset. While the selected cardioballistic motion ICs manifest
distinct cardiac pulses in each cycle, they are insensitive to the improper
positioning of electrocardiogram (ECG) and are less sensitive to head
motions when compared to the ECG. Thus there is an advantage in uti-
lizing the selected cardioballistic motion ICs for applications like cardiac
period and arrhythmia detections.

The developed automatic algorithm can also be utilized to prepro-
cess the EEG data when it is applied in a reverse manner to remove, in-
steadof to select, the identified rapid headmovement ICs, cardioballistic
motion ICs, and possible blink and saccade ICs from theEEGdata. For the
current purpose ofmotion ICs selection, a cardioballistic ICwith exceed-
ingly large power at high harmonic frequencies in the mean power
spectral density or insignificantly small EEG signal contribution is not
considered. For the purpose of preprocessing the EEG data, ICs related
to cardioballistic artifact with large power at high harmonic frequencies
and small signal contribution should also be selected for removal. With
the preprocessed EEG data, further identification, such as for the alpha
rhythm of the neuronal signal, is possible when the features of the
mean power spectral density, topographic map and signal contribution
are adequately chosen and the parameters are properly adjusted.

Currently parameters are determined empirically based on the com-
monly observed features in 305 scans from 16 subjects in a 3 T MRI
scanner. The parameters may need to be adjusted when other than
3 Tesla MRI field strengths are used or more datasets are available.
Given a huge amount of data, the identifications of motions will benefit
from more systematic approaches, like logistic regression or support
vector machine modeling. Nevertheless, the current automatic algo-
rithm provides basic tools to understand the properties of the motion
related ICs, the potential and limitation of the ICA, and the efficiency
of the motion correction in the fMRI datasets with the EEG based
regressors.

The calculations are carried out in a workstation with dual Intel®
Xeon® CPU E5-2620 at 2.00GHz and 16GB memory. No explicit
parallelizationwas implemented in theMATLAB code. The computation
time of the ICA increases with the requested number of ICs, and the
computation time of the motion correction procedures in AFNI in-
creases with the number of selected motion ICs and the size of the
image. Consider an fMRI dataset with 260 brain volumes, 34 axial slices
per volume and an image matrix 128 × 128, and an EEG dataset with
31 ICs and 5 identified as motion ICs, the computation times (and
percentage) of the main motion correction procedures are 13.9 s
(2.3%) for the EEG data preprocessing, 137.5 s (22.4%) for the ICA,
8.6 s (1.4%) for the spectrum analysis, 3.9 s (0.6%) for the topography
analysis, 31.9 s (5.2%) for the signal contribution analysis, 228 s (37.1%)
for the AFNI regressors calculations in BRIK format, and 191.4 s (31.1%)
for the AFNI 3dtfitter calculations. It should be noted that the computa-
tion times of the ICA and AFNI dominate the whole process. Thus their
speeds critically determine the possibility of the aE-REMCOR in real-
time application. Since the three motion IC identification analyses can
be performed independently and simultaneously for each IC, the com-
putation speed can be improved by parallelizing the algorithm. For
themotion correction of the fMRI data in AFNI, the calculations, in prin-
ciple, can also be sped up by parallelizing the algorithmwith the use of
graphic processing unit (GPU) (Misaki et al., 2015).



Fig. 11. Resting state connectivity of the defaultmode network (DMN). (a)–(b): Correlationmapwithout andwith aE-REMCOR for the scanwith significant rapid headmovements shown
in Fig. 6. (c): Correlation difference ((b)–(a)). (d)–(f): Group correlation difference for the scans with occasional rapid head movements (κf ≥ 40), prolonged rapid head movements
(f ≥ 0.1), and both (κf ≥ 40 or f ≥ 0.1). (g)–(h): Group correlation map without and with aE-REMCOR for all the 86 resting scans. (i): Group correlation difference for all the resting
scans ((h)–(g)). The centers of the ROI in PCC (0, −52, 22), mPFC (0, 49, 2), LatPar-L (−45, −60, 32), LatPar-R (43, −60, 29), HF-L, (−22, −19, −15) and HF-R (22, −19, −15) of
the DMN are respectively marked with green, white, maroon, pink, purple and yellow crosshairs. Indicated next to each slice image is the z-coordinate of the slice. For the group
analysis in (g)–(i), uncorrected p b 0.05 is used.

146 C.-K. Wong et al. / NeuroImage 129 (2016) 133–147
Conclusions

An automatic EEG-assisted retrospective motion correction (aE-
REMCOR)method that utilizes EEG data to correct for headmovements
in fMRI on a slice-by-slice basis is reported. The aE-REMCOR automati-
cally preprocesses and analyzes the EEG data, identifies the indepen-
dent components (ICs) corresponding to head motions, and constructs
the EEG based regressors with the identified motion ICs. The entire
automatic procedure is carried out in MATLAB. The motion artifacts in
the fMRI images are corrected with the motion regressors in AFNI.

The automatic identification of the motion ICs is achieved by recog-
nizing the special features of the motion artifacts imposed on the mean
power spectral density, topographic map, and EEG signal contribution
of the ICs. An automatic algorithm for themotion IC identification is de-
veloped. The algorithm is shown to be capable of identifying the ICs
related to rapid head movements and cardioballistic motions, and also
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the dominant component in the mixture of them when the ICA fails to
separate the different motion components completely.

The aE-REMCOR is applied to 305 fMRI scans from 16 subjects in a
3 T MRI scanner. The results show that aE-REMCOR is capable of sub-
stantially removing head motions in fMRI images. With aE-REMCOR,
the spikes and fluctuations of the motion parameters induced by the
headmovements are significantly reduced and smoothed. In particular,
when there are significant rapid head movements during the scan, a
large temporal signal-to-noise ratio (TSNR) improvement and high cor-
rection efficiency can be achieved. Depending on the subject's motion,
the average TSNR improvement over the brain with aE-REMCOR goes
up to 27% with the largest 10% of the TSNR improvement reaches over
55%. In the efficiency analysis for themotion correction, the average cor-
rection efficiency over the 305 scans is 18% and the largest achieved ef-
ficiency is 71%. It is observed from the results that the highest possible
motion correction efficiency with the current aE-REMCOR algorithm is
bounded by approximately 74%. The utility of aE-REMCOR on the fMRI
connectivity of the default mode network (DMN) is examined in 86
resting scans. The motion-induced position-dependent error in the
DMN connectivity analysis is shown to be reduced when aE-REMCOR
is utilized. The results also show the importance of slice-by-slice fMRI
motion corrections to improve the accuracy of rs-fMRI connectivity
analysis when the entire group of subjects exhibits significant rapid
head motions. The achieved automation procedure warrants its use
in large clinical EEG and fMRI studies, and provides incentive for
conducting simultaneous EEG & fMRI.
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