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In this paper we prove a characterization of continuity for polyno-

mials on a normed space. Namely, we prove that a polynomial is

continuous if and only if it maps compact sets into compact sets.

We also provide a partial answer to the question as to whether a

polynomial is continuous if and only if it transforms connected sets

into connected sets. These results motivate the natural question as

to how many non-continuous polynomials there are on an infinite

dimensional normed space. A problemon the lineability of the sets of

non-continuous polynomials and multilinear mappings on infinite

dimensional normed spaces is answered.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction and notation

It is well-known (see [16, Theorem 2]) that a mapping f : R → R is continuous if and only if it

satisfies the following two conditions:

(1) f maps compact sets into compact sets.

(2) f maps connected sets into connected sets.
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At the other end of the scale, it is possible to construct 2c-dimensional spaces of everywhere dis-

continuous functions in R
R satisfying only one of the above conditions (see [11]). However, the same

situation does not hold for the case of polynomials on a normed space. Actually, condition (1) char-

acterizes the continuity of a polynomial on a normed space, which is proved in Section 2. As we will

also see in Section 2, we study when condition (2) above characterizes continuity for polynomials on

normed spaces, problem which will be solved partly.

Finally, Section 3 is devoted to the construction of linear spaces of maximal dimension of non-

bounded polynomials between normed spaces.

For convenience we recall the basic definitions and standard results needed to discuss polynomials

on normed spaces. A map P : E → F is an n-homogeneous polynomial if there is an n-linear mapping

L : En → F for which P(x) = L(x, . . . , x) for all x ∈ E. In this case it is convenient to write P = L̂.

According to a well-known algebraic result, for every n-homogeneous polynomial P : E → F there

exists a unique symmetric n-linear mapping L : En → F such that P = L̂. When that happens, L is

called the polar of P.

We let Pa(
nE; F), La(

nE; F) and Ls
a(

nE; F) denote respectively the linear spaces of all

n-homogeneous polynomials from E into F , the n-linear mappings from E into F and the symmetric

n-linear mappings from E into F . More generally, a map P : E → F is a polynomial of degree at most n if

P = P0 + P1 + · · · + Pn,

where Pk ∈ Pa(
kE; F) (1 � k � n), and P0 : E → F is a constant function. The polynomials of degree

at most n between the normed spaces E and F are denoted by Pn,a(E; F).
Polynomials on a finite dimensional normed space are always continuous; however, the same thing

does not happen for infinite dimensional normed spaces. Boundedness is a characteristic property of

continuous polynomials on a normed space. In particular, P ∈ Pn,a(E; F) is continuous if and only if

P is bounded on the unit ball of E (denoted by BE). This is standard and particularly well-known for

homogeneous polynomials (see for instance [10, Proposition 1.11]). For the non-homogeneous case, a

complexification procedure lets us focus our attention on polynomials defined on a complex normed

space. Let P be a polynomial of degree at most n on the complex normed space E. We define the

homogenization of P by

Q(x, λ) =
{
λnP

(
x
λ

)
if λ �= 0,

0 if λ = 0,

for every (x, λ) ∈ E⊕C. It is a simple exercise to prove thatQ is a homogeneous polynomial on E⊕C.

Let E⊕∞ C stand for E⊕C endowedwith the norm ‖(x, λ)‖∞ = max{‖x‖, |λ|}. Now if P is bounded

on BE , by the MaximumModulus Principle

sup{‖Q(x, λ)‖ : ‖(x, λ)‖∞ � 1} = sup

{∥∥∥∥λnP

(
x

λ

)∥∥∥∥ : ‖x‖ � 1, |λ| � 1

}
= sup

{∥∥∥∥P (
x

λ

)∥∥∥∥ : ‖x‖ � 1, |λ| = 1

}
= sup {‖P(x)‖ : ‖x‖ � 1} .

Hence Q is bounded on E⊕∞ C, and therefore continuous. This implies that P is also continuous since

P is a restriction of Q . Conversely, if P is continuous, Q is clearly continuous for all (x, λ) ∈ E ⊗∞ C

with λ �= 0. ThusQ is continuous in E⊗∞ C (see again [10, Proposition 1.11]) and bounded inBE⊗∞C.

Therefore P must be bounded too in BE .

If P : E → F and L : En → F are, respectively, a continuous polynomial of degree at most n and a

continuous n-linear mapping we define

‖P‖ = sup{‖P(x)‖ : ‖x‖ � 1},
‖L‖ = sup{‖L(x1, . . . , xn)‖ : ‖x1‖ � 1, . . . , ‖xn‖ � 1}.
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We let P(nE; F), Pn(E; F), L(nE; F) and Ls(nE; F) denote, respectively, the normed spaces of the

continuous n-homogeneous polynomials from E into F , the continuous polynomials of degree at most

n from E into F , the continuousn-linearmappings from E into F , and the continuous symmetricn-linear

mappings from E into F .

In general the results on the continuity of scalar-valued polynomials and multilinear forms can be

easilyextended tovector-valuedpolynomials andmultilinearmappings. For this reasonweareworking

from now on with scalar-valued polynomials and multilinear forms. If K is the real or complex field

we use the notations P(nE), Pn(E), L(nE) and Ls(nE) in place of P(nE; K), Pn(E; K), L(nE; K), and
Ls(nE; K) respectively. All the results in this paper will be considered in a real setting.

2. A characterization of continuity for polynomials

In this section we will consider both conditions (1) and (2) given in the Introduction, in the frame

of polynomials on normed spaces. Let us begin with proving that, actually, condition (1) characterizes

the continuity of polynomials on any normed space.

Theorem2.1. If E is a normed space and P is a polynomial on E then P is continuous if and only it transforms

compact sets into compact sets.

Proof. All continuous functions between topological spaces map compact sets into compact sets, so

we just need to prove that if P maps compact sets into compact sets, then P is continuous. Actually,

we only need to show that all polynomials mapping compact sets in compact sets are continuous at

0. If we prove that and x0 ∈ E is arbitrary, then the polynomial defined by Q(x) = P(x + x0) for all

x ∈ E also maps compact sets into compact sets. Being Q continuous at 0, we would also have that P is

continuous at x0. Actually, a more general statement can be proved: a polynomial is continuous if and

only if it is continuous at 0.

Let us prove then that P is continuous at 0. Let (xk) be a convergent sequence in E \ {0} to 0 such

that limk→∞ P(xk) does not exist or it is not equal to P(0). Since the set C = {xk : k ∈ N} ∪ {0} is

compact and P(C) is compact too by hypothesis, we can assumewithout loss of generality that (P(xk))
converges to a �= P(0) and that P(xk) �= P(0) for all k ∈ N.

Observe that only one of the following statements can hold:

(1) P(xk) �= a for infinitely many k’s.

(2) P(xk) = a for all but a finite number of k’s.

For the first case we consider a subsequence (yk) of (xk) so that P(yk) �= a for all k ∈ N. Then

C∗ = {yk : k ∈ N} ∪ {0} is compact but P(C∗) is not even closed since it does not contain its limit

point a.

For the second case we may assume that P(xk) = a for all k ∈ N. Now suppose P = Pn + Pn−1 +
· · · + P1 + P0, where Pj ∈ Pa(

jE) and P0 is a constant function taking the value P(0). Then for each

k ∈ N, Pj(xk) cannot vanish for every j = 1, . . . , n (otherwise P(xk) = P(0)). Therefore the one

variable polynomial defined by pk(λ) := P(λxk), for all λ ∈ R, is not constant, and hence it takes

infinitely many values on every interval. Using the continuity of the polynomial pk one can construct

a sequence (λk) ⊂ (0, 1] such that for each k ∈ N we have

|P(λkxk) − P(xk)| = |pk(λk) − pk(1)| <
1

k

and

P(λkxk) /∈ {P(0), a}.
Notice that

|P(λkxk) − a| � |P(λkxk) − P(xk)| + |P(xk) − a| −→ 0 as k → ∞.
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Finally, by letting yk = λkxk , we have that (yk) ⊂ E \ {0}, P(yk) �= P(0), limk→∞ yk = 0,

limk→∞ P(yk) = a, and P(yk) �= a for every k ∈ N. This leads us to a contradiction as in the

first case. �

After checking that condition (1) from the Introduction characterizes continuity, a natural question

arises now:

Is P ∈ Pn,a(E) continuous if and only if for every connected set C ∈ E, P(C) is also connected for every

infinite dimensional normed space E?

Unfortunately, this general question seems much deeper than it looks at first sight, although we

can prove it for the particular case of real homogeneous polynomials of degree 1 and 2, as we see next:

Proposition 2.2. Let E be a real Banach space and P ∈ P(nE) with n = 1, 2. Then P is continuous if and

only if it transforms connected sets into connected sets.

Proof. If P is continuous, it obviously transforms connected sets into connected sets. Now suppose

P is not continuous. Then there exists a sequence of non null vectors {xn} such that limk→∞ xk = 0

but limk→∞ P(xk) = ∞. We can also choose the xk ’s so that {P(xk)} is an increasing sequence and

P(x1) > 0.

Now consider the connected set C = (⋃∞
k=1[xk, xk+1]) ∪ {0}, where [xk, xk+1] is the segment with

endpoints xk and xk+1 for every k ∈ N. If n = 1, by linearity P([xk, xk+1]) = [P(xk), P(xk+1)] for all
k ∈ N. Hence P(C) = [P(x1), ∞) ∪ {0} and since P(x1) > 0, P(C) is not connected. Furthermore, if

n = 2 and L ∈ Ls(2E) is the polar of P, we can assume that L(xk, xk+1) � 0. Indeed, we just need to

replace xk by −xk if necessary. It is important to notice that P(xk) = P(−xk). Since

P(λxn + (1 − λ)xk+1) = λ2P(xk) + 2λ(1 − λ)L(xk, xk+1) + (1 − λ)2P(xk+1)

� λ2P(xk) + (1 − λ)2P(xk+1) �
[
λ2 + (1 − λ)2

]
P(xk)

� P(xk),

for every λ ∈ [0, 1], we have that P([xk, xk+1]) ⊂ [P(xk), ∞). This, together with the fact that

limk→∞ P(xk) = ∞ imply that P(C) = [P(x1), ∞) ∪ {0}. Finally, since P(x1) > 0, P(C) is not

connected. �

Conjecture 2.3. It is our belief that condition (2) also characterizes continuity for arbitrary polynomials

on any infinite dimensional normed space.

Remark 2.4. Although we do not know the answer to the previous conjecture, we do know that if

L ∈ La(
nE) transforms connected sets in En into connected sets, then it is continuous. Indeed, using

Proposition 2.2 with n = 1, it is easy to see that L is separately continuous, and hence continuous.

3. Non-bounded multilinear mappings and polynomials

After learning the characterizations obtained in the previous section (Theorem 2.1 and Proposition

2.2), this section is devoted to the relatively new notion of lineability, whichwill tie the paper together.

This notion of lineability has the followingmotivation: Take a function with some special or patholog-

ical property. Coming up with a concrete example of such a function can be a difficult task. Actually, it

may seem that if one succeeds in finding one example of such a function, one might think that there

cannot be too many functions of that kind. Probably one cannot even find infinite dimensional vector

spaces of such functions. This is, however, exactly what has happened. The search for large algebraic

structures of functions with pathological properties has lately become somewhat of a new trend in

mathematics. Let us recall that a setM of functions satisfying some pathological property is said to be

lineable if M ∪ {0} contains an infinite dimensional vector space. More specifically, we will say that
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M is μ-lineable if M ∪ {0} contains a vector space of dimension μ, where μ is a cardinal number. We

refer to the interested reader to [11,12,1–9,13–15] for recent advances in this theory.

If E is a normed space, in this section NBL(nE), NBLs(nE), NBP(nE) and NBPn(E) represent,

respectively, the set of non-bounded n-linear forms on E, the set of non-bounded symmetric n-linear

forms on E, the set of non-bounded scalar-valued n-homogeneous polynomials on E and the set of

non-bounded scalar-valued polynomials on E of degree at most n. Our results on the lineability of

NBL(nE),NBLs(nE),NBP(nE) andNBPn(E) rely on the lineability of the set of non-bounded scalar-

valued functions defined on an infinite set I, denoted byNBF(I). The following set-theoretical lemma

(see [3, Lemma 4.1]) will be needed for our main result in this section.

Lemma 3.1. If C1, . . . , Cm are m arbitrary, different, non-empty sets, then there exists k ∈ {1, . . . ,m}
such that for every 1 � j � m with j �= k, we have that Ck\Cj �= ∅.

Also, the next lemma (although of independent interest in itself) will be necessary.

Lemma 3.2. If I ⊂ R is uncountable, then the set NBF(I) is 2card(I)-lineable.

Proof. For each non-void C ⊂ I let HC : R × IN → R be defined by

HC(x, x1, . . . , xj, . . .) = x ·
∞∏
j=1

χC(xj).

If we fix a sequence (xn) ⊂ C then HC(x, x1, . . . , xn, . . .) = x for all x ∈ R, and hence the HC ’s

are not bounded. Moreover, if C1, . . . , Cm are m different subsets of I and
∑m

k=1 λkHCk is a linear

combination of the HCk ’s (1 � k � m) with λk �= 0 for all k = 1, . . . ,m then, renaming the sets

if necessary, from Lemma 3.1 it follows that for each 1 � j < m there exists xj ∈ Cm\Cj . Now let

v = (x, x1, x2, . . . , xm−1, xm−1, . . .) ∈ R × IN with x ∈ R arbitrary. Then

m∑
k=1

λkHCk(v) =
m∑

k=1

λk

⎡⎣x

m−1∏
j=1

χCk(xj)

⎤⎦ = λmx,

for all x ∈ R, which shows that
∑m

k=1 λkHCk is not bounded.

Now if
∑m

k=1 λkHCk ≡ 0 and we set v = (1, x1, x2, . . . , xm−1, xm−1, . . .) ∈ R × IN, then

0 =
m∑

k=1

λkHCk(v) =
m∑

k=1

λk

⎡⎣m−1∏
j=1

χCk(xj)

⎤⎦ = λm,

which contradicts the fact that λk �= 0 for all k = 1, . . . ,m. Finally, since I is uncountable we can

find a bijection � : I ↔ R × IN. Then the set {HC ◦ � : C ⊂ I} has unbounded non trivial linear

combinations and it is linearly independent with cardinality 2card(I), which concludes the proof. �
We are now ready to state and prove the main (and general) lineability result in this section:

Theorem3.3. If n ∈ N and E is a normed space of infinite dimensionλ then the setsNBL(nE),NBLs(nE),
NBP(nE) and NBPn(E) are 2

λ-lineable.

Proof. In order to prove the lineability of NBLs(nE), let {ei : i ∈ I} be a normalized basis for E

with card(I) = λ. By Lemma 3.2 there exist 2λ linearly independent mappings {fj : j ∈ J} (with

card(J) = 2λ) generating a linear space of unbounded real valued functions on I. For each j ∈ J we

define a multilinear mapping Lj : nE → R by

Lj(ei1 , . . . , ein) = fj(i1) + · · · + fj(in),



242 J.L. Gámez-Merino et al. / Linear Algebra and its Applications 436 (2012) 237–242

for all choices of (i1, . . . , in) ∈ In and consider the set {Lj : j ∈ J}, where Lj is the symmetrization of

Lj for all j ∈ J. If
∑m

k=1 λkLjk ≡ 0 with λ1, . . . , λm ∈ R, then for every i ∈ I we have

n

⎛⎝ m∑
k=1

λkfjk(i)

⎞⎠ =
m∑

k=1

λkLjk(ei,
(n). . ., ei) =

m∑
k=1

λkLjk(ei,
(n). . ., ei) = 0,

from which
∑m

k=1 λkfjk(i) = 0 for every i ∈ I. In other words
∑m

k=1 λkfjk ≡ 0 and therefore λk = 0

for all 1 � k � m since the fjk ’s are linearly independent.

On the other hand, if λk �= 0 for k = 1, . . . ,m, then∣∣∣∣∣∣
m∑

k=1

λkLjk(ei,
(n). . ., ei)

∣∣∣∣∣∣ = n

∣∣∣∣∣∣
m∑

k=1

λkfjk(i)

∣∣∣∣∣∣ .
Hence

∑m
k=1 λkLjk is not bounded since

∑m
k=1 λkfjk is not bounded either. This shows that NBLs(mE)

is 2λ-lineable and therefore NBL(mE) is also 2λ-lineable since NBLs(mE) ⊂ NBL(mE).
As another corollary to the fact that NBLs(nE) is 2λ-lineable, we deduce that NBP(nE) is also

2λ-lineable since the algebraic spaces Ls
a(

nE) and Pa(
nE) are isomorphic.

Finally, NBPn(E) is 2
λ-lineable since NBP(nE) ⊂ NBPn(E) and we have just seen that NBP(nE)

is 2λ-lineable. �
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