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Mitochondrial dysfunction and oxidative stress occur in Parkinson's disease (PD), but themolecularmechanisms
controlling these events are not completely understood. Peroxisome proliferator-activated receptor-gamma
coactivator-1α (PGC-1α) is a transcriptional coactivator known as master regulator of mitochondrial functions
and oxidative metabolism. Recent studies, including one from our group, have highlighted altered PGC-1α
activity and transcriptional deregulation of its target genes in PD pathogenesis suggesting it as a new potential
therapeutic target. Resveratrol, a natural polyphenolic compound proved to improve mitochondrial activity
through the activation of several metabolic sensors resulting in PGC-1α activation. Here we have tested
in vitro the effect of resveratrol treatment on primary fibroblast cultures from two patients with early-onset
PD linked to different Park2mutations. We show that resveratrol regulates energy homeostasis through activa-
tion of AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1) and raise of mRNA expression of a number
of PGC-1α's target genes resulting in enhanced mitochondrial oxidative function, likely related to a decrease of
oxidative stress and to an increase of mitochondrial biogenesis. The functional impact of resveratrol treatment
encompassed an increase of complex I and citrate synthase activities, basal oxygen consumption, andmitochon-
drial ATP production and a decrease in lactate content, thus supporting a switch from glycolytic to oxidative
metabolism. Moreover, resveratrol treatment caused an enhanced macro-autophagic flux through activation of
an LC3-independent pathway. Our results, obtained in early-onset PD fibroblasts, suggest that resveratrol may
have potential clinical application in selected cases of PD-affected patients.

© 2014 Elsevier B.V. All rights reserved.
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to rare hereditary forms of PD demonstrates, in patients' fibroblasts,
abnormalities in convergent pathways involving oxidative stress,
mitochondrial dysfunction and protein aggregation [1–5]. PARK2 gene
mutations are responsible, in humans, for an autosomal recessive form
of early-onset parkinsonism. PARK2 encodes for parkin, a protein of
no precisely defined function, which, however, is a component of a
multiprotein E3 ubiquitin ligase complex that in turn is part of the
ubiquitin–proteasome system targeting protein for degradation. The
loss of the normal function of parkin leads to impaired clearance of
damagedmitochondria [6]. Recently, Shin and colleagues demonstrated
that the progressive loss of dopaminergic neurons in knockout mice
models of parkin deficiency resulted in increased level of PARIS, a new
parkin interacting substrate. PARIS, which is up regulated in the brain
of patients, turned out to be a corepressor of peroxisome-proliferator-
activated receptor gamma coactivator PGC-1α (PGC-1α) expression [7].
PGC-1α [8,9] is member of a family of transcription coactivators playing
a central role in the regulation of mitochondrial biogenesis and cellular
energy metabolism [10,11]. A genome-wide expression meta-analysis
study showed abnormal expression of known targets of PGC-1α in PD
patients manifesting in the early stages of PD [12]. Accordingly we
have previously shown in PARK2-mutant fibroblasts altered PGC-1α
expression leading to transcriptional deregulation of target genes [1].

Recently, Mudò et al. have shown that transgenic mice overexpress-
ing PGC-1α in dopaminergic neurons are resistant against cell degener-
ation induced by the neurotoxin 1-methyl-4,1,2,3,6-tetrahydropyridine
(MPTP) [13]. Direct evidence for the therapeutic potential of PGC-1α
has come from studies in cell culture and animal models [14,15].

PGC-1α expression can be activated by specific compounds able to
modulate its upstream regulators, such as NAD-dependent deacetylase
sirtuin-1 (SIRT1) and AMP-activated protein kinase (AMPK). Resvera-
trol, a natural polyphenolic compound found in a wide variety of plant
species, induces expression of genes involved in mitochondrial biogen-
esis, oxidative phosphorylation and endogenous antioxidant defense by
modulation of cell signaling pathways that control cell homeostasis
[16–21]. Although the effects of resveratrol in PD are uncertain, it
seems to protect against different cytotoxic neurotoxins such as MPTP
[13,22,23] and 6-hydroxydopamine (6-OHDA) [24–26]. Furthermore,
resveratrol protects SH-SY5Y against dopamine-induced cytotoxicity
[27] and neuronal cells against toxicity arising from the aggregation-
prone protein, alpha-synuclein [28].

In keeping with these premises, we supposed that resveratrol could
alleviate mitochondrial dysfunctions induced by impairment of parkin
function and tested this hypothesis using fibroblast cultures from two
patients affected by an early-onset form of PDwith PARK2 heterozygous
mutations. Treatment of PD patient-derived cells with resveratrol
induced a partial rescue of mitochondrial functions likely linked to the
activation of the AMPK/SIRT1/PGC-1α pathway suggesting a potential
beneficial action of resveratrol treatment in PD.

2. Materials and methods

2.1. Patients

The diagnosis of PD was made according to the UK Brain Bank
criteria: all patients underwent neurological examination including
the motor part of the Unified Parkinson's Disease Rating Scale (UPDRS
III) and Hoen–Yahr Scale (H&Y). The parkin1 patient was previously
described in Pacelli et al., labeled as P2 [1]. The parkin2 patient was a
48 year old woman with a positive familiar history of PD (one sister
and one brother) and an age at onset of 31 years; symptoms of onset
were bradykinesia and rigidity of right arm followed by lower limb in-
volvement, one year later, and then controlateral diffusion. Rest tremor
was only rarely reported. Treatment at time of examination included
levodopa 700 mg and pramipexole 2.1 mg with an excellent response
but presence of severe ON dyskinesias. UPDRS III in OFF state was 48
with an H&Y of 3. No atypical signs were found at neurological
examination. Genetic analysis of parkin2, indicated as IT-021-007, was
reported in [29].

2.2. Skin fibroblasts and culture conditions

Primary fibroblasts from two PD patients (parkin1 and parkin2) and
from parental healthy control (parkin1's mother, control1), were ob-
tained by explants from skin punch biopsy, after informed consent.
Adult normal human dermal fibroblasts (control2), purchased from
Lonza Walkersville Inc., have been utilized as unrelated control. Cells
were grown in high-glucose Dulbecco's modified Eagle's medium
(DMEM) supplemented with 10% (v/v) fetal bovine serum (FBS), 1%
(v/v) L-glutamine, 1% (v/v) penicillin/streptomycin, at 37 °C in a humid-
ified atmosphere of 5% CO2. All experiments were performed on cells
with similar passage numbers, ranging from 5 to 14, to avoid an artifact
due to senescence, known to occur at passage numbers greater than 30.
In the passage range used, fibroblasts were β-Gal negative. For treat-
ment conditions, themediawere removed and the cells were incubated
subsequently with fresh media containing 25 μM resveratrol (Sigma,
R5010) or with equivalent volume of dimethyl sulfoxide (0.02%
DMSO, vehicle). In time–response treatments, a parallel experiment
exposing the cells to DMSOwas set as a control to calibrate the observed
results (data not shown). To determine cell viability in our treatment
conditions, the colorimetric MTT assay was used according to the
manufacture's instruction.

2.3. Measurement of endogenous respiration rates in intact cells

Mitochondrial oxygen consumptionwasmeasured polarographical-
ly with a Clark-type oxygen electrode in a water-jacketed chamber
(Hansatech Instruments, Norfolk, UK), magnetically stirred at 37 °C
as previously described [30]. Briefly, exponentially growing cells,
fluid changed the day before the measurement, were collected by
trypsinization and centrifugation, washed once in TD (0.137 M NaCl,
5 mM KCl, 0.7 mM Na2HPO4, 25 mM Tris–HCl, pH 7.4), resuspended
in the same buffer previously air equilibrated at 37 °C, and transferred
into a polarographic chamber, at a final concentration of 1 to 3x106

cells per ml. After the native endogenous O2 consumption rate was re-
corded, dinitrophenol (DNP) was added at a concentration of 30 μM,
followed by 20 nM antimycin A to inhibit the upstream segment of
the RC.

2.4. Measurement of total cellular ATP

The fibroblast cells were grown in six-well plates. Once the cells
were at 75% confluence, ATP level was measured in untreated and
resveratrol-treated cells incubated for 48 h with 25 μM resveratrol.
Where indicated, 5 μM oligomycin was added to the cells during the
last hour of resveratrol treatment. After incubation the cells were
collected by trypsinization and centrifugation at 500 ×g and then resus-
pended in phosphate-buffered saline, pH 7.4. Cellular ATP content was
determined using the PerkinElmer “ATPlite” kit (PerkinElmer) accord-
ing to the manufacturer's instructions measurements were performed
on a Victor 2030 Explorer (PerkinElmer) and normalized on protein
content.

2.5. OXPHOS enzyme and citrate synthase activities measurements

Cells, collected by trypsinization and centrifugation, were resus-
pended in hypotonic medium (25 mM potassium phosphate, pH 7.2,
5 mM MgCl2), supplemented with anti-proteases cocktail tablet
(Roche, Basel, CH). In order to allow complete accessibility of substrates
to the inner mitochondrial membrane enzymes, samples were freeze-
thawed three times, gently shaken and then resuspended in the assay
buffer. CI (NADH-ubiquinone oxidoreductase, rotenone sensitive), CII
(Succinate-CoQ oxidoreductase, malonate sensitive), CIV (cytochrome
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c oxidase, KCN sensitive) and citrate synthase activities were measured
spectrophotometrically with a Beckman DU7400 equipped with a
rapid-mixing apparatus at 30 °C essentially as previously described [1].

2.6. NAD+ and NADH cellular level measurement

Cells, collected by trypsinization and centrifugation, after protein de-
termination, were suspended in 15% HClO4 (NAD+ extraction) or 0.2 M
NaOH (NADH extraction). After 10 min, the suspensions were neutral-
ized by adding 0.1 M KOH (NAD+ extraction) or 0.1 M HCl (NADH
extraction). After centrifugation, the supernatants were collected and
used immediately. NAD or NADH concentrations were measured in cy-
clic enzyme reaction system in which alcohol dehydrogenase reduces
dichlorophenol indolphenol (DCIPIP) through the intermediation of
phenazine methosulfate (PMS). The reaction mixture consisted of
0.63 ml of 100 mMphosphate Buffer (pH 7.5), 0.03ml of 30 mM phen-
azine methosulphate (PMS), 0.04 ml of 0.6 mM dichlorophenol
indolphenol (DCIPIP), 0.1 ml of 95% ethanol, 5 units ADH. The reaction
was started by the addition of 200–300 μg of the sample. Reduction of
the blue-colored DCPIP to colorless DCPIPH2 was measured by record-
ing the decrease in absorbance at 600 nm. The concentration of NADH
and NAD+ in each extract was determined by comparing sample values
to standard curves generated from samples containing known amounts
of NADH and NAD+ that had been cycled under identical conditions as
the samples.

2.7. Real-time PCR

Purification of total RNA fromfibroblastswas carried out using RNeasy
Mini Kit (Qiagen), according to the manufacturer's protocol. One micro-
gram of total RNA was then reverse-transcribed to generate cDNA
for PCR by using iScript cDNA Synthesis kit (Bio-Rad). q-PCR on cDNA
was performed as previously described [1], using glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) and β-actin as internal control.
mtDNA content was assayed by q-PCR using 100 ng of total DNA, isolated
with DNA extraction kit (EuroGOLD Tissue DNA mini Kit), with primers
amplifying the cytochrome b region and normalized to the 18 S nuclear
DNA. Relative quantification was performed by using the ΔΔCT method.
Validated primers for q-PCR are reported in Supplemental Materials
(Table I).

2.8. Western blot analysis

Cells in hypotonic medium supplemented with antiproteases cock-
tail tablet (Roche, Basel, CH) were freeze-thawed three times. Total
cell proteins (30 μg) were separated on a 12% Tris-Tricine SDS–PAGE
and transferred onto nitrocellulose membrane. Western blot analysis
was performed using the specified primary antibodies against AMPK
and p-AMPKα (Thr172) (Cell Signaling Technology), and acetyl-lysine
(clone 4G12, Merck Millipore) according to the manufacturer's instruc-
tions. For PGC-1α protein detection, total cell proteins (45 μg) were
separated on an 8% Tris-Tricine SDS–PAGE and transferred onto nitro-
cellulose membrane. Polyclonal PGC-1α primary antibody (Santa Cruz
Biotechnology) was used according to the manufacturer's suggested
concentrations. For LC3 detection, total cell proteins (45 μg) were
separated on a 12% Tris-Glycine SDS–PAGE and transferred onto nitro-
cellulose membrane. Western blot analysis was performed by using a
specific antibody against LC3B (Cell Signaling Technology).

2.9. Microscopy analysis

Laser scanning confocal microscopy (LSCM) live cell imaging of
ROS was determined in cells cultured at low density on fibronectin-
coated 35-mm glass-bottom dishes incubated for 20–30 min at 37 °C
with 10 μM 2,7-dichlorofluorescin diacetate, which is converted to
dichlorofluorescein by intracellular esterases, or with 5 μM MitoSox
(from Molecular Probes, Eugene, OR). Stained cells were washed with
PBS and examined with a Nikon TE 2000 microscope (images collected
using a 60× objective [1.4 NA]) coupled to a Radiance 2100 dual-laser
LSCM system (Bio-Rad); dichlorofluorescein green fluorescence was
elicited with the Ar–Kr laser beam (λex 488 nm), MitoSox red fluores-
cence was elicited with the He–Ne laser beam (λex 543 nm). Acquisi-
tion, storage, and analysis of data were performed with LaserSharp
and LaserPix software from Bio-Rad or ImageJ version 1.37. For fluores-
cence microscopy analysis, fibroblast cells, were washed two times in
PBS and incubated with the Cyto-ID® Green Detection Reagent and
Hoechst 33342 Nuclear Stain (Cyto-ID Autophagy Detection Kit, Enzo
Life Science, NY, USA) according to the manufacturer's instructions,
mounted in Vectashield (Vector) and examined with an Olympus
photomicroscope (Olympus Italia, Rozzano, Italy) using 63× objective
lenses with either 1× zoom factors. Images were analyzed, digitally
recorded and stored as TIFF files using Adobe Photoshop software
(Adobe Systems Inc., San Jose, CA, USA). Morphometric analysis of
labeled areas were evaluated on twenty randomly selected fields for
each experimental group, observed at ×630 magnification with an
Olympus photomicroscope, using Image Analysis software (Olympus
Italia, Rozzano, Italy).

2.10. Quantitative determination of intracellular ROS level

Quantitative analysis of ROS level was determined using the cell
permeant probe 2′-7′dichlorodihydrofluorescin diacetate (H2DCFDA).
The ROS-dependent oxidation of the fluorescent probe (507 nm excita-
tion and 530 nm emission wavelength) was measured by a Jasco
FP6200 spectrofluorometer as described in [1].

2.11. siRNA mediated parkin knockdown

Control1 fibroblasts at 60–70% of confluence were transiently
transfected for 48 h with 20 nM of small interfering RNAs (siRNAs)
specific for human parkin gene (Parkin siRNA), siRNA against human
GAPDH as a positive control and a mixture of 4 scrambled siRNAs
(scramble siRNA) as a negative control or with the transfection reagent
alone (Control siRNA) according to the manufacturers' instructions
(SMART-pool; Dharmacon RNA Technologies, Lafayette, CO).

2.12. Statistical analysis

Data of quantitative measurements are expressed as means ± SEM,
except for fluorescence microscopy analysis (±SD), of more than three
independent experiments. Statistical analyses were performed using
the unpaired Student's t test or, where specified, the one-way or two-
way ANOVA followed by Bonferroni post-hoc test; a p value b 0.05
was set for statistically significant differences.

3. Results

In this study we used cultured skin fibroblasts from two unrelated
patients affected by an early-onset PD, labeled as parkin1, characterized
in a previous study [1] and parkin2, with the PARK2 heterozygousmuta-
tions del-exon2-3/del-exon3 and del-exon7-9/Glu409X, respectively.
Parental healthy control, displaying the heterozygous del-exon2-3,
(parkin1'smother, control1) and unrelated control consisting in normal
adult human dermal fibroblasts (control2), have been also included in
this study. The Western blot analysis of parkin protein expression
revealed the complete absence of the 50 kDa full-length protein in the
fibroblasts of both patients and a comparable amount in control1 and
in control2 fibroblasts (Fig. S1). Moreover to mimic the pathogenic
phenotype of parkin deficiency we characterized knockdown parkin
fibroblasts (Fig. S2).
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3.1. Resveratrol enhances mitochondrial oxidative capacity

To test the effect of resveratrol treatment on the mitochondrial oxi-
dative capacity, we measured oxygen consumption rates (OCR) by en-
dogenous substrates in intact cells cultured in the presence of 25 μM
resveratrol or vehicle for 48 h (Fig. 1A). Resveratrol concentration and
time exposure were chosen according to preliminary tryouts showing
no cytotoxicity at 24 and 48 h of treatment with 25 μM of resveratrol
(Fig. S3). As shown in Fig. 1 the basal and the DNP-uncoupled OCR
was significantly lower in patients' fibroblasts as compared to the con-
trol values (see also Fig. S4; one-way ANOVA test: FBasal (3, 20) =
31.07; P b 0.0001; FDNP-uncoupled (3, 20) = 39.29; P b 0.0001) with
parkin1 showing a more compromised respiratory phenotype as com-
pared with parkin2, which exhibited a relatively milder impairment of
respiration. A little but significant decrease of theOCR has been detected
also in Parkin-siRNA fibroblasts (Fig. 1B). Treatment of fibroblasts with
resveratrol led to an appreciable significant increase of basal OCR in con-
trol1, parkin1 andparkin2 cells as compared to thefibroblasts incubated
with vehicle. The maximal OCR, achieved in the presence of the
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parkin1 patient, the basal content of ATP did not change after resvera-
trol treatment, but a significant decrease in the ATP level was observed
in the presence of oligomycin. Although not reaching a statistical signif-
icance a similar trend was also observed in parkin2. This supports the
hypothesis that, in patients' fibroblasts, a resveratrol dependent switch
from glycolytic to oxidative metabolism occurred. Consistently, a signif-
icant decrease of extracellular lactate measured under basal respiratory
conditions in resveratrol-treated control2, parkin1 and parkin2, as
compared to the vehicle-treated fibroblasts was observed (Fig. S5).

When the basal cellular content of ATP was measured in Parkin-
siRNA fibroblasts a larger reliance on glycolytic ATP resulted when
compared with control siRNA cells (Fig. 2B) matching what observed
in parkin1 with respect to control1 and control2 samples.

Fibroblasts from subjects carrying mutated PD-related genes were
repeatedly reported to exhibit an altered redox balance. Accordingly,
Fig. 3A shows, by confocal microscopy imaging, that parkin1 and
parkin2 fibroblasts displayed a significantly much higher level of the
DCF-fluorescence, a commonly used probe to assess the intracellular
redox state, when compared with control cells. Likewise, parkin siRNA
cells displayed a higher level of the DCF-related fluorescence when
compared with Control siRNA cells (Fig. 3B).

Noticeably, resveratrol treatment abrogated almost completely the
ROS-dependent DCF fluorescent signal in both patients' fibroblasts.

Sincemitochondria are amajor source of ROS,MitoSox an organelle-
selective probe was used to reassess the intracellular ROS-generating
compartment. As illustrated in Fig. 4, parkin1 and parkin2 fibroblasts
showed a significant higher probe-related punctuate fluorescence as
comparedwith control cells whereby pointing to alteration of themito-
chondrial oxidative metabolism as culprit of the observed redox unbal-
ance in PD-derived fibroblast. Intriguingly, while the ROS-mediated
fluorescence was completely abrogated in all the cellular samples
by treatment with the synthetic antioxidant ebselen, treatment
with resveratrol was effective in reducing ROS production in patients'
fibroblasts leaving unchanged the basal level of ROS in control cells.
This observation suggests an antioxidant activity of resveratrol not sim-
ply explainable in terms of ROS-scavenging specifically accomplished in
the cell phenotype of the PD-derived fibroblasts.

Mitochondrial ROS production in PD is frequently associated with
defective activity of the respiratory chain complexes with complex I
(CI) recognized as the major “ROS-genic” site. In our previous study
impaired activity of RC complexes in parkin-mutant fibroblasts has
been already reported [1]. Consistently, Parkin-siRNA treatedfibroblasts
displayed a highly significant decrease of CI and of citrate synthase
(a key component of the TCA cycle) activity compared to Control
siRNA,while theCIV (complex IV) activitywasnot significantly changed
(Fig. S6).

To gain deeper insights into the resveratrol effect on the respiratory
system, the specific enzymatic activity of mitochondrial Complex I (CI),
Complex II (CII) and Complex IV (CIV) and of citrate synthase were
measured. As shown in Fig. 5 the comparative analysis of the RC com-
plexes' activities confirmed in both parkin1 and parkin2 a significant
depression of CI as compared with control1 and control2. Most notably,
resveratrol treatment increased significantly and specifically the CI
activity, in both controls' and patients' cells as compared to the fibro-
blasts cultures incubated with vehicle. Importantly, in both patients'
fibroblasts resveratrol treatment raised the CI activity to the basal levels
of the untreated control fibroblasts and interestingly, citrate synthase
activity, which is considered also an index of the mitochondrial mass,
was specifically increased.

To evaluate if resveratrol treatment resulted in an increased mito-
chondrial biogenesis, we measured mitochondrial DNA (mtDNA)
content. As shown in Fig. 6, resveratrol treatment induced a significant
increase, although of small entity, of the relative mtDNA content
(mtDNA/nDNA) measured by q-PCR of the mtDNA-harbored cyto-
chrome b gene both in control and patients' fibroblasts; assessment
of the relative mtDNA content by detection of a different mtDNA-
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harbored gene (i.e. ND1) resulted in comparable result (data not
shown). In spite of the observed significant resveratrol-mediated
increase of the mtDNA/nDNA ratio, resveratrol-treatment induced a
significant enhancement of mtDNA-encoded protein synthesis only in
parkin1 fibroblasts whose basal translation was, as previously reported,
consistently lower with respect to the control1 fibroblasts (Fig. S7).

3.2. Resveratrol modulates AMPK and the NAD+/NADH ratio

Growing evidences point to the fuel sensor AMP-activated protein
kinase (AMPK) as a key mediator of the metabolic effects of resveratrol
[31]. Therefore, we monitored the Thr172-phosphorylation-mediated
activation of AMPK in resveratrol-treated fibroblasts using a specific an-
tibody. Fig. 7 shows that the basal p-AMPK/AMPK ratiowas significantly
lower in both patients' fibroblasts as compared with control cells.
Eight hours of resveratrol treatment induced a significant increase of
the p-AMPK/AMPK ratio in controls' and patients' cells as compared to
the fibroblasts cultures incubated with vehicle, with no changes in the
total AMPK protein level. After 24 h of resveratrol treatment the level
of AMPK-phosphorylation remained higher than the basal values.

Since it has been reported that resveratrol enhances the NAD+/
NADH ratio, in an AMPK-dependent manner [31–34], we measured, at
8 and 24 h of resveratrol treatment, the steady-state cells content of
NAD+ and NADH. As compared with the control fibroblasts the basal
level of NAD+ and the NAD+/NADH ratio were significantly lower in
both patients' fibroblast (Fig. 8A; one-way ANOVA test: FNAD+ (3, 31) =
13.85; P b 0.0001; FNAD+/NADH (3, 16) = 8.284; P = 0.0021). The total
cellular NAD content was also significantly reduced (by about 50%)
with respect to control fibroblasts (data not shown). Following resver-
atrol treatment (Fig. 8B), a significant increase of the NAD+/NADH
ratio in controls' and patients' cells as compared to the fibroblasts cul-
tures incubated with vehicle, was observed after 8 h incubation,
matching the phosphorylation state of AMPK. At the same time-point
only in the control cells a transient increase of the total amount of
NAD following resveratrol treatment was observed suggesting induc-
tion of NAD biosynthesis (not shown) [35]. The NAD+/NADH ratio
returned to basal levels after 24 h incubation in both patients, but not
in control cells where it remained higher than the basal values
(Fig. 8B; two-way ANOVA test: FNAD+ (2, 45) = 19.93; P b 0.0001;
FNAD+/NADH (2, 27)= 40.50; P b 0.0001). These data suggest that inter-
play between AMPK activation and NAD+/NADH ratio may occur.

3.3. Resveratrol controls expression and transcriptional activity of PGC-1α

The effect of AMPK activation on mitochondrial energetic functions
can be attained through the regulation of a number of transcriptional
factors and cofactors [36] among which is PGC-1α [34,37]. In order to
assess whether resveratrol enhances expression and activity of PGC-
1α, we analyzed the transcription of the PGC-1α gene and of some of
its target genes in resveratrol-treated fibroblasts. Transcript level
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measurements of PGC-1α revealed abnormal values in parkin1 (10.6-
fold higher), already reported [1] and in parkin2 (0.27 fold lower) as
compared with control1 fibroblasts (Fig. 9A). Measurement by qRT-
PCR revealed a significant decrease in mRNA transcripts of PGC-1α
and in some of its down-stream target genes (i.e. TFAM and SOD2) in
Parkin siRNA cells compared to Control siRNA (Fig. 10) confirming
altered PGC-1a activity and transcriptional deregulation of its target
genes in parkin-deficient cells. Resveratrol treatment induced in con-
trol1, control2 and parkin2 fibroblasts an increase of mRNA expression
of PGC-1α as compared to the fibroblast cultures incubated with
vehicle. Conversely, in fibroblasts from patient parkin1, resveratrol
treatment induced a significant decrease of PGC-1α mRNA level,
which, however, remained at a still higher level (5.3± 0.9 fold) as com-
pared to control1 cells. Consistently, Western blot analysis of PGC-1α
revealed a higher and lower protein expression in parkin1 and in
parkin2, respectively, as compared with control1 fibroblasts. Resvera-
trol treatment for 24 h induced a slight increase of the protein content,
which, however was significant only in parkin2 cells (Fig. 9B). Regard-
less of the effect on the PGC-1α expression, resveratrol treatment
caused transcriptional up-regulation of PGC-1α downstream target
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genes, directly involved in mitochondrial biogenesis (TFAM, cyto-
chrome c, COX I) in both control and patients' cells and coding for the
antioxidant enzymes (SOD2, catalase) mainly in control cells (Fig. 9C).

All together, the results presented indicate that the resveratrol-
mediated increase of the PGC-1α transcriptional activity, as shown
by the up-regulation of its target genes, was not simply related to
the PGC-1α expression therefore suggesting a possible effect at a post-
translational level.

3.4. Resveratrol controls activity of SIRT1

PGC-1α is modulated through regulation of its expression and of its
activity, the latter by posttranslational modifications consisting mainly
in AMPK-mediated phosphorylation and SIRT1-mediated deacetylation.
The low level of PGC-1α protein in fibroblast cells did not allow us to
evaluate directly the acetylation state of the protein. However, the effect
of resveratrol on SIRT1 activity was assessed, as reported by several
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groups [38–40], monitoring the acetylated state of the histone 3 (H3)
one of its main downstream target (Fig. 11A). The resveratrol treatment
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with vehicle, indicating that the SIRT1 deacetylase activity was
increased. Most notably, resveratrol treatment caused, also, significant
increase of the mRNA levels of SIRT1 (Fig. 11B).

3.5. Resveratrol enhances macro-autophagy

Fine balance of mitochondrial autophagy and biogenesis plays a key
role in controlling mitochondrial physiology. Overexpressed parkin
enhances mitophagy in FCCP-treated cells through the translocation
of tagged parkin to mitochondria and its ubiquitination activity [41].
However, an increase of mitophagic marker has been described
as a consequence of parkin knockdown and that parkin-mediated
monoubiquitination of Bcl2 enhances the ability of Bcl2 to bind beclin
1 and to suppress autophagy [42]. Thus, depending on subcellular local-
ization and/or targetmodification, parkin could act to either promote or
to downregulate autophagy. Therefore, we sought to verify if resveratrol
treatment, in our cell model, was able to modulate autophagy by
immunodetecting the microtubule-associated protein 1 light chain 3
(LC3), whose proteolytic and phagosomal phospholipid-ligated prod-
ucts (LC3-I and LC3-II respectively) are widely used as a marker of
mammalian autophagy [43]. Fig. 12A shows that the steady-state level
of LC3-II did not significantly differ between control and parkin-
deficient fibroblasts. When NH4Cl-treatment was utilized to inhibit
acidification of autolysosomes, the LC3-II level increased 2–3 fold in
control1, parkin1 and parkin2 cells and to a lower extent in control2.
This result would indicate that the autophagic flux in both control and
patients' fibroblasts occurs to comparable values somehow lower in
control2. To note, 24 h of resveratrol treatment did not affect the LC3-
II levels with the exception of parkin2, which in the absence of NH4Cl
displayed a significant increase of the LC3-II content. Intriguingly,
when the autophagosome content was visualized using a selective
membrane-bound fluorescent probe a different scenario was observed.
In contrast with the LC3-II profile the basal number of phagosomes was
significantly higher in both patients' fibroblasts as compared with
the control cells. Moreover, 24 h of resveratrol treatment induced a
large enhancement of thefluorescent signal indicative of a strong induc-
tion of autophagy in control1 and control2 but to a lower extent in
parkin2 fibroblasts (Fig. 12B) whereas parkin1 cells were resveratrol-
insensitive. These results would be consistent with the occurrence of
both LC3-dependent and LC3-independentmacroautophagic pathways,
as recently suggested [44], with the latter being promotable by resvera-
trol in a parkin context.

Sincemitophagy appears to be triggered by a decrease ofmembrane
potential in damaged and fragmented mitochondria [41] we assessed
the mitochondrial membrane potential by using TMRE, a fluorescent
probe that accumulates in mitochondria in a membrane potential-
driven manner. The results of the image analysis are presented in the
Supplementary Fig. S8 and show that the averaged mean fluores-
cence/cellwas not significantly different between controls' and patients'
samples; also the standard deviationswere of the same entity thus indi-
cating a similar distribution of the pixel intensities and therefore ruling
out the occurrence of a larger sub-population of mitochondria with low
potential in patients' fibroblasts. Resveratrol treatment did not change
the membrane potential-related fluorescent signal both in controls'
and patients' fibroblasts. A closer image analysis supported by
morphometric quantification displayed an elongated interconnected
mitochondrial network in control cell whereas unveiled a significantly
more fragmented mitochondrial network in parkin1 fibroblasts
(derived from the patient with severe clinical outcomes). Resveratrol
treatment did not rescue in parkin1 the mitochondrial morphological
alterations neither had significant effects on the mitochondrial
morphology of the other cell samples.

4. Discussion

Parkin plays a pivotal role in the mitochondrial quality-control
mechanisms [6] whereby a fine balance of mitochondrial autophagy
and biogenesis is achieved [45]. In this work, it is shown that resveratrol
treatment in parkin-mutated fibroblasts partially rescues themitochon-
drial respiratory capacities via a pathway in which PGC-1α, master reg-
ulator of mitochondrial function, could be the ultimate recipient.
Treatment of fibroblasts with resveratrol leads to a modest increase of
basal and maximal respiration by endogenous substrates measured
both in control and in parkin-mutant intact cells. Consistent with the
resveratrol-mediated effect on respiration is the significant increase of
CI activity. Noticeably, specific defects in CI biogenesis and/or in its
electron transfer activity have long been recognized to be relevant in
the development of parkinsonism [46]. The observed increase of CI
activity by resveratrol treatment could be due to either mitochondrial
biogenesis induction or regulation through post-translational modifica-
tion or both. Previous studies indicate that activation of the cAMP/PKA
pathway reverses the inhibition of the CI activity and the accumulation
of ROS, effects associatedwith cAMP-dependent phosphorylation of the
18-kDa (AQDQ) subunit of CI [47,48]. An increase in mitochondrial
biogenesis in PD's fibroblasts could be argued in view of the fact that
resveratrol treatment resulted in an increase of citrate synthase activity
and of mtDNA content.

The improvement of themitochondrial respiratory activity induced by
resveratrol treatment resulted in a significant increase in mitochondrial
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ATP content in control as well as in patients' cells. In parkin1 and
parkin2 fibroblasts this was associated with a significant decrease in
lactate production and in a specific increase of citrate synthase, suggest-
ing a switch from glycolysis to oxidative metabolism with an increased
overall metabolic capacity. A similar effect of resveratrol has been
%recently described byMiccheli's group [49] in a hepatocyte cell culture
model with a switch from glucose and amino acid to fatty acid utiliza-
tion for the energy production.

Resveratrol is a relatively strong activator of AMPK, a well-
established sensor of low metabolic fuel in cell cultures and in animal
model [16,50–53]. The precise mechanism by which resveratrol turns
on AMPK is not firmly established as well as if the kinase activation is
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or is not dependent on SIRT1 [51,54]. The earlier proposal of SIRT1 as a
direct putative target of the resveratrol action [55] has been challenged
based on lack of specificity in screening assays [56]. Very recently, Park
et al. suggested that resveratrol is not directly targeting SIRT1 but
instead stimulates the AMPK pathway through direct inhibition of
cAMP-phosphodiesterases (mainly PDE4) and activation of the cAMP–
Epac1–Camkkβ–AMPK signaling axis [57]. Anyway, PGC-1α activity
has been shown to be necessary for AMPK-mediatedmitochondrial bio-
genesis and function [37] as the phosphorylation of PGC-1α by AMPK is
required for its subsequent SIRT1-mediated deacetylation [34]. Pharma-
cological (metformin) and physiological (fasting or exercise) activation
of AMPK inmuscle triggers an increase in the NAD+/NADH ratio, which
activates SIRT1. The impact of AMPK and SIRT1 on the phosphorylation/
acetylation status of PGC-1α and other transcriptional regulators, leads
to mitochondrial biogenesis and improvedmitochondrial function [34].
We investigated, therefore, the possible involvement of the AMPK
signaling activation in the beneficial effect of resveratrol. Whether
resveratrol, in our conditions, also affects other pathways of PGC-1α
activation needs to be further investigated.

Here we show that resveratrol causes, after 8 h of treatment, activa-
tion of AMPK and increase of the NAD+/NADH ratio, which in turn
would enable NAD+-dependent SIRT1 activity as revealed by the
decrease of the acetylated-H3. TheNAD+/NADH ratio is a dynamicmea-
surement that reflects the metabolic activities of the cells and specific
signaling pathways (PARPs, SIRT). At the specific time of incubation
we measured the steady-state content of the oxidized and reduced
forms of the nicotinamide nucleotides resulting by the overall processes
that utilize and produce them. For this reason it is possible that we
detected an increase of NADH/NAD+ ratio at 8 h resulting from the
increase of catabolic pathway induced by AMPK activation, values that
subsequently go back to a new steady-state value resulting from the
activity of specific cellular processes.

Since the main upstream AMPK-activating kinase is LKB1, whose
activation requires the deacetylation activity of SIRT1 [54], we hypothe-
size that the activation of SIRT1 could also be responsible for LKB1
deacetylation. The activation of AMPK–SIRT1 signaling by resveratrol
correlates with the induction of the PGC-1α activity, shown by the in-
creased expression of its downstream target genes, and partly by the
up-regulation of its expression. Albeit fully aware of the apparent incon-
gruence of the conflicting data concerning PGC-1α in the two different
patients' fibroblasts and the effect of resveratrol, nevertheless, we
would like to highlight that PGC-1α activity is modulated both through
the regulation of its expression and through the regulation of its activity
bymany posttranslationalmodifications, such as phosphorylation, acet-
ylation, and ubiquitination, which enable it to fine-tune the activity of
several transcription factors and the downstream pathways that they
control [58]. Furthermore, resveratrol could also assist with the translo-
cation of PGC-1α from the cytoplasm to the nucleuswhere PGC-1αmay
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Fig. 10.mRNA expression levels of PGC-1α, TFAM and SOD2 in Control siRNA and Parkin
siRNA fibroblasts. Values, determined by reverse transcriptase qRT-PCR analysis of total
RNA represent mRNA levels normalized to the housekeeping gene GAPDH. Data are
means ± SEM and significance was calculated with Student's t test, n = 3 under each
condition; *p b 0.05, **p b 0.005 vs Control siRNA.
act as a regulator of mitochondrial biogenesis. All these possibilities
warrant further investigations and are currently under scrutiny by our
group. The paradoxical effect of resveratrol on PGC-1α mRNA level in
parkin1 patient is in agreement with data from Farhoud et al. who
described associated to the complex-I deficiency an enhanced PGC-1α
signaling still achieved even when the gene expression of the co-
activator protein is repressed [59].

Taken together, ourfindings suggest that resveratrol alleviatesmito-
chondrial dysfunction in fibroblasts by coordinating signaling pathways
in which AMPK is involved, in line with previous studies in cell line cul-
tures [50–53]. This, in turn, results in an improvement of energy expen-
diture aswell as in an enhancement of oxidative capacity attested by the
increase in CI and citrate synthase activities, in basal oxygen consump-
tion, in mitochondrial ATP production and by the decrease in lactate
content. It should be stressed that the partial rescue of mitochondrial
function could be due to the predominance of glycolytic metabolism
in fibroblasts [60] with respect to oxidative metabolism typical of
neurons [61].

It has to be taken into account that the interplay of the factors in-
volved in the AMPK–SIRT1–PGC-1α axis and the downstream target
genes of the latter does not make up in a linear sequence but rather
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Fig. 11. Effect of resveratrol on SIRT1 activation. (A) Representative Western blot of
acetylated-H3 performed on whole cell lysates from controls' and patients' fibroblasts
exposed to either vehicle (DMSO) or 25 μMresveratrol for 8 h. The graphdisplays the den-
sitometric analysis of band intensity of the acetylatedH3 normalized to the corresponding
β-actin level, used as loading control. Data,means±SEM, are expressed as a percentage of
vehicle-treated cells; n = 4 under each condition. Significance was calculated with
Student's t test; *p b 0.05, **p b 0.005 vs vehicle-treated cells. (B) mRNA levels of SIRT1
in controls' and patients' fibroblasts exposed to either vehicle (DMSO) or 25 μM resvera-
trol for 24 h. Values, determined by reverse transcriptase q-PCR analysis of total RNA, rep-
resent mRNA levels normalized to the housekeeping gene GAPDH. Relative expression
values were compared with vehicle-treated cells. Data are means ± SEM and significance
was calculated with Student's t test; n = 4 under each condition;*p b 0.05, **p b 0.005 vs
vehicle-treated cells. For more details see Materials and methods.
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comprises described feed-back mechanisms of reciprocal control. It is
likely that in the PD derived fibroblasts the stringency of the control
and the redundancy of other integrated signaling pathways are altered
tomake the cell surviving in the absence of parkin. Indeed, the observed
shift toward a glycolysis-basedmetabolism in PD-fibroblasts represents
the first line of adaptation aimed to relieve the cell from a defective
quality-control of mitochondria. Consequently, it is not surprising
that some of the effects of resveratrol result in abortive functional out-
comes at least in the relatively short observational time-window of
our treatment.
Moreover, recent results have showed that different dosages of
resveratrol can elicit different responses. Price et al. [31] performed ex-
periments using C2C12 cells in which high doses of resveratrol led to
SIRT1-independent activation of AMPK and a decrease in NAD+ and
ATP levels, whereas lower doses of resveratrol led to SIRT1-dependent
activation of AMPK and an increase in both metabolites.

Taken together, our findings suggest that the improvement of
OXPHOS efficiency by resveratrol, through AMPK/SIRT1 pathway,
could be related to a decrease of oxidative stress and to an increase
of mitochondrial biogenesis. However, other mechanisms can be
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envisaged to account for the observed resveratrol-mediated dramatic
decrease of the pro-oxidative state in patients' cells. Among these are:
i) direct inhibition of the ROS-generating system, likely related to the
improved RC complex (specifically complex I) activity observed, ii)
induction of antioxidant enzymes [62], and iii) intrinsic antioxidant
properties [63]. All of these possibilities are not mutually exclusive
and require further investigation.

The counter-intuitive observation linking reduced respiratory and
complex I activities to increased mitochondrial ROS production in both
patients' samples can be explained assuming the occurrence of subsets
of the complex I population functionally impaired in transferring elec-
trons downstream the respiratory chain. This would result in enhanced
leakage of electrons (by the dysfunctional subset) and an overall de-
crease of the CI activity and of respiration. Moreover, it has to be taken
in account that complex I itself is particularly vulnerable to oxidative
insults thereby if the ROS-scavenging and/or the quality control system
are not adequately functioning a vicious cycle establishes.

It is widely reported that nutritional antioxidants like resveratrol,
carnosic acid, sulforaphane, dimethyl fumarate, acetyl-L-carnitine are
able to activate vitagenes, such as heme oxygenase, Hsp70, thioredoxin
reductase and sirtuins, an integrated system for cellular stress tolerance
representing an innovative approach to therapeutic intervention in
neurodegenerative disease [64–66].

AMPK activation induces inhibition of mTOR pathway, a major con-
troller of protein homeostasis, through the autophagy and the ubiqui-
tin–proteasome system [67]. Recently, Vingtdeux et al. reported that
AMPK activation by resveratrol resulted in activation of autophagy
and lysosomal clearance of amyloid β peptide [53]. We have investigat-
ed the autophagic process in our cell systems and found in the absence
of changes of the LC3-II autophagymarker a significantly higher content
of macroautophagic vesicles in both patients' fibroblast. After resvera-
trol treatment a many-fold induction of phagosomes was observed in
control fibroblasts expressing parkin. Conversely, in parkin-deficient pa-
tients' fibroblasts resveratrol treatment caused no or limited effects on
thephagosome content in parkin1 andparkin2 cells, respectively, consis-
tent with their LC3-II profile. This result would imply the involvement of
non-canonical alternative macroautophagic pathways as an adaptive
response to parkin deficiency in patients' fibroblasts as well as their
sensitivity to resveratrol but specifically in a parkin-dependent context.

Our study suggests a possible strategy to sustain and enhance mito-
chondrial functions by up-regulating key regulatory enzymes involved
inmetabolism and efficiency ofmitochondrial bioenergetics [18,19]. Re-
lated to PD, resveratrol administration was shown to protect mice from
MPTP-induced motor coordination impairment, hydroxyl radical
overloading, and neuronal loss [22]. More recently, resveratrol has
also been tested to provide beneficial effects in the 6-OHDA-induced
PD rat model [24–26].

The impact of resveratrol treatment on the physiological activity of
healthy cells is noteworthy. Indeed, although resveratrol does not
appear, as expected, to rescue the lack of parkin in our mutant samples
nevertheless our data suggest a disease-unrelated effect of the compound
on mitochondrial function/biogenesis promoting mitochondrial “health”
that tends to counteract the PD-mediated bioenergetic dysfunction. In
our work we reported a strong effect induced by resveratrol treatment
also in control fibroblasts in agreement with Csiszar's [68] and Bastin's
[69] groups showing increased mitochondrial biogenesis in endothelial
cells and enhanced fatty acid oxidation in normalfibroblasts, respectively,
induced by resveratrol treatment. Furthermore, it should be pointed out
that, the different responses to the resveratrol treatment between the
two controls' and the two patients' cells could be attributed to the differ-
ent genetic backgrounds and the large inter-individual variability.

5. Conclusion

Though evidences are emerging to support the potential of resvera-
trol against neurodegenerative disorders, no clear neuroprotective
mechanism has been proposed so far. This study points to the SIRT1/
AMPK/PGC1-α axis as a key neuroprotective pathway andprovides a ra-
tionale for exploring the therapeutic potential of resveratrol in delaying
PD progression at the initial stages of the disease or even before the
onset of symptoms in its hereditary forms.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.bbadis.2014.02.010.
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