
Artificial Intelligence 72 (1995) 81-138

Artificial
Intelligence

Learning to act using real-time dynamic
programming

Andrew G. Barto *, Steven J. Bradtke ‘, Satinder I? Singh2
Department of Computer Science, University of Massachusetts, Amherst, MA 01003, USA

Received September 199 1; revised February 1993

Abstract

Learning methods based on dynamic programming (DP) are receiving increasing attention
in artificial intelligence. Researchers have argued that DP provides the appropriate basis for
compiling planning results into reactive strategies for real-time control, as well as for learning such
strategies when the system being controlled is incompletely known. We introduce an algorithm
based on DP, which we call Real-Time DP (RTDP), by which an embedded system can improve
its performance with experience. RTDP generalizes Korf’s Learning-Real-Time-A* algorithm to
problems involving uncertainty. We invoke results from the theory of asynchronous DP to prove
that RTDP achieves optimal behavior in several different classes of problems. We also use the
theory of asynchronous DP to illuminate aspects of other DP-based reinforcement learning methods
such as Watkins’ Q-Learning algorithm. A secondary aim of this article is to provide a bridge
between AI research on real-time planning and learning and relevant concepts and algorithms
from control theory.

1. Introduction

The increasing interest of artificial intelligence (AI) researchers in systems embedded
in environments demanding real-time performance is narrowing the gulf between prob-
lem solving and control engineering. Similarly, machine learning techniques suited to
embedded systems are becoming more comparable to methods for the adaptive control
of dynamic systems. A growing number of researchers are investigating learning systems

* Corresponding author. E-mail: barto@cs.umass.edu.

’ Present address: GTE Data Services, One E. Telcom Parkway, Temple Terrace, FL 33637, USA.
2 Present address: Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology,

Cambridge, MA 02139, USA.

0004.3702/95/.$09.50 @ 1995 Elsevier Science B.V. All rights reserved

SSDIOOO4-3702(94)00011-O

82 A.G. Burro et d/Artificial Intelligence 72 (1995) 81-138

based on dynamic programming (DP) algorithms for solving stochastic optimal control
problems, arguing that DP provides the appropriate basis for compiling planning results
into reactive strategies for real-time control, as well as for learning such strategies when
the system being controlled is incompletely known. Learning algorithms based on DP
employ novel means for improving the computational efficiency of conventional DP
algorithms. Werbos [83,871 and Watkins [8 1] proposed incremental versions of DP as
learning algorithms, and Sutton’s Dyna architecture for learning, planning, and reacting
[69,70] is based on these principles. The key issue addressed by DP-based learning
is the tradeoff between short- and long-term performance: how can an agent learn to

improve long-term performance when this may require sacrificing short-term perfor-
mance? DP-based learning algorithms are examples of reinforcement learning methods
by which autonomous agents can improve skills in environments that do not contain
explicit teachers [7 11.

In this article we introduce a learning algorithm based on DP, which we call Real-
Time Dynamic Programming (RTDP), by which an embedded problem solving system

can improve its long-term performance with experience, and we prove results about
its behavior in several different types of problems. RTDP is the result of recognizing
that Korf’s [38] Learning-Real-Time A* (LRTA*) algorithm3 is closely related to a
form of DP known as asynchronous DP [lo]. This novel observation permits us to
generalize the ideas behind LRTA* so that they apply to real-time problem solving tasks

involving uncertainty. In particular, we apply the theory of asynchronous DP developed
by Bertsekas [IO] and Bertsekas and Tsitsiklis [121 to show that RTDP converges
to optimal solutions when applied to several types of real-time problem solving tasks
involving uncertainty. Whereas the theory of asynchronous DP was motivated by the

suitability of asynchronous DP for parallel processing, we adapt this theory to the case
of performing DP concurrently with problem solving or control. We also present an
extension of RTDP, called Adaptive RTDP, applicable when information is lacking about

a problem’s structure in addition to its solution.
Recognizing that the theory of asynchronous DP is relevant to learning also permits us

to provide new insight into Watkins’ Q-Learning [81,821 algorithm, another DP-based
learning algorithm which is being explored by AI researchers. We present simulation
results comparing the performance of RTDP, Adaptive RTDP, Q-Learning, and a con-
ventional DP algorithm on several simulated real-time problem solving tasks involving

uncertainty.
Another aim of this article is to discuss some of the important issues that arise in

using DP-based learning algorithms, with particular attention being devoted to indicating
which aspects of their use have formal justification and which do not. In doing this,
we attempt to clarify links between AI research on real-time planning and learning and
relevant concepts from control theory. We discuss selected concepts from control theory
that we believe are most relevant to the efforts in AI to develop autonomous systems
capable of performing in real time and under uncertainty.

3 We use the term real-time following this usage by Korf in which it refers to problems in which actions

have to be performed under hard time constraints. We do not address details of the scheduling issues that

arise in using these algorithms as components of complex real-time systems.

A.G. Barto et al./Art$cial Intelligence 72 (1995) 81-138 83

But there remain many issues relevant to using DP-based learning in AI that we do
not discuss. For example, we adopt a rather abstract formalism and do not say much
about how it might best apply to problems of interest in AI. A formalism this abstract is
potentially applicable to a wide variety of specific problems, but it is not easy to specify
exactly what subproblems within complex systems can best take advantage of these
methods. In accord with Dean and Wellman [231, we regard DP-based reinforcement
learning as a component technology that addresses some of the issues important for
developing sophisticated embedded agents but that by itself does not address all of

them.
Because the reader is unlikely to be familiar with all of the contributing lines of

research, we provide the necessary background in Section 2, followed in Section 3 by
a discussion of the proper relationship between some concepts from AI and control
theory. Development of the theoretical material occupies Sections 4 through 9, with an
introduction to a class of stochastic optimal control problems occupying Section 4 and an

introduction to conventional DP occupying Section 5. There are two major parts to this
theoretical development. The first part (Sections 5 and 6) concerns problems for which
accurate models are available. Here, we describe RTDP, its convergence properties,
and its relationship to LRTA*. The second part (Section 7) concerns the additional
complexity present in the case of incomplete information, i.e., when an accurate model

of the problem is lacking. Section 8 is a brief discussion of DP-based learning algorithms
that are outside the theoretical scope of this article. In Section 9 we discuss some of
the issues that practical implementations of DP-based learning algorithms must address.
In Section 10 we use an example problem to illustrate RTDP and other algorithms. We
conclude in Section 11 with an appraisal of the significance of our approach and discuss

some of the open problems.

2. Background

A major influence on research leading to current DP-based algorithms has been the
method Samuel [61,62] used to modify a heuristic evaluation function for the game
of checkers. His method updated board evaluations by comparing an evaluation of the
current board position with an evaluation of a board position likely to arise later in the
game:

. . . we are attempting to make the score, calculated for the current board position,
look like that calculated for the terminal board position of the chain of moves
which most probably occur during actual play. (Samuel [611)

As a result of this process of “backing up” board evaluations, the evaluation function
should improve in its ability to evaluate the long-term consequences of moves. In one
version of this algorithm, Samuel represented the evaluation function as a weighted sum
of numerical features and adjusted the weights based on an error derived from comparing
evaluations of current and predicted board positions.

Because of its compatibility with connectionist learning algorithms, this approach
was refined and extended by Sutton [67,681 and used heuristically in a number of

84 A.G. Barto et al./Arhjicial Intelligence 72 (1995) 81-138

single-agent problem solving tasks (e.g., Barto, Sutton, and Anderson [4], Anderson
[11, and Sutton [671) . The algorithm was implemented as a neuron-like connectionist
element called the Adaptive Critic Element [41. Sutton [681 later called these algorithms
Temporal Difference (TD) methods and obtained some theoretical results about their
convergence. Following the proposals of Klopf [36,371, Sutton and Barto [72-741
developed these methods as models of animal learning. Minsky [53,54] discussed

similar ideas in the context of the credit assignment problem for reinforcement learning
systems; Hampson [281 independently developed some of these ideas and related them
to animal behavior; Christensen and Korf [161 experimented with a Samuel-like method
for updating evaluation function coefficients using linear regression; and Holland’s [301

bucket-brigade algorithm for assigning credit in his classifier systems is closely related
to Samuel’s method. Tesauro’s recent TD-Gammon [771, a program using a TD method
together with a connectionist network to improve performance in playing backgammon,
has achieved remarkable success.

Independently of the approaches inspired by Samuel’s checkers player, other re-
searchers suggested similar algorithms based on the theory of optimal control, where
DP provides important solution methods. As applied to control problems, DP (a term

introduced by Bellman [91) consists of methods for successively approximating optimal
evaluation functions and decision rules for both deterministic and stochastic problems.
In its most general form, DP applies to optimization problems in which the costs of
objects in the search space have a compositional structure that can be exploited to find
an object of globally minimum cost without performing exhaustive search. Kumar and
Kanal [40] discuss DP at this level of generality. However, we restrict attention to DP
as it applies to problems in which the objects are state sequences that can be generated
in problem solving or control tasks. DP solves these optimization problems by solving
recurrence relations instead of explicitly searching in the space of state sequences. Back-
ing up state evaluations is the basic step of DP procedures for solving these recurrence

relations. We discuss several DP algorithms in detail in Section 5.
Although DP algorithms avoid exhaustive search in the state-sequence space, they are

still exhaustive by AI standards because they require repeated generation and expansion
of all possible states. For this reason, DP has not played a significant role in AI. Heuristic
search algorithms, in contrast, are explicitly designed to avoid being exhaustive in this
way. But DP algorithms are relevant to learning in a way that heuristic search algorithms
are not because they systematically update the evaluations of the states; in effect, they
adjust a problem’s heuristic evaluation function by incorporating the results of repeated
shallow searches. Although some heuristic search algorithms, such as A* [291, update

estimates of the costs to reach states from an initial state (A*‘s g function), they
typically do not update the heuristic evaluation function estimating the cost to reach a

goal from each state (the h function). 4
Despite the fact that DP algorithms are exhaustive in the sense described above,

it is possible to arrange their computational steps for use during control or real-time

4 We have found only a few exceptions to this in the heuristic search literature in algorithms proposed by

M&6 [5 I] and Gelperin [261. Although these algorithms use DP-like backups to update heuristic evaluation

functions, they were developed independently of DP

A.G. Barto et al. /Artijicial Intelligence 72 (1995) 81-138 85

problem solving. This is the basis of RTDP and the other algorithms we describe in
this article. In most cases, convergence to an optimal evaluation function still requires
repeated generation and expansion of all states, but performance improves incrementally
(although not necessarily monotonically) while this is being accomplished. It is this
improvement rather than ultimate convergence to optimality that becomes central. This
perspective was taken by Werbos [851, who proposed a method similar to that used
by the Adaptive Critic Element within the framework of DP He called this approach
Heuristic Dynamic Programming and has written extensively about it (e.g., [83,86-
88]). Related algorithms have been discussed by Witten [92,93], and more recently,
Watkins [811 extended Sutton’s TD algorithms and developed others by explicitly uti-
lizing the theory of DP He used the term Incremental Dynamic Programming to refer
to this class of algorithms and discussed many examples. Williams and Baird [91]
theoretically analysed additional DP-based algorithms suitable for on-time application.
We have also come across the work Jalali and Ferguson [321, who independently pro-
posed a method similar to Adaptive RTDP Sutton, Barto, and Williams [751 discussed
reinforcement learning from the perspective of DP and adaptive control, and White and
Jordan [89] and Barto [2] provide additional background and extensive references to
current research.

Although aspects of this approach also apply to problems involving continuous time
and/or state and action spaces, here we restrict attention to discrete-time problems with
finite sets of states and actions because of their relative simplicity and their closer
relationship to the non-numeric problems usually studied in AI. This excludes various
“differential” approaches, which make use of optimization algorithms related to the
connectionist error-backpropagation algorithm (e.g., Jacobson and Mayne [3 11, Jordan
and Jacobs [331, Werbos [83,841, White and Jordan [891).

The relevance of DP for planning and learning in AI was articulated in Sutton’s [69]
L?ym architecture. The key idea in Dyna is that one can perform the computational steps
of a DP algorithm sometimes using information obtained from state transitions actually
taken by the system being controlled, and sometimes from hypothetical state transitions
simulated using a model of this system. To satisfy time constraints, this approach
interleaves phases of acting with planning performed using hypothetical state transitions.
The underlying DP algorithm compiles the resulting information into an efficient form
for directing the future course of action. Another aspect of Dyr~ is that the system
model can be refined through a learning process deriving training information from the
state transitions observed during control. Even without this on-line model refinement,
however, executing a DP algorithm concurrently with the generation of actions has
implications for planning in AI, as discussed by Sutton in [701.

In this article, we introduce the fact that the theory of asynchronous DP is applicable
to the analysis of DP-based reinforcement learning algorithms. Asynchronous DP algo-
rithms differ from conventional DP algorithms in that they do not have to proceed in
systematic exhaustive sweeps of the problem’s state set. Bertsekas [lo] and Bertsekas
and Tsitsiklis [121 proved general theorems about the convergence of asynchronous
DP applied to discrete-time stochastic optimal control problems. However, because they
were motivated by the suitability of asynchronous DP for parallel processing, they did
not relate these results to real-time variants of DP as we do in this article. To the best

86 A.G. Bar/o ef a/. /Artificial Intelligence 72 (1995) 81-138

of our knowledge, the only other work in which explicit use is made of the theory of
asynchronous DP for real-time control is that of Jalali and Ferguson [321.

Korf’s [381 LRTA* algorithm is a heuristic search algorithm that caches state evalua-
tions so that search performance improves with repeated trials. Evaluations of the states
visited by the problem solver are maintained in a hash table. Each cycle of the algorithm
proceeds by expanding the current state by generating all of its immediate successor
states and evaluating them using previously stored evaluations if they exist in the hash
table, and otherwise using an initially given heuristic evaluation function. Assuming the
objective is to find a minimum-cost path to a goal state, a score is computed for each

neighboring state by adding to its evaluation the cost of the edge to it from the current
state. The minimum of the resulting scores becomes the new evaluation for the current
state, which is stored in the hash table.’ Finally, a move is made to this lowest-scoring
neighboring state. LRTA” therefore backs up state evaluations in much the same way
as do Samuel’s algorithm and DI? In fact, as we shall see in what follows, with a slight
caveat, LRTA* is the deterministic specialization of asynchronous DP applied on-line.

3. Heuristic search and the control of dynamic systems

Whereas AI has focused on problems having relatively little mathematical structure,
control theorists have studied more restrictive classes of problems but have developed
correspondingly more detailed theories. Some concepts and methods from control theory
are nevertheless relevant to problems of interest in AI as discussed, for example, by Dean
and Wellman [231. In this section, as a prelude to introducing the stochastic optimal
control framework in which our results are cast, we discuss the relationship between
heuristic search, real-time heuristic search, and selected concepts from control theory

3.1. Heuristic search and system control

Heuristic search algorithms apply to state-space search problems defined by a set of
states, a set of operators that map states to states, an initial state, and a set of goal
states. The objective is to find a sequence of operators that maps the initial state to
one of the goal states and (possibly) optimizes some measure of cost, or merit, of
the solution path. These components constitute a model of some real problem, such
as solving a puzzle, proving a theorem, or planning a robot path. The term control as
used in the literature on heuristic search and problem solving means the process of
deciding what to do next in manipulating a model of the problem in question. Despite
some similarities, this is not the meaning of the term control in control theory, where

it refers to the process of manipulating the behavior of a physical system in real time
by supplying it with appropriate input signals. In AI, control specifies the formal search
process, whereas in control theory, it steers the behavior of a physical system over
time. Unlike models manipulated by search algorithms, physical systems cannot be set

5 In Korf’s 1381 related Real-Time A* (RTA*) algorithm, the second smallest score is stored. Because

LRTA* is more closely related to control and DP than is RTA*, we do not discuss RTA*.

A.G. Barto et al. /Artificial Intelligence 72 (1995) 81-138 87

immediately into arbitrary states and do not suspend activity to await the controller’s
decisions. Models used to formalize system control problems, called dynamic systems,
are explicit in taking into account the passage of time. In what follows, by control we

mean the control of dynamic systems, not the control of search.
In many applications, a symbolic representation of a sequence of operators is not

the final objective of a heuristic search algorithm. The intent may be to execute the
operator sequence to generate a time sequence of actual inputs to a physical system.
Here the result is the control engineer’s form of control, but this control method differs
substantially from the methods addressed by most of control theory. A sequence of
inputs, or actions, produced in this way through heuristic search is an open-loop control
policy, meaning that it is applied to the system without using information about the

system’s actual behavior while control is underway, i.e., without execution monitoring,
or feedback. In terms of control theory, heuristic search is a control design procedure
for producing an open-loop control policy from a system model; the policy is appro-
priate for the given initial state. Further, under normal circumstances, it is an of-line
design procedure because it is completed before being used to control the system, i.e.,
under normal circumstances, the planning phase of the problem solving process strictly

precedes the execution phase.
Open-loop control works fine when all of the following are true: (1) the model used

to determine the control policy is a completely accurate model of the physical system,
(2) the physical system’s initial state can be exactly determined, (3) the physical system
is deterministic, and (4) there are no unmodeled disturbances. These conditions hold

for some of the problems studied in AI, but they are not true for most realistic control
problems. Any uncertainty, either in the behavior of the physical system itself or in
the process of modeling the system, implies that closed-loop control can produce better
performance. Control is closed-loop when each action depends on current observations
of the real system, perhaps together with past observations and other information internal

to the controller.
A closed-loop control policy (also called a closed-loop control rule, law, or strategy)

is a rule specifying each action as a function of current, and possibly past, information
about the behavior of the controlled system. It closely corresponds to a “universal plan”
[641 as discussed, for example, by Chapman [141, Ginsberg [271, and Schoppers [651.
In control theory, a closed-loop control policy usually specifies each action as a function
of the controlled system’s current state, not just the current values of observable vari-
ables (a distinction whose significance for universal planning is discussed by Chapman

[141) . Although closed-loop control is closely associated with negative feedback, which
counteracts deviations from desired system behavior, negative feedback control is merely
a special case of closed-loop control.

When there is no uncertainty, closed-loop control is not in principle more compe-
tent than open-loop control. For a deterministic system with no disturbances, given any
closed-loop policy and an initial state, there exists an open-loop policy that produces
exactly the same system behavior, namely, the open-loop policy generated by running
the system, or simulating it with a perfect model, under control of the given closed-loop
policy. But this is not true in the stochastic case, or when there are unmodeled distur-
bances, because the outcome of random and unmodeled events cannot be anticipated in

88 A.G. Barto et al./Art@cial Intelligence 72 (1995) 81-138

designing an open-loop policy. Note that game-playing systems always use closed-loop
control for this reason: the opponent is a kind of disturbance. A game player always
uses the opponent’s actual previous moves in determining its next move. For exactly the
same reasons, closed-loop control can be better than open-loop control for single-agent
problems involving uncertainty. A corollary of this explains the almost universal use
of closed-loop control by control engineers: the system model used for designing an
acceptable control policy can be significantly less faithful to the actual system when
it is used for designing closed-loop instead of open-loop policies. Open-loop control
only becomes a practical alternative when it is expensive or impossible to monitor the
controlled system’s behavior with detail sufficient for closed-loop control,

Most control theory addresses the problem of designing adequate closed-loop policies
off-line under the assumption that an accurate model of the system to be controlled
is available. The off-line design procedure typically yields a computationally efficient
method for determining each action as a function of the observed system state. If it
is possible to design a complete closed-loop policy off-line, as it is in many of the
control problems studied by engineers, then it is not necessary to perform any additional
re-design, i.e., re-planning, for problem instances differing only in initial state. Changing
control objectives, on the other hand, often does require policy re-design.

One can also design closed-loop policies on-line through repeated on-line design of
open-loop policies. This approach has been called receding horizon control [42,50].

For each current state, an open-loop policy is designed with the current state playing the
role of the initial state. The design procedure must terminate within the time constraints

imposed by on-line operation. This can be done by designing a finite-horizon open-loop
policy, for example, by using a model for searching to a fixed depth from the current
state. After applying the first action specified by the resulting policy, the remainder of
the policy is discarded, and the design process is repeated for the next observed state.
Despite requiring on-line design, which in AI corresponds to on-line planning through
projection, or prediction, using a system model, receding horizon control produces a
control policy that is reactive to each current system state, i.e., a closed-loop policy.
According to this view, then, a closed-loop policy can involve explicit planning through

projection, but each planning phase has to complete in a fixed amount of time to retain
the system’s reactivity to the observed system states. In contrast to methods that design
closed-loop policies off-line, receding horizon control can react on-line to changes in
control objectives.

3.2. Optimal control

The most familiar control objective is to control a system so that its output matches

a reference output or tracks a reference trajectory as closely as possible in the face
of disturbances. These are called regulation and tracking problems respectively. In an
optimal control problem, on the other hand, the control objective is to extremize some
function of the controlled system’s behavior, where this function need not be defined in
terms of a reference output or trajectory. One typical optimal control problem requires
controlling a system to go from an initial state to a goal state via a minimum-cost
trajectory. In contrast to tracking problems-where the desired trajectory is part of

A.G. Barto et al. /Artificial Intelligence 72 (1995) N-138 89

the problem specification-the trajectory is part of the solution of this optimal control
problem. Therefore, optimal control problems such as this are closely related to the
problems to which heuristic search algorithms apply.

Specialized solution methods exist for optimal control problems involving linear sys-
tems and quadratic cost functions, and methods based on the calculus of variations
can yield closed-form solutions for restricted classes of problems. Numerical methods
applicable to problems involving nonlinear systems and/or nonquadratic costs include
gradient methods as well as DP Whereas gradient methods for optimal control are
closely related to some of the gradient descent methods being studied by connection-
ists (such as the error-backpropagation algorithm [43,86,89]), DP methods are more
closely related to heuristic search. Like a heuristic search algorithm, DP is an off-line
procedure for designing an optimal control policy. However, unlike a heuristic search
algorithm, DP produces an optimal closed-loop policy instead of an open-loop policy
for a given initial state.

3.3. Real-time heuristic search

Algorithms for real-time heuristic search as defined by Korf [381 apply to state-space
search problems in which the underlying model is extended to account for the passage of
time. The model thus becomes a dynamic system. Real-time heuristic search algorithms
apply to state-space search problems with the additional properties that (1) at each time
there is a unique current state of the system being controlled, which is known by the
searcher/controller, (2) during each of a sequence of time intervals of constant bounded
duration, the searcher/controller must commit to a unique action, i.e., choice of operator,
and (3) the system changes state at the end of each time interval in a manner depending
on its current state and the searcher/controller’s most recent action. These factors imply
that there is a fixed upper bound on the amount of time the searcher/controller can take
in deciding what action to make if that action is to be based on the most up-to-date state
information. Thus, whereas a traditional heuristic search algorithm is a design procedure
for an open-loop policy, a real-time heuristic search algorithm is a control procedure,
and it can accommodate the possibility of closed-loop control.

Korf’s [38] LRTA* algorithm is a kind of receding horizon control because it is an
on-line method for designing a closed-loop policy. However, unlike receding horizon
control as studied by control engineers, LRTA* accumulates the results of each local
design procedure so that the effectiveness of the resulting closed-loop policy tends to
improve over time. It stores information from the shallow searches forward from each
current state by updating the evaluation function by which control decisions are made.
Because these updates are the basic steps of DP, we view LRTA* as the result of
interleaving the steps of DP with the actual process of control so that control policy
design occurs concurrently with control.

This approach is advantageous when the control problem is so large and unstructured
mathematically that complete control design is not even feasible off-line. This case
requires a partial closed-loop policy, that is, a policy useful for a subregion of the
problem’s state space. Designing a partial policy on-line allows actual experience to
influence the subregion of the state space where design effort is concentrated. Design

90 A.G. Bcwio et 01. /Artificial htelli~ence 72 (1995) 81-138

effort is not expended for parts of the state space that are not likely to be visited during
actual control. Although in general it is not possible to design a policy that is optimal
for a subset of the states unless the design procedure considers the entire state set, this is

possible under certain conditions such as those required by Korf’s convergence theorem

for LRTA*.

3.4. Adaptive control

Control theorists use the term adaptive control for cases in which an accurate model
of the system to be controlled is not available for designing a policy off-line. These
are sometimes called control problems with incomplete information. Adaptive control

algorithms design policies on-line based on information about the control problem that
accumulates over time as the controller and system interact. A distinction is sometimes
made between adaptive control and learning control, where only the latter takes advan-
tage of repetitive control experiences from which information is acquired that is useful

over the long term. Although this distinction may be useful for some types of control
problems, we think its utility is limited when applied to the kinds of problems and
algorithms we consider in this article. According to what we mean by adaptive control
in this article, even though algorithms like LRTA* and Samuel’s algorithm [61] are

learning algorithms, they are not adaptive control algorithms because they assume the

existence of an accurate model of the problem being solved. Although it certainly seems
odd to us that a control algorithm that learns is not ipso facto adaptive, this is forced
upon us when we adopt the control engineer’s restrictive definition of adaptive control.
In Section 7 we describe several algorithms that have properties of both learning and
adaptive control algorithms.

4. Markovian decision problems

The basis for our theoretical framework is a class of stochastic optimal control prob-

lems called Murkovian decision problems. This is the simplest class of problems that
is general enough to include stochastic versions of the problems to which heuristic
search algorithms apply, while at the same time allowing us to borrow from a well-
developed control and operations research literature. Frameworks that include stochastic
problems are important due to the uncertainty present in applications and the fact that
it is the presence of uncertainty that gives closed-loop, or reactive, control advantages

over open-loop control. In a Markovian decision problem, operators take the form of ac-
tions, i.e., inputs to a dynamic system, that probabilistically determine successor states.
Although an action is a “primitive ” in the theory, it is important to understand that in

applications an action can be a high-level command that executes one of a repertoire
of complex behaviors. Many problems of practical importance have been formulated as
Markovian decision problems, and extensive treatment of the theory and application of
this framework can be found in many books, such as those by Bertsekas [1 l] and Ross

1601.

A.G. Barto et al. /Art$cial Intelligence 72 (1995) N-138 91

A Markovian decision problem is defined in terms of a discrete-time stochastic dy-
namic system with finite state set S = { 1, . . . , n}. Time is represented by a sequence of
time steps t=O,l,... . In Section 6 introducing RTDP, we treat this as a sequence of

specific instants of real time, but until then it is best to treat it merely as an abstract
sequence. At each time step, a controller observes the system’s current state and selects
a control action, or simply an ~crion,~ which is executed by being applied as input
to the system. If i is the observed state, then the action is selected from a finite set
U(i) of admissible actions. When the controller executes action u E U(i), the system’s

state at the next time step will be j with state-transition probability pij(u). We further
assume that the application of action u in state i incurs an immediate cost ci(u) . 7 When
necessary, we refer to states, actions, and immediate costs by the time steps at which
they occur by using s,, u,, and cf to denote, respectively, the state, action, and immediate
cost at time step t, where uI E U(s,) and ct = cs, (Us). We do not discuss a significant
extension of this formalism in which the controller cannot observe the current state
with complete certainty. Although this possibility has been studied extensively and is

important in practice, the complexities it introduces are beyond the scope of this article.
A closed-loop policy specifies each action as a function of the observed state. Such a

policyisdenoted~=[~(l),...,~(n)], where the controller executes action p(i) E
U(i) whenever it observes state i. This is a stationary policy because it does not
change over time. Throughout this article, when we use the term policy, we always
mean a stationary policy. For any policy ,u, there is a function, fp, called the evaluation
function, or the costfunction, corresponding to policy ,u. It assigns to each state the total
cost expected to accumulate over time when the controller uses the policy p starting
from the given state. Here, for any policy ,u and state i, we define fp(i) to be the
expected value of the injnite-horizon discounted cost that will accrue over time given

that the controller uses policy ,u and i is the initial state:

(1)

where y, 0 < y < 1, is a factor used to discount future immediate costs, and Eti is the
expectation assuming the controller always uses policy ,u. We refer to f’“(i) simply as

the cost of state i under policy ,u. Thus, whereas the immediate cost of state i under
policy p is ci(p(i)), the cost of state i under policy p is the expected discounted sum
of all the immediate costs that will be incurred over the future starting from state i.
Theorists study Markovian decision problems with other types of evaluation functions,
such as the function giving average cost per time step, but we do not consider those
formulations here.

6 In control theory, this is simply called a control. We use the term action because it is the term commonly
used in Al.

7 To be more general, we can alternatively regard the immediate costs as (bounded) random numbers

depending on states and actions. In this case, if cl(u) denotes the expecfed immediate cost of the application

of action u in state i, the theory discussed below remains unchanged.

92 A.G. Barro et al./Art$cial Intelligence 72 (1995) 81-13R

The objective of the type of Markovian decision problem we consider is to find
a policy that minimizes the cost of each state i as defined by Eq. (1). A policy
that achieves this objective is an optimal policy which, although it depends on y and
is not always unique, we denote ,u* = [,~*(l),...,p*(n)]. To each optimal policy
corresponds the same evaluation function, which is the optimal evaluation function, or
optimal cost function, denoted f *; that is, if ,u* is any optimal policy, then ffi’ = f’.
For each state i, f*(i), the optimal cost of state i, is the least possible cost for state i
for any policy.

This infinite-horizon discounted version of a Markovian decision problem is the sim-

plest mathematically because discounting ensures that the costs of all states are finite
for any policy and, further, that there is always an optimal policy that is stationary.8

The discount factor, y, determines how strongly expected future costs should influence
current control decisions. When y = 0, the cost of any state is just the immediate cost
of the transition from that state. This is because O” = I in Eq. (1) so that fp(i) =

E+ [CO/SO = i] = ci(,u(i)) . In this case, an optimal policy simply selects actions to min-
imize the immediate cost for each state, and the optimal evaluation function just gives
these minimum immediate costs. As y increases toward one, future costs become more
significant in determining optimal actions, and solution methods generally require more
computation.

When y = 1, the undiscounted case, the cost of a state given by Eq. (1) need

not be finite, and additional assumptions are required to produce well-defined decision
problems. We consider one set of assumptions for the undiscounted case because the

resulting decision problems are closely related to problems to which heuristic search is
applied. In these problems, which Bertsekas and Tsitsiklis [121 call stochastic shortest

path problems (thinking of immediate costs as arc lengths in a graph whose nodes
correspond to states), there is an absorbing set of states, i.e., a set of states that once

entered is never left, and the immediate cost associated with applying an action to any of
the states in the absorbing set is zero. These assumptions imply that the infinite-horizon
evaluation function for any policy taking the system into the absorbing set assigns finite
costs to every state even when y = 1. This is true because all but a finite number of the
immediate costs incurred by such a policy over time must be zero. Additionally, as in
the discounted case, there is always at least one optimal policy that is stationary. The
absorbing set of states corresponds to the set of goal states in a deterministic shortest

path problem, and we call it the goal set. However, unlike tasks typically solved via
heuristic search, here the objective is to find an optimal closed-loop policy, not just an
optimal path from a given initial state.

AI researchers studying reinforcement learning often focus on shortest path prob-
lems in which all the immediate costs are zero until a goal state is reached, when a
“reward” is delivered to the controller and a new trial begins. These are special kinds
of the stochastic shortest path problems that address the issue of delayed reinforce-
ment [67] in a particularly stark form. Rewards correspond to negative costs in the
formalism we are using. In the discounted case when all the rewards are of the same

R In finite-horizon problems, optimal policies arc generally nonstationary because different actions can be

optimal for a given state depending on how many actions remain until the horizon is reached.

A.G. Barto et al./Arti@ial Intelligence 72 (1995) 81-138 93

A

Starting line

1

Finish line

Fig. 1. Example race tracks. Panel A:
for details.

small race track. Panel B: larger race track. See Table 1 (Section 10)

magnitude, an optimal policy produces a shortest path to a rewarding state. Another

Stwting line Finish line

example of a stochastic shortest path problem receiving attention is identical to this
one except that all the non-rewarding immediate costs have the same positive value
instead of zero. In this case, an optimal policy produces a shortest path to a goal state in
the undiscounted case. Such problems are examples of minimum-time optimal control

problems.

4.1. An example: the race track problem

To illustrate the Markovian decision framework, we formalize a game called Race
Track described by Martin Gardner [25] that simulates automobile racing. We modify

the game, which we use in Section 10 to compare the performance of various DP-based
learning algorithms, by considering only a single car and by making it probabilistic.

A race track of any shape is drawn on graph paper, with a starting line at one end
and a finish line at the other consisting of designated squares. Each square within the
boundary of the track is a possible location of the car. Fig. 1 shows two example tracks.
At the start of each of a sequence of trials, the car is placed on the starting line at
a random position, and moves are made in which the car attempts to move down the
track toward the finish line. Acceleration and deceleration are simulated as follows. If

in the previous move the car moved h squares horizontally and u squares vertically,
then the present move can be h’ squares vertically and v’ squares horizontally, where
the difference between h’ and h is - 1, 0, or 1, and the difference between v’ and v is
- 1, 0, or 1. This means that the car can maintain its speed in either dimension, or it
can slow down or speed up in either dimension by one square per move. If the car hits

94 A.G. Barto et nl./ArtiJciol Intelligence 72 (1995) 81-138

the track boundary, 9 we move it back to a random position on the starting line, reduce
its velocity to zero (i.e., h’ - h and U’ - c’ are considered to be zero), and continue the

trial. The objective is to learn to control the car so that it crosses the finish line in as
few moves as possible. Figs. 2 and 4 show examples of optimal and near-optimal paths
for the race tracks shown in Fig. 1.

In addition to the difficulty of discovering faster ways to reach the finish line, it is

very easy for the car to gather too much speed to negotiate the track’s curves. To make
matters worse, we introduce a random factor into the problem. With a probability p, the
actual accelerations or decelerations at a move are zero independently of the intended
accelerations or decelerations. Thus, 1 -p is the probability that the controller’s intended
actions are executed. One might think of this as simulating driving on a track that is

unpredictably slippery so that sometimes braking and throttling up have no effect on the
car’s velocity.

Although the Race Track problem is suggestive of robot motion and navigation prob-
lems, it is not our intention to formulate it in a way best suited to the design of an
autonomous vehicle with realistic sensory and motor capabilities. Instead, we regard
it as a representative example of problems requiring learning difficult skills, and we
formulate the entire task as an abstract stochastic shortest path problem. The first step
in this formulation is to define the dynamic system being controlled. The state of the
system at each time step t = 0, I,. can be represented as a quadruple of integers
s, = (xt, yr, it, jr). The first two integers are the horizontal and vertical coordinates

of the car’s location, and the second two integers are its speeds in the horizontal and
vertical directions. That is, .?(= x, - x,-t is the horizontal speed of the car at time step
t; similarly .vt = yt - yt-t (we assume x-t = y-t = 0). The set of admissible actions for
each state is the set of pairs (u”, uJ’), where uX and uy are both in the set { -l,O, 1).
We let 14~ = (u:, u:) denote the action at time t. A closed-loop policy ,u assigns an

admissible action to each state: the action at time step t is

P(St) E{(--l,--l),(--~,0),(~1.1),(0,-1),(0,0),(0,1),(1,-1),
(l,O),(l. I)}.

The following equations define the state transitions of this system. With probability
I - p, the controller’s action is reliably executed so that the state at time step t + 1 is

Xt+l =xr+it+u;,
.Yt+t =y,+j,+u:,

&,I =xt+u;,
(2)

jr+l = p, + UT,

and with probability p, the system ignores the controller’s action, so that the state at
time step t + 1 is

‘) For the computational experiments described in Section 10, this means that the projected path of the car

for a move intersects the track boundary at any place not on the finish line.

A.G. Barto et al./Arttjicial Intelligence 72 (1995) 81-138 95

Xlfl = Xt + Xt,

Yf+l = yr + P,,
&+1 = it,

(3)

P,,l = jr.

This assumes that the straight line joining the point (x,, y,) to the point (x,+1 , yt+t)
lies entirely within the track, or intersects only the finish line. If this is not the case, then
the car has collided with the track’s boundary, and the state at t + 1 is (x, y, 0, O), where
(x, y) is a randomly chosen position on the starting line. A move that takes the car

across the finish line is treated as a valid move, but we assume that the car subsequently
stays in the resulting state until a new trial begins. This method for keeping the car on
the track, together with Eqs. (3) and (2)) define the state-transition probabilities for all

states and admissible actions.
To complete the formulation of the stochastic shortest path problem, we need to define

the set of start states, the set of goal states, and the immediate costs associated with
each action in each state. The set of start states consists of all the zero-velocity states
on the starting line, i.e., all the states (x, y, 0,O) where (x, y) are coordinates of the

squares making up the starting line. The set of goal states consists of all states that can
be reached in one time step by crossing the finish line from inside the track. According
to the state-transition function defined above, this set is absorbing. The immediate cost
for all non-goal states is one independently of the action taken, i.e., ci(U) = 1 for
all non-goal states i and all admissible actions U. The immediate cost associated with
a transition from any goal state is zero. If we restrict attention to policies that are

guaranteed to take the car across the finish line, we do not need to use discounting.
For such a policy ,u, the undiscounted infinite-horizon cost, fp (i) , of a state i under /L
is the expected number of moves for the car to cross the finish line from state i when
it is being controlled by a policy Jo. An optimal policy, which minimizes this cost of
each state, is therefore a policy by which the car is expected to cross the finish line as

quickly as possible starting from any state. The optimal cost of a state i, f*(i), is the
smallest expected number of moves to the finish line.

The total number of states depends on the configuration of the race track, but because
we have not imposed a limit on the car’s speed, it is potentially infinite. However, the

set of states that can be reached from the set of start states via any policy is finite and
can be considered to be the state set of the stochastic shortest path problem.

4.2. The optima&y equation

To set the stage for discussing DP, we provide more detail about the relationship
between policies and evaluation functions. Although the evaluation function ffi gives
the cost of each state under policy ,u, p does not necessarily select actions that lead
to the best successor states as evaluated by fp. In other words, p is not necessarily a
greedy policy with respect to its own evaluation function.

To define a greedy policy in this stochastic case we use Watkins’ [8 1] “Q” notation,
which plays a role in the Q-Learning method described in Section 7.3. Let f be a
real-valued function of the states; it may be the evaluation function for some policy, a

96 A.G. Rrrrtcl (‘1 iri /Ar-tifi&/ Intrlli,~wzw 72 (199.5) RI-l.38

guess for a good evaluation function (such as a heuristic evaluation function in heuristic
search). or an arbitrary function. For each state i and action II E Or(i), let

Q’ c i. II) = c, c II) + y c p;, c If) .I‘(,j) (4)
it.>

Q”(i, M) is the cost of action 11 in state i as evaluated by f. It is the sum of the
immediate cost and the discounted expected value of the costs of the possible successor
states under action u. If the system’s state transitions are deterministic, then Eq. (4)

simplifies to

Q’(i. u) = c;(u) + r.fC,j,.

where j is the successor of state i under action II (i.e., node j is the child of node i
along the edge corresponding to operator zc). In the deterministic case, one can therefore

think of @(i, u) as a summary of the result of a one-ply lookahead from node i along
the edge corresponding to operator u as evaluated by f. The stochastic case requires
a generalization of this view because many edges correspond to each operator, each
having a different probability of being followed. If .1’ is the evaluation function for some
policy, Q-‘(i, u) gives the cost of generating action II in state i and thereafter following

this policy.
Using these “Q-values”, a policy fi is greedy with respect to .f if for all states i, ,u(i)

is an action satisfying

Although there can be more than one greedy policy with respect to f if more than one
action minimizes the set of Q-values for some state. we let ,CL~ denote any policy that
is greedy with respect to f. Also note that any policy is greedy with respect to many
different evaluation functions.

A key fact underlying all DP methods is that the only policies that are greedy with

respect to their own evaluation functions are optimal policies. That is, if ,u* is any
optimal policy, then its evaluation function is the optima1 evaluation function f*, and
p* = ,uf

*
This means that for any state i, p* (i) satisfies

Qj*(i,p*(i)) = min Q’*(i.ll)
l&l/(i)

Furthermore, any policy that is greedy with respect to ,f* is an optima1 policy. Thus,
if ,f* is known, it is possible to define an optimal policy simply by defining it satisfy
Eq. (5), i.e., defining it to be greedy with respect to f*. Due to the definition of Q-
values (Eq. (4)), this generalizes to the stochastic case the fact that an optima1 policy
is any policy that is best-first with respect to f* as determined by a one-ply search from
each current state. Deeper search is never necessary because f* already summarizes all
the information that such a search would obtain.

Letting Q* (i, u) = Qf’ (i, u) to simplify notation, a related key fact is that a necessary
and sufficient condition for .f* to be the optimal evaluation function is that for each
state i it must be true that

A.G. Barto et al./Art@cial Intelligence 72 (1995) 81-138 97

f*(i) = min Q*(i,u)
UEU(i)

= min UEU(i) ci(u) +r&j(u)f*(j) . jES 1 (6)

This is one form of the Bellman Optima& Equation which can be solved for each
f*(i), i E S, by a DP algorithm. It is a set of n (the number of states) simultaneous
nonlinear equations. The form of the equations depends on the dynamic system and the

immediate costs underlying the decision problem.
Once f* has been found, an optimal action for state i can be determined as follows.

The Q-values Q* (i, u) for all admissible actions u E V(i) are determined via Eq. (4).
In general, this takes O(mn) computational steps, where n is the number of states
and m is the number of admissible actions for state i. However, if one knows which

of the state-transition probabilities from state i are zero (as one usually does in the
deterministic case), then the amount of computation can be much less (O(m) in the
deterministic case). Computing these Q-values amounts to a one-ply lookahead search
from state i, which requires knowledge of the system’s state-transition probabilities.
Using these Q-values, an optimal action can be determined via Fq. (5), which takes
m - 1 comparisons. The computational complexity of finding an optimal action using this
method is therefore dominated by the complexity of finding f*, i.e., by the complexity
of the DP algorithm.

5. Dynamic programming

Given a complete and accurate model of a Markovian decision problem in the form of
knowledge of the state-transition probabilities, ~i,i(~), and the immediate costs, ci(u),
for all states i and actions u E U(i), it is possible-at least in principle-to solve
the decision problem off-line by applying one of various well-known DP algorithms.
We describe several versions of a basic DP algorithm called value iteration. There
are other DP algorithms, including one called policy iteration, but learning algorithms
based on them are beyond the scope of this article, although we briefly discuss policy
iteration in Section 8. We treat DP as referring only to value iteration unless oth-
erwise noted. As used for solving Markovian decision problems, value iteration is

a successive approximation procedure that converges to the optimal evaluation func-
tion, f*. It is a successive approximation method for solving the Bellman Optimality
Equation whose basic operation is “backing up” estimates of the optimal state costs.
There are several variations of value interaction depending on how the computations
are organized. We first describe the version that applies the backup operations syn-
chronously.

5.1. Synchronous dynamic programming

Let fk denote the estimate of f* available at stage k of the DP computation, where
k=O,l,... . At stage k, fk(i) is the estimated optimal cost of state i, which we refer to

98 A.G. Barto et al./Arti$cial Intelligence 72 (1995) RI-138

simply as the stage-k cost of state i; similarly, we refer to fk as the stage-k evaluation
function, even though it may not actually be the evaluation function for any policy. (We
use the index k for the stages of a DP computation, whereas we use t to denote the time
step of the control problem being solved.) In synchronous DP, for k = 0, 1, . . ., fk+l is
defined in terms of fk as follows: for each state i,

(7)

where fc is some given initial estimate of f *. We refer to the application of this update
equation for state i as backing up i’s cost. Although backing up costs is a common

operation in a variety of search algorithms in AI, there it does not always mean that
the backed-up cost is saved for future use. Here, however, the backed-up cost is always
saved by updating the evaluation function.

The iteration defined by Eq. (7) is synchronous because no values of fk+i appear
on the right-hand side of the equation. If one imagines having a separate processor

associated with each state, applying Eq. (7) for all states i means that each processor
backs up the cost of its state at the same time, using the old costs of the other states

supplied by the other processors. This process updates all values of fk simultaneously.
Alternatively, a sequential implementation of this iteration requires temporary storage
locations so that all the stage-(k + 1) costs are computed based on the stage-k costs.
The sequential ordering of the backups is irrelevant to the result.

If there are n states and m is the largest number of admissible actions for any state,
then each iteration, which consists of backing up the cost of each state exactly once,

requires at most O(mn2) operations in the stochastic case and O(mn) operations in the
deterministic case. For the large state sets typical in AI and in many control problems,
it is not desirable to try to complete even one iteration, let alone repeat the process until
it converges to f *. For example, because backgammon has about 102’ states, a single

iteration of value iteration in this case would take more than 1,000 years using a 1,000
MIPS processor.

If y < I, repeated synchronous iterations produce a sequence of functions that con-
verges to the optimal evaluation function, f*, for any initial estimate, fo. Although the
cost of a state need not get closer to its optimal cost on each iteration, the maximum

error between fk (i) and f* (i) over all states i must decrease (e.g., [111) .
Synchronous DP, as well as the other off-line versions of value iteration we discuss

below, generates a sequence of functions that converges to f* if y < 1, but it does
not explicitly generate a sequence of policies. To each stage-k evaluation function there
corresponds at least one greedy policy, but these policies are never explicitly formed.
Ideally, one would wait until the sequence converges to f’ and then form a greedy
policy corresponding to f*, which would be an optimal policy. But this is not possible
in practice because value iteration converges asymptotically. Instead, one executes value
iteration until it meets a test for approximate convergence and then forms a policy from

A.G. Barto et al. /Art@ial Intelligence 72 (1995) 81-138

the resulting evaluation function. lo

99

It is important to note that a function in the sequence of evaluation functions generated
by value iteration does not have to closely approximate f* in order for a corresponding
greedy policy to be an optimal policy. Indeed, a policy corresponding to the stage-k
evaluation function for some k may be optimal long before the algorithm converges to
f*. But unaided by other computations, value iteration does not detect when this first
happens. This fact is an important reason that the on-line variants of value iteration
we discuss in this article can have advantages over the off-line variants. Because the
controller always uses a policy defined by the current evaluation function, it can perform
optimally before the evaluation function converges to the optimal evaluation function.

Bertsekas [1 l] and Bertsekas and Tsitsiklis [121 give conditions ensuring conver-
gence of synchronous DP for stochastic shortest path problems in the undiscounted case
(y = 1) . Using their terminology, a policy is proper if its use implies a nonzero proba-
bility of eventually reaching the goal set starting from any state. Using a proper policy
also implies that the goal set will be reached eventually from any state with probability
one. The existence of a proper policy is the generalization to the stochastic case of the
existence of a path from any initial state to the goal set.

Synchronous DP converges to f* in undiscounted stochastic shortest path problems
under the following conditions:

(1) the initial cost of every goal state is zero,
(2) there is at least one proper policy, and
(3) all policies that are not proper incur infinite cost for at least one state.

The third condition ensures that every optimal policy is proper, i.e., it rules out the
possibility that a least-cost path exists that never reaches the goal set. One condition
under which this is true is when all immediate costs for transitions from non-goal states
are positive, i.e., Q(U) > 0 for all non-goal states i and actions u E U(i). I1 In the
deterministic case, conditions (2) and (3) are satisfied if there is at least one solution
path from every state and the sum of the immediate costs in every loop is positive.

5.2. Gauss-Seidel dynamic programming

Gauss-Seidel DP differs from the synchronous version in that the costs are backed
up one state at a time in a sequential “sweep” of all the states, with the computation for
each state using the most recent costs of the other states. If we assume that the states
are numbered in order, as we have here, and that each sweep proceeds in this order,
then the result of each iteration of Gauss-Seidel DP can be written as follows: for each
state i and each k = 0, 1, . . .,

‘” Policy iteration, in contrast, explicitly generates a sequence of policies that converges to an optimal policy
after a finite number of iterations (when there am a finite number of states and admissible actions, as we are

assuming here). However, policy iteration has other shortcomings which we discuss in Section 8.
” The assumption of positive immediate costs can be weakened to nonnegativity, i.e., ci (a) 2 0 for all i E S

and u E U(i), if there exists at least one optimal proper policy [121.

IO0 A.G. Burro et trl. /Arrijicitrl Intelligence 72 (1995) 81-138

jifki t (i) = min
LIEU(i)

[

c,(U) +YCPi.j(U)f’(j)

iE.7 I

where

(8)

if ,j < i,

otherwise.

Unlike synchronous DP, the order in which the states’ costs are backed up influences
the computation. Nevertheless, Gauss-Seidel DP converges to f* under the same con-
ditions under which synchronous DP converges. When y < 1, repeated Gauss-Seidel
sweeps produce a sequence of functions that converges to f * . For undiscounted stochas-

tic shortest path problems, the conditions described above that ensure convergence of
synchronous DP also ensure convergence of Gauss-Seidel DP [121. Because each cost
backup uses the latest costs of the other states, Gauss-Seidel DP generally converges
faster than synchronous DP Furthermore, it should be clear that some state orderings

produce faster convergence than others, depending on the problem. For example, in
shortest path problems, sweeping from goal states backwards along likely shortest paths

usually leads to faster convergence than sweeping in the forward direction.
Although Gauss-Seidel DP is not one of the algorithms of direct interest in this

article, we used it to solve the example problem described in Section 4.1 and it serves
as a bridge between synchronous DP and the asynchronous form discussed next.

5.3. Asynchronous dynamic programming

Asynchronous DP is similar to Gauss-Seidel DP in that it does not back up state
costs simultaneously. However, it is not organized in terms of systematic successive
sweeps of the state set. As proposed by Bertsekas [lo] and further developed by

Bertsekas and Tsitsiklis [121, asynchronous DP is suitable for multi-processor systems
with communication time delays and without a common clock. For each state i E S

there is a separate processor dedicated to backing up the cost of state i (more generally,
each processor may be responsible for a number of states). The times at which each
processor backs up the cost of its state can be different for each processor. To back up
the cost of its state, each processor uses the costs for other states that are available to it
when it “awakens” to perform a backup. Multi-processor implementations have obvious
utility in speeding up DP and thus have practical significance for all the algorithms we
discuss below (see, e.g., Lemmon [44]). However, our interest in asynchronous DP
lies in the fact that it does not require state costs to be backed up in any systematically
organized fashion.

Although in the full asynchronous model, the notion of discrete computational stages
does not apply because a processor can awaken at any of a continuum of times, we use
a notion of an iteration stage because it facilitates our discussion of RTDP in the next
section. As in the other forms of DP, let fk denote the estimate of f* available at stage

A.G. Barto et d. /Artificial Intelligence 72 (1995) 81-138 101

k of the computation. At each stage k, the costs of a subset of the states are backed up
synchronously, and the costs remain unchanged for the other states. The subset of states
whose costs are backed up changes from stage to stage, and the choice of these subsets
determines the precise nature of the algorithm. For each k = 0, 1,. . ., if Sk c S is the

set of states whose costs are backed up at stage k, then fk+l is computed as follows:

min Qj”(i,u), if i E Sk,
fkfl (i) = uW(i)

.fkfi), otherwise.

According to this algorithm, then, fk+l may differ from fk on one state, on many

(9)

states, or possibly none, depending on Sk. Further, unlike Gauss-Seidel DP, the costs
of some states may be backed up several times before the costs of others are backed

up once. Asynchronous DP includes the synchronous and Gauss-Seidel algorithms as
special cases: synchronous DP results if Sk = S for each k; Gauss-Seidel DP results
when each Sk consists of a single state and the collection of Sk’s is defined to implement
successive sweeps of the entire state set (e.g., Sa = {l}, St = {2}, . . ., Sn-l = {n},

S,, = {I}, Sn+l = {2}, . . .I.
Discounted asynchronous DP converges to f* provided that the cost of each state is

backed up infinitely often, i.e., provided that each state is contained in an infinite number
of the subsets Sk, k = 0, 1,. . . . In practice, this means that the strategy for selecting
states for cost backups should never eliminate any state from possible selection in the

future. In the undiscounted case (y = 1) , additional assumptions are necessary to ensure
convergence. It follows from a result by Bertsekas and Tsitsiklis [12, p. 4461 that
asynchronous DP converges in undiscounted stochastic shortest path problems if the

cost of each state is backed up infinitely often and the conditions given in Section 5.1
for convergence of synchronous DP are met: (1) the initial cost of every goal state is
zero, (2) there is at least one proper policy, and (3) all policies that are not proper

incur infinite cost for at least one state.
It is important to realize that a single backup of a state’s cost in asynchronous DP

does not necessarily improve it as an estimate of the state’s optimal cost; it may in
fact make it worse. However, under the appropriate conditions, the cost of each state
converges to its optimal cost with repeated backups. Further, as in Gauss-Seidel DP, the
order in which states’ costs are backed up can influence the rate of convergence in a
problem-dependent way. This fact underlies the utility of various strategies for “teaching”

DP-based learning algorithms by supplying experience dictating selected orderings of
the backups (e.g., Lin [481, Utgoff and Clouse [801, and Whitehead [901) .

6. Dynamic Programming in real time

The DP algorithms described above are off-line algorithms for solving Markovian de-

cision problems. Although they successively approximate the optimal evaluation function
through a sequence of stages, these stages are not related to the time steps of the decision
problem being solved. Here we consider algorithms in which the controller performs
asynchronous DP concurrently with the actual process of control, i.e., concurrently with

102 A.G. Barr0 et al./Art@cial Intelligence 72 (1995) 81-138

the process of executing actions. The concurrent DP and control processes interact as
follows: (1) control decisions are based on the most up-to-date information from the
DP computation, and (2) the state sequences generated during control influence the
selection of states to which the DP backup operation is applied and whose estimated
costs have to be stored. The asynchronous version of DP is appropriate for this role
due to the flexibility with which its stages can be defined. As a consequence of this

interaction, the controller automatically uses intermediate results of the DP computation
to guide its behavior, and the DP computation can focus on regions of the state set that
are most relevant for control as revealed in the system’s behavior. The algorithm we call
Real-Time DP (RTDP) results when this interaction has specific characteristics that we
present below.

Throughout this section we assume that there is a complete and accurate model of
the decision problem, the case Sutton [70] discusses in relation to planning in AI. In
Section 7, we discuss the adaptive case, in which a complete and accurate model of the
decision problem is not available. When there is a model of the decision problem, then
the concurrent execution of DP and control can also be carried out in simulation mode,

where the model is used as a surrogate for the actual system underlying the decision
problem. The result is a novel off-line DP computation that can have computational
advantages over conventional off-line DP due to its ability to focus on relevant parts of
the state set. Despite its not being a real-time computation, we regard the concurrent
execution of DP and control in simulation mode to be a form of learning. This is in fact

how learning was accomplished in the game-playing programs of Samuel [61,621 and
Tesauro [771. Learning occurred during many simulated games in which these learning
systems competed against themselves. Although we emphasize the real-time use of DP-

based learning algorithms, the reader should be aware that our discussion also applies
to the use of these algorithms in simulation mode.

To describe the concurrent execution of DP and control, we think of the time steps
t=O,l,... of the abstract discrete-time formulation of a Markovian decision problem
as the indices of a sequence of instants of real time at which the controller must execute

control actions. Let s, be the last state observed before time t, and let k, be the total
number of asynchronous DP stages completed up to time t. Then fk, is the latest

estimate of the optimal evaluation function available when the controller must select
action U, E U(s,). When the controller executes uI, it incurs the immediate cost c,~, (u,),
and the system’s state changes to s,+I. By the time the next action, u,+l, has to be
selected, some additional stages of asynchronous DP stages are completed to yield fk,, ,
We let Bt denote the set of states whose costs are backed up in these stages. Note that
some states in B, might have their costs backed up more than once in these stages.

6.1. Real-time DP

RTDP refers to cases in which the concurrently executing DP and control processes
influence one another as follows. First, the controller always follows a policy that is
greedy with respect to the most recent estimate of f*. This means that U, is always
the greedy action with respect to fk,. Moreover, any ties in selecting these actions must
be resolved randomly, or in some other way that ensures the continuing selection of

A.G. Barto et al./Art@cial Intelligence 72 (1995) 81-138 103

all the greedy actions. Second, between the execution of u, and ur+t, the cost of s, is

always backed up, i.e., st E B, for all r. In the simplest case, Bt = {st} for all t, i.e.,
the cost of only s, is backed up at each time step t, but more generally, B, can contain
any states (in addition to st) such as those generated by any type of lookahead search.
For example, B, might consist of the states generated by an exhaustive search from s,

forward to some fixed search depth, or it might consist of the states generated by a
search that is best-first according to fk,.

We say that RTDP converges when the associated asynchronous DP computation
converges to f*. Because the controller always takes actions that are greedy with respect
to the current estimate of f*, when RTDP converges, optimal control performance is
attained. t* The conditions described in Section 5.3 ensuring that asynchronous DP

converges to f* still apply when it is executed concurrently with control. Consequently,
in the discounted case, the only condition required for convergence of RTDP is that no

state is ever completely ruled out for having its cost backed up. Because RTDP always
backs up the cost of the current state, one way to achieve this is to make sure that the
controller always continues to visit each state. There are several approaches to ensuring
this. One approach is to assume, as is often done in the engineering literature, that the

Markov process resulting from the use of any policy is ergodic. This means that there is a
nonzero probability of visiting any state no matter what actions are executed. Discounted
RTDP converges under this assumption. However, this assumption is unsatisfactory for
stochastic shortest path problems because it does not allow proper subsets of states to
be absorbing; it is satisfied only in the trivial stochastic shortest path problem in which

every state is a goal state.
A second way to ensure that each state is visited infinitely often is to use multiple

trials. A trial consists of a time interval of nonzero bounded duration during which
RTDP is performed. After this interval, the system is set to a new starting state, and a
new trial begins. l3 Obviously, this method cannot be used when it is impossible to set
the system state to selected start states, but for many problems this approach is possible,
and it is always possible when RTDP is used in simulation mode.

6.2. Trial-based RTDP

If the initial states of trials are selected so that every state will be selected infinitely
often in an infinite series of trials, then obviously every state will be visited infinitely
often-if only at the start of an infinite number of trials. A simple way to accomplish

this is to start each trial with a randomly selected state, where each state has a nonzero
probability of being selected. By Trial-Based RTDP we mean RTDP used with trials
initiated so that every state will, with probability one, be a start state infinitely often in
an infinite series of trials. Then the following theorem is an immediate result of noting

‘* When there is more than one optimal policy, the controller will continue to switch between optimal policies

because RTDP continues to select among all the greedy actions. This results in a nonstationary optimal policy

because different optimal actions can be taken from the same state on different occasions.

t3 RTDP must be interrupted at the end of a trial so that the cost of the last state in a trial is not influenced

by the cost of the starting state of the next trial. This prevents the state transitions caused by the “trainer’

from influencing the evaluation function.

104 A.G. Barto et al. /Artificial Intelligence 72 (1995) 81-138

that, in the discounted case, Trial-Based RTDP gives rise to a convergent asynchronous
DP computation with probability one for any method of terminating trials:

Theorem 1. For any discounted Markov decision problem (as defined in Section 4) and
any initial evaluation function, Trial-Based RTDP converges (with probability one).

It is natural to use Trial-Based RTDP in undiscounted stochastic shortest path prob-
lems, where trials terminate when a goal state is first reached, or after a predetermined
number of time steps. Because Trial-Based RTDP gives rise to a convergent asyn-
chronous DP computation with probability one in an undiscounted stochastic shortest
path problems under the conditions enumerated in Section 5.3, we have the following

result:

Theorem 2. In undiscounted stochastic shortest path problems, Trial-Based RTDP con-

verges (with probability one) under the following conditions:
(1) the initial cost of every goal state is zero,

(2) there is at least one proper policy, and

(3) all policies that are not proper incur infinite cost for at least one state.

Trial-Based RTDP is more interesting if we relax the requirement that it should yield
a complete optimal evaluation function and a complete optimal policy. Consider a trial-
based approach to solving undiscounted stochastic shortest path problems in which there

is a designated subset of start states from which trials always start. We say that a state i

is relevant if a start state s and an optimal policy exist such that i can be reached from
state s when the controller uses that policy. It suffices to find a policy that is optimal
when restricted to relevant states because the other states (irrelevant states) will never
occur during the use of that (or any other) optimal policy. If one somehow knew which
states were relevant, then one could apply DP to just these states and possibly save a
considerable amount of time and space. But clearly this is not possible because knowing
which states are relevant requires knowledge of optimal policies, which is what one is

seeking.

However, under certain conditions, without continuing to back up the costs of irrel-
evant states, Trial-Based RTDP converges to a function that equals f* on all relevant
states, and the controller’s policy converges to a policy that is optimal on all relevant
states. The costs of some irrelevant states may not have to be backed up at all. More-
over, if memory for the estimated state costs is allocated incrementally during trials, the
exhaustive memory requirement of conventional DP can be avoided because Trial-Based
RTDP tends to focus computation onto the set of relevant states, and eventually restricts
computation to this set. Conditions under which this is possible are stated precisely in
the following theorem, whose proof is given in Appendix A:

Theorem 3. In undiscounted stochastic shortest path problems, Trial-Based RTDP with

the initial state of each trial restricted to a set of start states, converges (with probability
one) to f* on the set of relevant states, and the controller’s policy converges to an

A.G. Barto et al./Artijicial Intelligence 72 (199.5) 81-138 105

optimal policy (possibly nonstationary) on the set of relevant states, under the following
conditions:

(1) the initial cost of every goal state is zero,
(2) there is at least one proper policy, I4
(3) all immediate costs incurred by transitions from non-goal states are positive, i.e.,

ci(U) > 0 for all non-goal states i and actions u E U(i), and
(4) the initial costs of all states are non-overestimating, i.e., fo(i) 6 f*(i) for all

states i E S.

Condition (4) can be satisfied by simply setting fo(i) = 0 for all i. The significance of
Theorem 3 is that it gives conditions under which a policy that is optimal on the relevant
states can be achieved without continuing to devote computational effort to backing up
the costs of irrelevant states. Under these conditions, RTDP can yield an optimal policy
when state and action sets are too large to feasibly apply conventional DP algorithms,
although the amount of computation saved will clearly depend on characteristics of the
problem being solved such as its branching structure. Moreover, if RTDP is applied
on-line instead of in simulation mode, whenever the evaluation function changes so that
its greedy policy shows improvement, the controller automatically takes advantage of
this improvement. This can occur before the evaluation function is close to f*.

Although in both discounted and undiscounted problems, the eventual convergence of
RTDP does not depend critically on the choice of states whose costs are backed between
the execution of actions (except that the cost of the current state must be backed up),
judicious selection of these states can accelerate convergence. Sophisticated exploration
strategies can be implemented by selecting these states based on prior knowledge and
on the information contained in the current evaluation function. For example, in a trial-
based approach to a stochastic shortest path problem, guided exploration can reduce the
expected trial duration by helping the controller find goal states. It also makes sense for
RTDP to back up the costs of states whose current costs are not yet accurate estimates of
their optimal costs but whose successor states do have accurate current costs. Techniques
for “teaching” DP-based learning systems by suggesting certain back ups over others
[46,80,90] rely on the fact that the order in which the costs of states are backed
up can influence the rate of convergence of asynchronous DP, whether applied off-
or on-line. A promising approach recently developed by Peng and Williams [58] and
Moore and Atkeson [571, which the latter authors call “prioritized sweeping”, directs
the application of DP backups to the most likely predecessors of states whose costs
change significantly. Exploration such as this-whose objective is to facilitate finding
an optimal policy when there is a complete model of the decision problem-must be
distinguished from exploration designed to facilitate learning a model of the decision
problem when one is not available. We discuss this latter objective for exploration in
Section 7.

I4 If trials am allowed to time out before a goal state is reached, it is possible to eliminate the requirement
that at least one proper policy exists. Timing out prevents getting stuck in fruitless cycles, and the time-out
period can be extended systematically to ensure that it becomes long enough to let all the optimal paths be
followed without intermption.

106 A.G. Barto et cd. /Artijiciul Intelligence 72 (1995) El-138

6.3. RTDP and LRTA *

Theorem 3 is a generalization of Korf’s [381 convergence theorem for LRTA*. RTDP
extends LRTA* in two ways: it generalizes LRTA* to stochastic problems, and it includes

the option of backing up the costs of many states in the time intervals between the
execution of actions. Using our notation, the simplest form of LRTA* operates as
follows: to determine action uI E Lr(s,), the controller first backs up the cost of s, by
setting f, (s,) to the minimum of the values c,~, (u) + off_ 1 (j) for all actions u E U(s,),

where j is s,‘s successor under action u and f,_t (j) is j’s current cost. I5 The costs of
all the other states remain the same. The controller then inputs this minimizing action

to the system, observes st+i, and repeats the process.
This form of LRTA* is almost the special case of RTDP as applied to a deterministic

problem in which B, = {st} for all t = 0, 1, . . It differs from this special case in
the following way. Whereas RTDP executes an action that is greedy with respect to
ff, LRTA* executes an action that is greedy with respect to ft_t. This is usually an
inconsequential difference because in LRTA* ft(j) can differ from ft-r (j) only when

j = st, i.e., when st is its own successor. LRTA* saves computation by requiring only

one minimization at each time step: the minimization required to perform the backup
also gives the greedy action. However, in the general case, when RTDP backs up more
than one state’s cost during each time interval, it makes sense to use the latest estimate

of f* to select an action.
An extended form of LRTA* can also be related to RTDP In his discussion, Korf

[38] assumes that the evaluation of a state may be augmented by lookahead search.
This means that instead of using the costs ft-t (j) of sl’s successor states, LRTA* can
perform an off-line forward search from s yf to a depth determined by the amount of

time and computational resources available. It applies the evaluation function ft_i to
the frontier nodes and then backs up these costs to st’s immediate successors. This is

done (roughly) by setting the backed-up cost of each state generated in the forward
search to the minimum of the costs of its successors (Korf’s “minimin” procedure).
These backed-up costs of the successor states are then used to update fr_i (s,), as
described above, but neither these costs nor the backed-up costs of the states generated
in the forward search are saved. Despite the fact that backed-up costs for many states

have been computed, the new evaluation function, ft, differs from the old only for s(.
However, within the limits of space constraints, it makes sense to store the backed-up
costs for as many states as possible, especially when the controller will experience
multiple trials with different starting states. In contrast to LRTA*, RTDP can save all of
these backed-up costs in fk, by executing appropriately defined stages of asynchronous
DP.

Specifically, saving the backed-up costs produced by Korf’s minimin procedure cor-
responds to executing a number of stages of asynchronous DP equal to one less than
the depth of the forward search tree. The first stage synchronously backs up the costs
of all the immediate predecessors of the frontier states (using the current costs of the
frontier states), the second stage backs up the costs of the states that are the immediate

Is Note that because A, = {s,} for all t in LKTA*, k, always equals t.

A.G. Barto et al./Artifcial Intelligence 72 (1995) 81-138 107

predecessors of these states, etc. Then one additional stage of asynchronous DP to back
up the cost of St completes the computation of fk,. Not only does this procedure also
apply in the stochastic case, it suggests that other stages of asynchronous DP might be
useful as well. These stages might back up the costs of states not in the forward search
tree, or they might back up the costs of states in this tree more than once. For example,
noting that in general the forward search might generate a graph with cycles, multiple
backups of the costs of these states can further improve the information contained in fk, .
All of these possibilities are basically different instances of RTDP and thus converge

under the conditions described in the theorems above.
With repeated trials, the information accumulating in the developing estimate of

the optimal evaluation function improves control performance. Consequently, LRTA*
and RTDP are indeed learning algorithms, as suggested by the name chosen by Korf.
However, they do not directly apply to adaptive control problems as this term is used
in control theory, where it applies to problems in which a complete and accurate model
of the system to be controlled is lacking. In the next section we discuss how RTDP can

be used in adaptive control problems.

7. Adaptive control

The versions of value iteration described above-synchronous, Gauss-Seidel, asyn-
chronous, and real-time-require prior knowledge of the system underlying the Marko-
vian decision problem. That is, they require knowledge of the state-transition probabil-
ities, pij(u), for all states i, j, and all actions u E U(i), and they require knowledge
of the immediate costs ci(U) for all states i and actions u E U(i). If the system is
deterministic, this means that one must know the successor states and the immediate
costs for all the admissible actions for every state. Finding, or approximating, an optimal
policy when this knowledge is not available is known as a Markovian decision problem
with incomplete information, and solution methods for these problems are examples of

adaptive control methods. I6
There are two major classes of adaptive methods for Markovian decision problems

with incomplete information. Bayesian methods rest on the assumption of a known a
priori probability distribution over the class of possible stochastic dynamic systems.
As observations accumulate, this distribution is revised via Bayes’ rule. Actions are
selected by using DP to find a policy that minimizes the expected cost over the set of
possible systems as well as over time. Non-Bayesian approaches, in contrast, attempt
to arrive at an optimal policy asymptotically for any system within some pre-specified
class of systems. Actions may not be optimal on the basis of prior assumptions and
accumulated observations, but the policy should approach an optimal policy in the limit
as experience accumulates. Kumar [391 surveys the large literature on both classes of

l6 Markovian decision problems with incomplete information are not the same as problems with incomplete

state information in which the controller does not have complete knowledge of the system state at each time

step of control. These are sometimes called partially observuble Markovian decision problems, which despite

their relevance for many applications, are beyond the scope of this article.

108 A.G. Bartr, et al. /Artificial Intelligence 72 (1995) 81-138

methods and conveys the subtlety of the issues as well as the sophistication of the
existing theoretical results. Here we restrict attention to non-Bayesian methods because
they are more practical for large problems.

Two types of non-Bayesian methods are distinguished. Zndirect methods explicitly

model the dynamic system being controlled. They use system identi&ution algorithms
to update parameters whose values determine the current system model at any time
during control. They typically make control decisions under the assumption that the
current model is the true model of the system (what control theorists call the certainty

equivulence principle [111) . Direct methods, on the other hand, form policies without
using explicit system models. They directly estimate a policy or information other than

a system model, such as an evaluation function, from which a policy can be determined,
For both indirect and direct methods, a central issue is the conflict between control-

ling the system and exploring its behavior in order to discover how to control it better.
This is often called the conjict between iden@ution and control because it appears
in indirect methods as the conflict between conducting enough exploration to achieve
model convergence and the objective of eventually following an optimal policy. Direct

methods also require exploration and involve these same issues. Adaptive optimal con-
trol algorithms require mechanisms for resolving these problems, but no mechanism is
universally favored. Some of the approaches for which rigorous theoretical results are
available are reviewed by Kumar [391, and a variety of more heuristic approaches have
been studied by Barto and Singh [31, Kaelbling [341, Moore [551, Schmidhuber [631,
Sutton [691, Watkins [811, Thrun [781, and Thrun and Miiller [791.

In the following subsections, we describe several non-Bayesian methods for solving
Markovian decision problems with incomplete information. Although these methods can
form the basis of algorithms that can be proved to converge to optimal policies, we do
not describe exploration mechanisms with enough rigor for developing the theory in this

direction. We call the first method the generic indirect method. A system identification
algorithm updates a system model at each time step of control, and a conventional DP
algorithm is executed at each time step based on the current system model. Although this
method’s computational complexity severely limits its utility, it is representative of most
of the approaches described in the engineering literature, and it serves as a reference
point for comparative purposes. Next, we describe another indirect method that is the
simplest modification of the generic indirect method that takes advantage of RTDP. We

call this method Adaptive RTDP. The third method we describe is the direct Q-Learning
method of Watkins [811. We then briefly describe hybrid direct/indirect methods.

7.1. The generic indirect method

Indirect adaptive methods for Markovian decision problems with incomplete infor-
mation estimate the unknown state-transition probabilities and immediate costs based
on the history of state transitions and immediate costs observed while the controller
and system interact. The usual approach is to define the state-transition probabilities in
terms of a parameter, ~9, contained in some parameter space, 0. Thus, for each pair of
states i, j E S and each action u E U(i), p(i, j, U, 6) is the state-transition probability
corresponding to parameter 0 E 0, where the functional dependence on 8 has a known

A.G. Barto et al. /Arti$cial Intelligence 72 (1995) 81-138 109

form. Further, one usually assumes that there is some t9* E 0 that is the true parameter,
SO that pij (U) = p (i, j, u, 8*) . The identification task is to estimate 8* from experience.
A common approach takes as the estimate of 8* at each time step the parameter having
the highest probability of generating the observed history, i.e., the maximum-likelihood
estimate of f9*.

The simplest form of this approach to identification is to assume that the unknown
parameter is a list of the actual transition probabilities. Then at each time step t the
system model consists of the maximum-likelihood estimates, denoted p$ (u), of the
unknown state-transition probabilities for all pairs of states i, j and actions u E U(i).
Let n$ (t) be the observed number of times before time step f that action u was executed
when the system was in state i and made a transition to state j. Then ny (t) = cjEs n;(r)
is the number of times action u was executed in state i. The maximum-likelihood state-
transition probabilities at time I are

(10)

If the immediate costs, ci(u), are also unknown, they can be determined simply by
memorizing them as they are observed. l7 If in an infinite number of time steps each
action would be taken infinitely often in each state, then this system model converges
to the true system. As mentioned above, it is nontrivial to ensure that this occurs while
the system is being controlled.

At each time step t, the generic indirect method uses some (non real-time) DP
algorithm to determine the optimal evaluation function for the latest system model.
Let f: denote this optimal evaluation function. Of course, if the model were correct,
then f: would equal f*, but this is generally not the case. A certainty equivalence
optimal policy for time step t is any policy that is greedy with respect to f:. Let
& = l&(l),..., &(n)] denote any such policy. Then at time step t, &(st) is the
certainty equivalence optimal action. Any of the off-line DP algorithms described above
can be used to determine f:, including asynchronous DP Here it makes sense at each
time step to initialize the DP algorithm with final estimate of f* produced by the DP
algorithm completed at the previous time step. The small change in the system model
from time step t to t + 1 means that f: and fF+, probably do not differ significantly. As
pointed out above, however, the computation required to perform even one DP iteration
can be prohibitive in problems with large numbers of states.

What action should the controller execute at time t? The certainty equivalence optimal
action, & (st), appears to be the best based on observations up to time f. Consequently,
in pursuing its objective of control, the controller should always execute this action.
However, because the current model is not necessarily correct, the controller must also
pursue the identification objective, which dictates that it must sometimes select actions
other than certainty equivalence optimal actions. It is easy to generate examples in which

I7 In problems in which the immediate cost is a random function of the current state and action, the maximum-

likelihood estimate of an immediate cost is the observed average of the immediate cost for that state and

action.

110 A.G. Barto et al. /Artijicial Intelligence 72 (1995) 81-138

always following the current certainty equivalence optimal policy prevents convergence
to a true optimal policy due to lack of exploration (see, for example, Kumar [391).

One of the simplest ways to induce exploratory behavior is to make the controller
use randomized policies in which actions are chosen according to probabilities that
depend on the current evaluation function. Each action always has a nonzero probability
of being executed, with the current certainty equivalence optimal action having the

highest probability. To facilitate comparison of algorithms in the simulations described
in Section 4.1, we adopt the action-selection method based on the Boltzmann distribution

that was used by Watkins [8 1 I, Lin [47], and Sutton [691.
This method assigns an execution probability to each admissible action for the current

state, where this probability is determined by a rating of each action’s utility. We compute
a rating, r(u), of each action u E U(s,) as follows:

r(u) =Qf~*(s,,u).

We then transform these ratings (which can be negative and do not sum to one) into a
probability mass function over the admissible actions using the Boltzmann distribution:
at time step t, the probability that the controller executes action u E U(s,) is

Prob(u) =
e-r(u)/T

C&/(.s,~ e-r(c’)‘r ’
(11)

where T is a positive parameter controlling how sharply these probabilities peak at the
certainty equivalence optimal action, p; (So). As T increases, these probabilities become
more uniform, and as T decreases, the probability of executing ,u;(st) approaches

one, while the probabilities of the other actions approach zero. T acts as a kind of
“computational temperature” as used in simulated annealing [351 in which T decreases
over time. Here it controls the necessary tradeoff between identification and control.
At “zero temperature” there is no exploration, and the randomized policy equals the
certainty equivalence optimal policy, whereas at “infinite temperature” there is no attempt
at control.

In the simulations described in Section 4.1, we introduced exploratory behavior by
using the method just described for generating randomized policies, and we let T de-
crease over time to a pre-selected minimum value as learning progressed. Our choice of
this method was dictated by simplicity and our desire to illustrate algorithms that are
as “generic” as possible. Without doubt, more sophisticated exploratory behavior would
have beneficial effects on the behavior of these algorithms.

7.2. Adaptive real-time dynamic programming

The generic indirect method just presented relies on executing a non real-time DP
algorithm until convergence at each time step. It is straightforward to substitute RTDP,
resulting in the indirect method we call Adaptive RTDP. This method is exactly the same
as RTDP as described in Section 6.1 except that (1) a system model is updated using
some on-line system identification method, such as the maximum-likelihood method
given by Eq. (10); (2) the current system model is used in performing the stages

A.G. Barto et al./Artificial Intelligence 72 (1995) 81-138 111

of RTDP instead of the true system model; and (3) the action at each time step is
determined by the randomized policy given by Eq. (1 1), or by some other method that
balances the identification and control objectives.

Adaptive RTDP is related to a number of algorithms that have been investigated by
others. Although Sutton’s Dyna architecture [69] focuses on Q-Learning and methods

based on policy iteration (Section 8), it also encompasses algorithms such as Adaptive
RTDP, as he discusses in [70 1. Lin [46,47] also discusses methods closely related
to Adaptive RTDP In the engineering literature, Jalali and Ferguson [32] describe an
algorithm that is similar to Adaptive RTDP, although they focus on Markovian decision

problems in which performance is measured by the average cost per time step instead
of the discounted cost we have discussed.

Performing RTDP concurrently with system identification, as in Adaptive RTDP,
provides an opportunity to let progress in identification influence the selection of states to
which the backup operation is applied. Sutton [691 suggested that it can be advantageous
to back up the costs of states for which there is good confidence in the accuracy of the
estimated state-transition probabilities. One can devise various measures of confidence
in these estimates and direct the algorithm to the states whose cost backups use the
most reliable state-transition information according to this confidence measure. At the
same time, it is possible to use a confidence measure to direct the selection of actions
so that the controller tends to visit regions of the state space where the confidence is
low so as to improve the model for these regions. This strategy produces exploration

that aids identification but can conflict with control. Kaelbling [341, Lin [47], Moore

[551, Schmidhuber [631, Sutton [691, Thrun [781, and Thrun and Mbller [791 discuss
these and other possibilities.

7.3. Q-learning

Q-Learning is a method proposed by Watkins [811 for solving Markovian decision
problems with incomplete information. ‘* Unlike the indirect adaptive methods discussed
above, it is a direct method because it does not use an explicit model of the dynamic
system underlying the decision problem. It directly estimates the optimal Q-values for
pairs of states and admissible actions (which we call admissible state-action pairs).
Recall from Eq. (6) that Q* (i, u), the optimal Q-value for state i and action u E U(i) ,
is the cost of generating action u in state i and thereafter following an optimal policy.
Any policy selecting actions that are greedy with respect to the optimal Q-values is an
optimal policy. Thus, if the optimal Q-values are available, an optimal policy can be
determined with relatively little computation.

tR Watkins [8 1] actually proposed a family of Q-learning methods, and what we call Q-learning in this

article is the simplest case, which he called “one-step Q-Learning”. He observed that although Q-J-earning

methods are based on a simple idea, they had not been suggested previously as far as he knew. He further

observed, however, that because these problems had been so intensively studied for over thirty years, it

would be surprising if no one had studied them earlier. Although the idea of assigning values to state-action

pairs formed the basis of Denardo’s [24] approach to DP, we have not seen algorithms like Q-Learning for

estimating these values that predate Watkins’ 1989 dissertation.

112 A.G. Bartn et al./Artificial Intelligence 72 (1995) 81-138

We depart somewhat in our presentation from the view taken by Watkins [8 I] and
others (e.g., Sutton [691, Barto and Singh [31) of Q-Learning as a method for adaptive
on-line control. To emphasize Q-Learning’s relationship with asynchronous DP, we first
present the basic Q-Learning algorithm as an o$Xne asynchronous DP method that is
unique in not requiring direct access to the state-transition probabilities of the decision

problem. We then describe the more usual on-line view of Q-Learning.

7.3.1. OflLine Q-Learning

Instead of maintaining an explicit estimate of the optimal evaluation function, as is
done by all the methods described above, Q-Learning maintains estimates of the optimal
Q-values for each admissible state-action pair. For any state i and action u E U(i), let

Qk(i, U) be the estimate of Q*(i, u) available at stage k of the computation. Recalling
that f* is the minimum of the optimal Q-values for each state (Eq. (6)), we can think
of the Q-values at stage k as implicitly defining fk, a stage-k estimate of f”, which is

given for each state i by

(12)

Although Q-values define an evaluation function in this way, they contain more infor-
mation than the evaluation function. For example, actions can be ranked on the basis

of Q-values alone, whereas ranking actions using an evaluation function also requires
knowledge of the state-transition probabilities and immediate costs.

Instead of having direct access to the state-transition probabilities, Off-Line Q-
Learning only has access to a random function that can generate samples according

to these probabilities. Thus, if a state i and an action u E U(i) are input to this function,
it returns a state j with probability pij (U) . Let us call this function successor so that
j = successor(i, u). The successor function amounts to an accurate model of the
system in the form of its state-transition probabilities, but Q-Learning does not have
access to the probabilities themselves. As we shall see below, in on-line Q-Learning,
the role of the successor function is played by the system itself.

At each stage k, Off-Line Q-Learning synchronously updates the Q-values of a subset

of the admissible state-action pairs and leaves unchanged the Q-values for the other
admissible pairs. The subset of admissible state-action pairs whose Q-values are updated
changes from stage to stage, and the choice of these subsets determines the precise nature
of the algorithm. For each k = 0, 1, . . ., let $ 2 {(i, u) 1 i E S, u f U(i)} denote
the set of admissible state-action pairs whose Q-values are updated at stage k. For each
state-action pair in $, it is necessary to define a learning rate parameter that determines
how much of the new Q-value is determined by its old value and how much by a backed-
up value. Let ci!k (i, u), 0 < cJ!k (i, u) < 1, denote the learning rate parameter for updating
the Q-value of (i, u) at stage k. Then &+I is computed as follows: if (i, u) E S’f then

Q~+I (i, u> = (1 - ak(i, u>)QdL u)
+q(i,u)[Ci(u) +Yfk(successor(i,u))l, (13)

where fk is given by Eq. (12). The Q-values for the other admissible state-action pairs
remain the same, i.e.,

A.G. Barto et al./ArtijTcial lnlelligence 72 (1995) 81-138 113

for all admissible (i, u) @ $. By a Q-Learning backup we mean the application of
Eq. (13) for a single admissible state-action pair (i, u).

If the Q-value for each admissible state-action pair (i, u) is backed up infinitely often
in an infinite number of stages, and if the learning rate parameters ‘ok (i, u) decrease
over the stages k in an appropriate way, then the sequence {Qk(i, u) } generated by
Off-Line Q-Learning converges with probability one to Q*(i, U) as k -+ 00 for all
admissible pairs (i, u). This is essentially proved by Watkins [811, and Watkins and
Dayan present a revised proof in [821. Appendix B describes a method for meeting
the required learning rate conditions that was developed by Darken and Moody [191.
We used this method in obtaining the results for Real-Time Q-Learning on our example
problems presented in Section 4.1.

One can gain insight into Off-Line Q-Learning by relating it to asynchronous DP
The stage-k Q-values for all admissible state-action pairs define the evaluation function
fk given by Eq. (12). Thus, one can view a stage of Off-Line Q-Learning defined by
Eq. (13) as updating fk to fk+t , where for each State i,

fk+l(i) =Il$itQk+l(i,u).

This evaluation function update does not correspond to a stage of any of the usual DP
algorithms because it is based only on samples from successor for selected actions
determined by the state-action pairs in $!. A conventional DP backup, in contrast, uses
the true expected successor costs over all the admissible actions for a given state. I9

It is accurate to think of Off-Line Q-Learning as a more asynchronous version of
asynchronous DP. Asynchronous DP is asynchronous at the level of states, and the
backup operation for each state requires minimizing expected costs over all admissi-
ble actions for that state. The amount of computation required to determine the ex-
pected cost for each admissible action depends on the number of possible successor
states for that action, which can be as large as the total number of states in stochas-
tic problems. Off-Line Q-Learning, on the other hand, is asynchronous at the level of
admissible state-action pairs. Although each Q-Learning backup requires minimizing
over all the admissible actions for a give state in order to calculate (via Eq. (12))
fk(SUCCeSSor(i,u)) Used in &. (13),*’ it does not require computation proportional
to the number of possible successor states. Thus, in the stochastic case, an asynchronous
DP backup can require O(mn) computational steps, whereas a Q-Learning backup

lg However, stage k of Off-Line Q-Learning has the same effect as the stage of asynchronous DP using Sk
in the special case in which (I) the problem is deterministic, (2) A$ is the set of all admissible state-action
pairs for states in Sk, and (3) ok (i, u) = 1 for all admissible state-action pairs (i, 14).
M This complete minimization can sometimes be avoided as follows. Whenever a Qk (i, u) is backed up, if
its new value, Qk+l (i, u). is smaller than fk(i), then fk+t (i) is set to this smaller value. If it.9 new value is
larger than f&i), then if fk(i) = Q,+(i, U) and fk(i) # &(i, U’) for any u’ # u, then fk+] (i) iS found by
explicitly minimizing the current Q-values for state i over the admissible actions. This is the case in which
u is the sole greedy action with respect to fk(i). Otherwise, nothing is done, i.e., fk+l (i) = fk(i). This
procedure therefore computes the minimization in l?q. (12) explicitly only when updating the Q-values for
state-action pairs (i, u) in which u is the sole greedy action for i and the Q-value increases.

I14 AC. Barto et ~1. /Artificial Intelligence 72 (1995) 81-138

requires only O(m). This advantage is offset by the increased space complexity of
Q-Learning and the fact that a Q-Learning backup takes less information into account
than does a backup of asynchronous DP: an asynchronous DP backup is comparable
to many Q-Learning backups. Nevertheless, because the computation required by a Q-
Learning backup can be much less than that required by an asynchronous DP backup,

Q-Learning can be advantageous when stages have to be computed quickly despite a
large number of possible successor states, as in real-time applications which we discuss
next.

7.3.2. Real-Time Q-Learning

Off-Line Q-Learning can be turned into an on-line algorithm by executing it con-
currently with control. If a current system model provides an approximate successor
function, the result is an indirect adaptive method identical to Adaptive RTDP (Sec-

tion 7.2) except that stages of Off-Line Q-Learning substitute for stages of asynchronous
DP. This can have advantages over Adaptive RTDP when the number of admissible ac-
tions is large. However, we use the term Real-Time Q-Learning for the case originally
discussed by Watkins [81] in which there is no model of the system underlying the
decision problem and the real system acts as the successor function. This direct adap-
tive algorithm backs up the Q-value for only a single state-action pair at each time step
of control, where this state-action pair consists of the observed current state and the
action actually executed. Using Real-Time Q-Learning, therefore, one can compute an
optimal policy without forming an explicit model of the system underlying the decision
problem.

Specifically, assume that at each time step t the controller observes state sI and
has available the estimated optimal Q-values produced by all the preceding stages of
Real-Time Q-Learning. We denote these estimates Qt(i, u) for all admissible state-
action pairs (i, u). The controller selects an action u, E Lr(s,) using this information in
some manner that allows for exploration. After executing ut, the controller receives the
immediate cost cs, (uy) while the system state changes to s~+I. Then Qt+l is computed
as follows:

Qt+l(s,,u,) = (1 - a,(sr,u,))Q,(~,,~t) +a,(~t,~t)[c,v,(~t) +r.fr(st+~)l, (14)

where .fr(s,+l) = minuE,,s,,,) Q,(s,+l,u) and LY((s~,u~) is the learning rate parameter
at time step t for the current state-action pair. The Q-values for all the other admissible
state-action pairs remain the same, i.e.,

Qt+l(Lu) = Qt(i,u),

for all admissible (i, u) f (sf, u,). This process repeats for each time step.
As far as convergence is concerned, Real-Time Q-Learning is the special case of Off-

Line Q-Learning in which $, the set of state-action pairs whose Q-values are backed
up at each step (or stage) t, is {(So, ul)}. Th us, the sequence of Q-values generated by

Real-Time Q-Learning converges to the true values given by Q* under the conditions
required by for convergence of Off-Line Q-Learning. This means that each admissible
action must be performed in each state infinitely often in an infinite number of control

A.G. Barto et al./Artijicial Intelligence 72 (1995) N-138 115

steps. It is also noteworthy, as pointed out by Dayan [221, that when there is only one
admissible action for each state, Real-Time Q-Learning reduces to the TD(0) algorithm
investigated by Sutton [681.

To define a complete adaptive control algorithm making use of Real-Time Q-Learning
it is necessary to specify how each action is selected based on the current Q-values.
Convergence to an optimal policy requires the same kind of exploration required by
indirect methods to facilitate system identification as discussed above. Therefore, given a
method for selecting an action from a current evaluation function, such as the randomized
method described above (Eq. (11)) , if this method leads to convergence of an indirect
method, it also leads to convergence of the corresponding direct method based on Real-
Time Q-Learning.

7.3.3. Other Q-learning methods
In Real-Time Q-Learning, the real system underlying the decision problem plays

the role of the successor function. However, it is also possible to define the
successor function sometimes by the real system and sometimes by a system model.
For state-action pairs actually experienced during control, the real system provides the
successor function; for other state-action pairs, a system model provides an approxi-
mate successor function. Sutton [691 has studied this approach in an algorithm called
Dyna-Q, which performs the basic Q-Learning backup using both actual state transitions
as well as hypothetical state transitions simulated by a system model. Performing the
Q-Learning backup on hypothetical state transitions amounts to running multiple stages
of Off-Line Q-Learning in the intervals between times at which the controller executes
actions. A step of Real-Time Q-Learning is performed based on each actual state tran-
sition. This is obviously only one of many possible ways to combine direct and indirect
adaptive methods as emphasized in Sutton’s discussion of the general Dyna learning
architecture [691.

It is also possible to modify the basic Q-Learning method in a variety of ways
in order to enhance its efficiency. For example, Lin [47] has studied a method in
which Real-Time Q-Learning is augmented with model-based Off-Line Q-Learning only
if one action does not clearly stand out as preferable according to the current Q-
values. In this case, Off-Line Q-Learning is carried out to backup the Q-values for
all of the admissible actions that are “promising” according to the latest Q-values for
the current state. Watkins [811 describes a family of Q-Learning methods in which
Q-values are backed up based on information gained over sequences of state transi-
tions. One way to implement this kind of extension is to use the “eligibility trace”
idea [4,37,67,68,72] to back up the Q-values of all the state-action pairs experi-
enced in the past, with the magnitudes of the backups decreasing to zero with in-
creasing time in the past. Sutton’s [68] TD(A) algorithms illustrate this idea. At-
tempting to present all of the combinations and variations of Q-Learning methods that
have been, or could be, described is well beyond the scope of the present article.
Barto and Singh [3], Dayan 120,211, Lin [46,47], Moore [57], and Sutton [69]
present comparative empirical studies of some of the adaptive algorithms based on
Q-Learning.

I16 A.G. Barto et d/Artificial Intelligence 72 (1995) 81-138

8. Methods based on explicit policy representations

All of the DP-based learning algorithms described above, both non-adaptive and
adaptive cases, use an explicit representation of either an evaluation function or a
function giving the Q-values of admissible state-action pairs. These functions are used

in computing the action at each time step, but the policy so defined is not explicitly
stored. There are a number of other real-time learning and control methods based on DP
in which policies as well as evaluation functions are stored and updated at each time

step of control. Unlike the methods addressed in this article, these methods are more
closely related to the policy iteration DP algorithm than the value iteration algorithms
discussed in Section 5.

Policy iteration (see, e.g., Bertsekas [111) alternates two phases: (1) a policy eval-
uation phase, in which the evaluation function for the current policy is determined, and
(2) a policy improvement phase, in which the current policy is updated to be greedy

with respect to the current evaluation function. One way to evaluate a policy is by exe-
cuting one of the value iteration algorithms discussed in Section 5 under the assumption

that there is only one admissible action for each state, namely, the action specified by
the policy being evaluated. Alternatively, explicit matrix inversion methods can be used.
Although policy evaluation does not require repeated minimizing over all admissible
actions, it can still require too much computation to be practical for large state sets.
More feasible is modified policy iteration [591, which is policy iteration except that the
policy evaluation phase is not executed to completion before each policy improvement

phase. Real-time algorithms based on policy iteration effectively work by executing an
asynchronous form of modified policy iteration concurrently with control.

Examples of such methods appear in the pole-balancing system of Barto, Sutton,
and Anderson [4,671 (also [1,671) and the LIynu-PI method of Sutton [691 (where
PI means Policy Iteration). Barto, Sutton, and Watkins [5,6] discuss the connection
between these methods and policy iteration in some detail. In this article we do not
discuss learning algorithms based on policy iteration because their theory is not yet as

well understood as is the theory of learning algorithms based on asynchronous value
iteration. However, Williams and Baird 1911 have made a valuable contribution to this
theory by addressing DP algorithms that are asynchronous at a grain finer than that of
either asychronous DP or Q-Learning. These algorithms include value iteration, policy
iteration, and modified policy iteration as special cases. Integrating their theory with that
presented here is beyond the scope of this article.

9. Storing evaluation functions

An issue of great practical importance in implementing any of the algorithms de-
scribed in this article is how evaluation functions are represented and stored.21 The
theoretical results we have described assume a lookup-table representation of evaluation
functions, which-at least in principle-is always possible when the number of states

?I All of our comments here also apply to storing the Q-values of admissible state-action pairs.

A.G. Barto et al. /Artificial Intelligence 72 (1995) 81-138 I17

and admissible actions is finite, as assumed throughout this article. In applying conven-
tional DP to problems involving continuous states and/or actions, the usual practice is
to discretize the ranges of the continuous state variables and then use the lookup-table

representation (cf. the “boxes” representation used by Michie and Chambers [52] and
Barto, Sutton, and Anderson [4]). This leads to space complexity exponential in the
number of state variables, the situation prompting Bellman [91 to coin the phrase “curse
of dimensionality”. The methods described in this article based on asynchronous DP and
Q-Learning do not circumvent the curse of dimensionality, although the focusing be-
havior of Trial-Based RTDP in stochastic shortest path problems with designated start
states can reduce the storage requirement if memory is allocated incrementally during

trials.
A number of methods exist for making the lookup-table representation more efficient

when it is not necessary to store the costs of all possible states. Hash table methods, as
assumed by Korf [38] for LRTA*, permit efficient storage and retrieval when the costs
of a small enough subset of the possible states need to be stored. Similarly, using the

kd-tree data structure to access state costs, as explored by Moore [55,56], can provide
efficient storage and retrieval of the costs of a finite set of states from a k-dimensional
state space. The theoretical results described in this article extend to these methods
because they preserve the integrity of the stored costs (assuming hash collisions are
resolved).

Other approaches to storing evaluation functions use function approximation methods
based on parameterized models. For example, in Samuel’s [61] checkers player, the
evaluation function was approximated as a weighted sum of the values of a set of features
describing checkerboard configurations. The basic backup operation was performed on
the weights, not on the state costs themselves. The weights were adjusted to reduce to
the discrepancy between the current cost of a state and its backed-up cost. This approach
inspired a variety of more recent studies using parameterized function approximations.
The discrepancy supplies the error for any error-correction procedure that approximates
functions based on a training set of function samples. This is a form of supervised
learning, or learning from examples, and provides the natural way to make use of

connectionist networks as shown, for example, by Anderson [11 and Tesauro [771.
Parametric approximations of evaluation functions are useful because they can generalize
beyond the training data to supply cost estimates for states that have not yet been visited,

an important factor for large state sets.
In fact, almost any supervised learning method, and its associated manner of repre-

senting hypotheses, can be adapted for approximating evaluation functions. This includes
symbolic methods for learning from examples. These methods also generalize beyond the
training information, which is derived from the backup operations of various DP-based

algorithms. For example, Chapman and Kaelbling [151 and Tan [76] adapt decision-
tree methods, and Mahadevan and Connell [49] use a statistical clustering method. Yee
[94] discusses function approximation from the perspective of its use with DP-based

learning algorithms.
Despite the large number of studies in which the principles of DP have been combined

with generalizing methods for approximating evaluation functions, the theoretical results
presented in this article do not automatically extend to these approaches. Although

118 A.G. Barto et al./Art@cial Intelligence 72 (1995) 81-138

generalization can be helpful in approximating an optimal evaluation function, it is
often detrimental to the convergence of the underlying asynchronous DP algorithm, as
pointed out by Watkins [811 and illustrated with a simple example by Bradtke [131.
Even if a function approximation scheme can adequately represent the optimal evaluation
function when trained on samples from this function, it does not follow that an adequate
representation will result from an iterative DP algorithm that uses such an approximation

scheme at each stage. The issues are much the same as those that arise in numerically
solving differential equations. The objective of these problems is to approximate the
function that is the solution of a differential equation (for given boundary conditions)
in the absence of training examples drawn from the true solution. In other words, the
objective is to solve approximately the differential equation, not just to approximate
its solution. Here, we are interested in approximately solving the Bellman Optimality
Equation and not the easier problem of approximating a solution that is already available.

There is an extensive literature on function approximation methods and DP, such as
multigrid methods and methods using splines and orthogonal polynomials (e.g., Bellman
and Dreyfus [71, Bellman, Kalaba, and Kotkin [81, Daniel [18 I, Kushner and Dupuis
[411). However, most of this literature is devoted to off-line algorithms for cases in
which there is a complete model of the decision problem. Adapting techniques from
this literature to produce approximation methods for RTDP and other DP-based learning
algorithms is a challenge for future research.

To the best of our knowledge, there are only a few theoretical results that directly
address the use of generalizing methods with DP-based learning algorithms. The results
of Sutton [68] and Dayan [22] concern using TD methods to evaluate a given policy
as a linear combination of a complete set of linearly independent basis vectors. Unfor-
tunately these results do not address the problem of representing an evaluation function
more compactly than it would be represented in a lookup table. Bradtke [131 addresses
the problem of learning Q-values that are quadratic functions of a continuous state,
but these results are restricted to linear quadratic regulation problems. However, Singh
and Yee [66] point out that in the discounted case, small errors in approximating an
evaluation function (or a function giving Q-values) lead at worst to small decrements in
the performance of a controller using the approximate evaluation function as the basis
of control. Without such a result, it might seem plausible that small evaluation errors

can drastically undermine control performance-a condition which, if true, would raise
concerns about combining DP-based learning with function approximation. Much more
research is needed to provide a better understanding of how function approximation
methods can be used effectively with the algorithms described in this article.

10. Illustrations of DP-based learning

We used the race track problem described in Section 4.1 to illustrate and compare
conventional DP, RTDP, Adaptive RTDP, and Real-Time Q-Learning using the two race
tracks shown in Fig. 1. The small race track shown in Panel A has 4 start states, 87
goal states, and 9,115 states reachable from the start states by any policy. We have
not shown the squares on which the car might land after crossing the finish line. The

A.G. Barto et al./Artijcial Intelligence 72 (1995) H-138 119

Table 1
Example race track problems. The results were obtained by executing Gauss-
Seidel DP (GSDP)

Small Track Larger Track

Number of teachable states 9,115 22,576
Number of goal states 87 590
Estimated number of relevant states 599 2,618
Optimum expected path length 14.67 24.10
Number of GSDP sweeps to convergence 28 38
Number of GSDP backups to convergence 252,784 835,468
Number of GSDP sweeps to optimal policy 15 24
Number of GSDP backups to optimal policy 136,725 541,824

larger race track shown in Panel B has 6 start states, 590 goal states, and 22,576 states
reachable from the start states. We set p = 0.1 so that the controller’s intended actions
were executed with probability 0.9.

We applied conventional Gauss-Seidel DP to each race track problem, by which we
mean Gauss-Seidel value iteration as defined in Section 5.2, with y = 1 and with the
initial evaluation function assigning zero cost to each state. Gauss-Seidel DP converges
under these conditions because it is a special case of asynchronous DP, which converges
here because the conditions given in Section 5.3 are satisfied. Specifically, it is clear
that there is at least one proper policy for either track (it is possible for the car to
reach the finish line from any reachable state, although it may have to hit the wall and
restart to do so) and every improper policy incurs infinite cost for at least one state
because the immediate costs of all non-goat states are positive. We selected a state
ordering for applying Gauss-Seidel DP without concern for any influence it might have
on convergence rate (although we found that with the selected ordering, Gauss-Seidel
DP converged in approximately half the number of sweeps as did synchronous DP).

Table 1 summarizes the small and larger race track problems and the computational
effort required to solve them using Gauss-Seidel DP. Gauss-Seidel DP was considered
to have converged to the optimal evaluation function when the maximum cost change
over all states between two successive sweeps was less than 10m4. We estimated the
number of relevant states for each race track, i.e., the number of states reachable from
the start states under any optimal policy, by counting the states visited while executing
optimal actions for lo7 trials.

We also estimated the earliest point in the DP computation at which the optimal
evaluation function approximation was good enough so that the corresponding greedy
policy was an optimal policy. (Recall that an optimal policy can be a greedy policy with
respect to many evaluation functions.) We did this by running lo7 test trials after each
sweep using a policy that was greedy with respect to the evaluation function produced
by that sweep. For each sweep, we recorded the average path length produced over
these test trials. After convergence of Gauss-Seidel DP, we compared these averages
with the optimal expected path length obtained by the DP algorithm, noting the sweep
after which the average path length was first within lo-* of the optimal. The resulting
numbers of sweeps and backups are listed in Table 1 in the rows labeled “Number of
GSDP sweeps to optimal policy” and “‘Number of GSDP backups to optimal policy”.

120 A.G. Barto et ul. /Artificial Intelligence 72 (1995) 81-138

Although optimal policies emerged considerably earlier in these computations than did
the optimal evaluation functions, it is important to note that this estimation process is

not a part of conventional off-line value iteration algorithms and requires a considerable
amount of additional computation. ** Nevertheless, the resulting numbers of backups are
useful in assessing the computational requirements of the real-time algorithms, which
should allow controllers to follow optimal policies after comparable numbers of backups.

We applied RTDP, Adaptive RTDP, and Real-Time Q-Learning to both race track
problems. Because all the immediate costs are positive, we know that f’(i) must be
nonnegative for all states i. Thus, setting the initial costs of al1 the states to zero produces
a non-overestimating initial evaluation function as required by Theorem 3. We applied
the real-time algorithms in a trial-based manner, starting each trial with the car placed on
the starting line with zero velocity, where each square on the starting line was selected
with equal probability. A trial ended when the car reached a goal state. Thus, according
to Theorem 3, with y = I, RTDP will converge to the optimal evaluation function with

repeated trials. Although RTDP and Adaptive RTDP can back up the costs of many
states at each control step, we restricted attention to the simplest case in which they
only back up the cost of the current state at each time step. This is the case in which
B, = {s!} for all t. Obviously, all of these algorithms were applied in simulation mode.

We executed 25 runs of each algorithm using different random number seeds, where
a run is a sequence of trials beginning with the evaluation function initialized to zero.
To monitor the performance of each algorithm, we kept track of path lengths, that is,

how many moves the car took in going from the starting line to the finish line, in
each trial of each run. To record these data, we divided each run into a sequence of
disjoint epochs, where an epoch is a sequence of 20 consecutive trials. By an epoch
path length we mean the average of the path lengths generated during an epoch us-
ing a given algorithm. Adaptive RTDP and Real-Time Q-Learning were applied under

conditions of incomplete information, and for these algorithms we induced exploratory
behavior by using randomized policies based on the Boltzmann distribution as described
in Section 7.1. To control the tradeoff between identification and control, we decreased
the parameter T in Eq. (11) after each move until it reached a pre-selected minimum
value; T was initialized at the beginning of each run. Parameter values and additional
simulation details are provided in Appendix B.

Fig. 2 shows results for RTDP (Panel A), Adaptive RTDP (Panel B), and Real-Time
Q-Learning (Panel C). The central line in each graph shows the epoch path length
averaged over the 25 runs of the corresponding algorithm. The upper and lower lines
show &I standard deviation about this average for the sample of 25 runs. Although the
average epoch path lengths for the initial several epochs of each algorithm are too large
to show on the graphs, it is useful to note that the average epoch path lengths for the
first epoch of RTDP, Adaptive RTDP, and Real-Time Q-Learning are respectively 455,
866, and 13,403 moves. That these initial average path lengths are so large, especially
for Real-Time Q-Learning, reflects the primitive nature of our exploration strategy.

z Policy iteration algorithms address this problem by explicitly generating a sequence of improving policies,
but updating a policy requires computing its corresponding evaluation function, which is generally a time-

consuming computation.

A.G. Bar/o et al. /Artificial Intelligence 72 (1995) 81-138

Epoch number

Epoch number

Fig. 2. Performance of three real-time learning algorithms on the small track. Panel A: RTDP. Panel B:

Adaptive RTDP Panel C: Real-Time Q-Learning. The central line in each graph shows the epoch path length

averaged over the 25 runs of the corresponding algorithm. The upper and lower lines show fl standard

deviation of the epoch path length for the sample of 25 runs. Exploration was controlled for Adaptive RTDP

and Real-Time Q-Learning by decreasin, n T after each move until it reached a pre-selected minimum value.

The right side of each panel shows the paths the car would follow in noiseless conditions from each start state

after effective convergence of the corresponding algorithm.

122 A.G. Burro et (11. /Artijiciul Intelligence 72 (1995) RI-138

2ei43 3eio3

Epoch number

Fig. 3. Performance of Real-Time Q-Learning on the small track for 5,000 epochs. The initial part of the
graph shows the data plotted in Panel C of Fig. 2 but at a different horizontal scale.

It is clear from the graphs that in this problem RTDP learned faster (and with
less variance) than Adaptive RTDP and Real-Time Q-Learning, when learning rate is
measured in terms of the number of epochs (numbers of moves are given in Table 2

discussed below). This is not surprising given the differences between the versions of the
problem with complete information (Panel A) and with incomplete information (Panels
B and C). That the performances of RTDP and Adaptive RTDP were so similar despite
these differences reflects the fact that the maximum-likelihood system identification
procedure used by the latter algorithm converged rapidly on relevant states due to the
low level of stochasticity in the problem (p = 0.1). These graphs also show that Real-
Time Q-Learning takes very many more epochs than do RTDP and Adaptive RTDP to
reach a similar level of performance. This reflects the fact that each backup in Real-
Time Q-Learning takes into account less information than do the backups in RTDP or
Adaptive RTDP, a disadvantage somewhat offset by the relative computational simplicity
of each Q-Learning backup. Fig. 3 shows the Real-Time Q-Learning results out to 5,000

epochs.

A convenient way to show the policies that result from these algorithms is to show
the paths the car would follow from each start state if all sources of randomness were
turned off, that is, if both random exploration and the randomness in the problem’s
state-transition function were turned off. At the right in each panel of Fig. 2 are paths
generated in this way by the policies produced after each algorithm was judged to have
“effectively converged”. We inspected the graphs to find the smallest epoch numbers at
which the average epoch path lengths essentially reached their asymptotic levels: 200
epochs for RTDP (Panel A), 300 epochs for Adaptive RTDP (Panel B), and 2,000
epochs for Real-Time Q-Learning (Panel C). Treated with appropriate caution, these
effective convergence times are useful in comparing algorithms.

The path shown in Panel A of Fig. 2 is optimal in the sense that it was produced in
noiseless conditions by a policy that is optimal for the stochastic problem. The paths in
Panels B and C, on the other hand, were not generated by an optimal policy despite the
fact that each is a move shorter than the path of Panel A. The control decisions made

Table 2

A.G. Barto et al. /Artificial Intelligence 72 (1995) 81-138 123

Summary of learning performance on the small track for Real-Time DP (RTDP), Adaptive Real-

Time DP (ARTDP), and Real-Time Q-learning (RTQ). The amount of computation required by

Gauss-Seidel DP (GSDP) is included for comparative purposes

GSDP RTDP ARTDP RTQ
Average time to effective convergence 28 sweeps 200 epochs 300 epochs 2,000 epochs

Estimated path length at effective convergence 14.56 14.83 15.10 15.44

Average number of backups 252,784 127,538 2 18,554 2,96 1,790

Average number of backups per epoch - 638 728 1,481

% of states backed < 100 times up - 98.45 96.47 53.34

% of states backed < 10 times up - 80.5 1 65.41 6.68

% of states backed up 0 times - 3.18 1.74 I.56

toward the end of the track by these suboptimal policies produce higher probability that
the car will collide with the track boundary under stochastic conditions. Although we do

not illustrate it here, as the amount of uncertainty in the problem increases (increasing
p), optimal policies generate paths that are more “conservative” in the sense of keeping
safer distances from the track boundary and maintaining lower velocities.

Table 2 provides additional information about the performance of the real-time algo-
rithms on the small track. For comparative purposes, the table includes a column for
Gauss-Seidel DP We estimated the path length after the effective convergence of RTDP,
Adaptive RTDP, and Real-Time Q-Learning by executing 500 test trials with learning
turned off using the policy produced at effective convergence of each algorithm. We
also turned off the random exploration used by the latter two algorithms. The row of
Table 2 labeled “Estimated path length at effective convergence” gives the average path
length over these test trials. 23 RTDP is most directly comparable to Gauss-Seidel DP
After about 200 epochs, or 4,000 trials, RTDP improved control performance to the
point where a trial took an average of 14.83 moves. RTDP performed an average of
127,538 backups in reaching this level of performance, about half the number required
by Gauss-Seidel DP to converge to the optimal evaluation function. This number of
backups is comparable to the 136,725 backups in the 15 sweeps of Gauss-Seidel DP
after which the resulting evaluation function defines an optimal policy (Table 1) .

Another way to compare Gauss-Seidel DP and RTDP is to examine how the backups
they perform are distributed over the states. Whereas the cost of every state was backed
up in each sweep of Gauss-Seidel DP, RTDP focused backups on fewer states. For
example, in the first 200 epochs of an average run, RTDP backed up the costs of
98.45% of the states no more than 100 times and 80.51% of the states no more than
10 times; the costs of about 290 states were not backed up at all in an average run.
Although we did not collect these statistics for RTDP after 200 epochs, it became even

more focused on the states on optimal paths.

*s These path length estimates are somewhat smaller than the average epoch path lengths shown at effective

convergence in the graphs of Fig. 2 because they were produced with exploration turned off, whereas the
graphs show path lengths produced with random exploration turned on. For Gauss-Seidel DP, we averaged

over the costs of the start states given by the computed optimal evaluation function to obtain the estimated

path length listed in Table 2.

124 A.G. Barto et al. /Art$ciul Intelligence 72 (1995) 81-138

Not surprisingly, solving the problem under conditions of incomplete information
requires more backups. Adaptive RTDP took 300 epochs, or an average of 218,554
backups, to achieve trials averaging 15.1 moves at effective convergence. Real-time Q-
Learning took 2,000 epochs, or an average of 2,961,790 backups, to achieve a somewhat
less skillful level of performance (see Fig. 3). Examining how these backups were
distributed over states shows that Adaptive RTDP was considerably more focused than
was Real-Time Q-Learning. In the first 300 epochs Adaptive RTDP backed up 96.47%
of the states no more than 100 times and 65.41% of the states no more than 10 times. On

the other hand, in 2,000 epochs Real-Time Q-Learning backed up Q-values for 53.34%
of the states no more than 100 times and only 6.68% of the states no more than 10

times.24 Again, these results for Real-Time Q-Learning reflect the inadequacy of our
primitive exploration strategy for this algorithm.

Fig. 4 shows results for RTDP, Adaptive RTDP, and Real-Time Q-Learning on the

larger race track, and Table 3 provides additional information. These results were ob-
tained under the same conditions described above for the small track. Fig. 5 shows the
Real-Time Q-Learning results for the larger track out to 7,500 epochs. We judged that
RTDP, Adaptive RTDP, and Real-Time Q-Learning effectively converged at 500, 400,
and 3,000 epochs respectively. That Adaptive RTDP effectively converged faster than
RTDP in terms of the number of epochs is partially due to the fact that its epochs
tended to have more moves, and hence more backups, than the epochs of RTDP We can
see that to achieve slightly suboptimal performance, RTDP required about 62% of the
computation of conventional Gauss-Seidel DP The average epoch path lengths for the

initial epoch of each algorithm, which are too large to show on the graphs, are 7,198,
8,749, and 180,358 moves, respectively, for RTDP, Adaptive RTDP, and Real-Time Q-
Learning. Again, these large numbers of moves, especially for Real-Time Q-Learning,
reflect the primitive nature of our exploration strategy. The paths shown at the right in
each panel of Fig. 4 were generated in noiseless conditions by the policies produced at
effective convergence of the corresponding algorithms. The path shown in Panel A of
Fig. 4 is optimal in the sense that it was produced in noiseless conditions by a policy

that is optimal for the stochastic problem. The paths in Panels B and C, on the other
hand, were generated by slightly suboptimal policies.

Although these simulations are not definitive comparisons of the real-time algorithms

with conventional DP, they illustrate some of their features. Whereas Gauss-Seidel DP
continued to back up the costs of all the states, the real-time algorithms strongly focused
on subsets of the states that were relevant to the control objectives. This focus became
increasingly narrow as learning continued. Because the convergence theorem for Trial-
Based RTDP applies to the simulations of RTDP, we know that this algorithm eventually
would have focused only on relevant states, i.e., on states making up optimal paths. RTDP
achieved nearly optimal control performance with about 50% of the computation of
Gauss-Seidel DP on the small track and about 62% of the computation of Gauss-Seidel
DP on the larger track. Adaptive RTDP and Real-Time Q-Learning also focused on
progressively fewer states, but we did not run the generic indirect method for comparison
because it is too inefficient to apply to problems with as many states as our race track

24 We considered a Q-value for a state i to be backed up whenever Q(i, u) was updated for some u E U(i).

A.G. Elarto et al. /Artificial hielligence 72 (199.5) 81-138

Epoch number

C

Epoch number

Epoch number Sara* Mm Finilh lbm

F’ig. 4. Performance of three real-time learning algorithms on the huger track. Panel A: RTDP Panel B:
Adaptive RTDI? Panel C: Real-Time Q-Learning. The central line in each graph shows the epoch path length
averaged over the 25 runs of the corresponding algorithm. The upper and lower lines show &I standard
deviation of the epoch path length for the sample of 25 runs. Exploration was controlled for Adaptive RTJJP
and Real-Time Q-Learning by decreasing T after each move until it reached a pm-selected minimum value.
The right side of each panel shows the paths the car would follow in noiseless conditions from each statt state
after effective convergence of the corresponding algorithm.

126 A.G. Barto et ctl./Artificinl Intelligence 72 (1995) 81-138

250

0
0 le+03 2e+03 3e+03 4e+03 5e+03 6e+03 7e+O:

Epoch number

Fig. 5. Performance of Real-Time Q-Learning on the larger track for 7,500 epochs. The initial part of the

graph shows the same data as plotted in Panel C of Fig. 4 but at a different horizontal scale.

Table 3

Summary of learning performance on the larger track for Real-Time DP (RTDP), Adaptive

Real-Time DP (ARTDP), and Real-Time Q-Learning (RTQ). The amount of computation

required by Gauss-Seidel DP (GSDP) is included for comparative purposes

GSDP RTDP ARTDP RTQ

Average time to effective convergence 38 sweeps 500 epochs 400 epochs 3,000 epochs

Estimated path length at effective convergence 24. IO 24.62 24.72 25.04

Average number of backups 835,468 5 17,356 653,714 IO,330,994

Average number of backups per epoch 1,035 1,634 3,444

% of states backed < 100 times up - 97.17 90.03 52.43

% of states backed 6 10 times up 70.46 59.90 8.28

8 of states backed 0 times up 8.17 3.53 2.70

problems: It would have to perform at least one complete sweep for each move. In sharp
contrast, the amount of computation required by each of the real-time algorithms for
each move was small enough not to have been a limiting factor in the simulations2’

The results described here for Adaptive RTDP and Real-Time Q-Learning were pro-
duced by using an exploration strategy that decreased the randomness in selecting actions
by decreasing T after each move until it reached a pre-selected minimum value. Although
not described here, we also conducted experiments with different minimum values and
with decreasing T after trials instead of after moves. Performance of the algorithms
was much altered (for the worse) by these changes. Although we made no systematic
attempt to investigate the effects of various exploration strategies, it is clear that the
performance of these algorithms is highly sensitive to how exploration is introduced and
controlled.

25 However, in implementing Adaptive RTDP on the race track problems, we took advantage of our knowledge

that for any action there are only two possible successors to any state. This allowed us to avoid performing

at each move the n divisions required in a straightfonvard implementation of Fq. (10). This is not possible

under the general conditions of incomplete information.

A.G. Barto et al./Artijicial Intelligence 72 (1995) 81-138 127

How the algorithms scale up to larger problems is also not adequately addressed
by our simulations. Although the results with the small and the larger race track give
some indication as to how the algorithms might scale, this collection of problems is
not adequate for studying this issue. The variability of an algorithm’s performance as
a function of problem details other than the size of its state and action sets make
it difficult to extrapolate from its performance on just two problems. Proceeding to
larger problems is hampered by the large space requirements of these algorithms if they
continue to use lookup tables for storing evaluation functions. Tesauro’s TD-Gammon
system [77] is an encouraging data point for using DP-based learning in conjunction
with function approximation methods in problems much larger than those described here,

but continued theoretical research is necessary to address the computational complexity
of real-time DP algorithms. What is clear from our simulations, however, is that real-
time DP algorithms can confer significant computational advantages over conventional
off-line DP algorithms.

In concluding our discussion of the race track problem, we again point out that it is
misleading to think of our application DP-based learning algorithms to this problem as
the most productive way to apply them to realistic robot navigation tasks. For example,
DP-based learning applied to this formulation of a race track problem refines skill in
racing on a specific track. This skill does not transfer to other tracks due to the specificity
with which a track is represented. More realistic applications of DP-based learning to
robot navigation requires more abstract states and actions, as in the work of Lin [45]

and Mahadevan and Connell [491.

11. Discussion

Conventional DP algorithms are of limited utility for problems with large state spaces,
such as the combinatorial state spaces of many problems of interest in AI, because they
require fully expanding all possible states and storing a cost for each state. Heuristic
search, in contrast, selectively explores a problem’s state space. However, because DP
algorithms successively approximate optimal evaluation functions, they are relevant to
learning in a way that heuristic search is not. They effectively cache in a permanent
data structure the results of repeated searches forward from each state. This information
improves as the algorithm proceeds, ultimately converging to the optimal evaluation
function, from which one can determine optimal policies with relative ease. Although

some heuristic search algorithms (such as A*) update an estimate of the cost to reach
states from an initial state, they typically do not update the heuristic evaluation function
estimating the cost to reach a goal state from each state.

Although the principles of DP are relevant to learning, conventional DP algorithms
are not really learning algorithms because they operate off-line. They are not designed
to be applied during problem solving or control, whereas learning occurs as experi-
ence accumulates during actual (or simulated) attempts at problem solving or control.
However, it is possible to execute an otherwise off-line DP algorithm concurrently with
actual or simulated control, where the DP algorithm can influence, and can be influ-
enced by, the ongoing control process. Doing this so as to satisfy certain requirements

128 A.G. But-to et cd. /Artijciul Intelligence 72 (1995) 81-138

results in the algorithm we call RTDP, a special case of which essentially coincides
with Korf’s LRTA* [381 algorithm. This general approach follows previous research by
others in which DP principles have been used for problem solving and learning (e.g.,
[61,69,70,81,87,88]).

Our contribution in this article has been to bring to bear on DP-based learning the
theory of asynchronous DP as presented by Bertsekas and Tsitsiklis [121. Although the
suitability of asynchronous DP for implementation on multi-processor systems motivated
this theory, we have made novel use of these results. Applying these results, especially

the results on stochastic shortest path problems, to RTDP provides a new theoretical basis
for DP-based learning algorithms. Convergence theorems for asynchronous DP imply

that RTDP retains the competence of conventional synchronous and Gauss-Seidel DP
algorithms, and the extension of Korf’s LRTA* convergence theorem to this framework
provides conditions under which RTDP avoids the exhaustive nature of off-line DP
algorithms while still ultimately yielding optimal behavior.

We used the term simulation mode to refer to the execution of RTDP and related
algorithms during simulated control instead of actual control. DP-based learning in
simulation mode is illustrated by Samuel’s checkers playing system [61,621, Tesauro’s
backgammon playing system [771, and our illustrations of RTDP using the race track
problem. Despite the fact that DP-based learning algorithms executed in simulation
mode are actually off-line algorithms, we still treat them as learning algorithms because

they incrementally improve control performance through simulated experience instead of
solely through the application of more abstract computational methods. For algorithms,

like RTDP, that require an accurate model of the decision problem, simulation mode is
always an option and has obvious advantages due to the large number of trials often
required. Applying RTDP during actual control makes sense when there is not enough
time to compute a satisfactory policy by any off-line method before actual control must

begin.
Whether applied during actual control or in simulation mode, RTDP can have sig-

nificant advantages over conventional DP algorithms. Because RTDP is responsive to
the demands of control in selecting states to which the backup operation is applied, it
can focus computation onto parts of the state set for which control information is likely

to be most important for improving control performance. The convergence theorem for
Trial-Based RTDP applied to stochastic shortest path problems specifies conditions un-
der which RTDP focuses on states that are on optimal paths-eventually abandoning
all the other states-to produce a policy that is optimal on these relevant states without
continuing to back up the costs of all the states, and possibly without backing up the
costs of some states even once. Our illustrations using the race track problem show that
RTDP can obtain near optimal policies in some problems with significantly less com-
putation than is required by conventional DP However, more compelling is the fact that
the approach illustrated by RTDP can form useful approximations to optimal evaluation
functions in problems to which conventional DP cannot be feasibly applied at all. We
mentioned, for example, that in backgammon, a single sweep of conventional DP would
take more than 1,000 years using a 1,000 MIPS processor. This is true despite the fact
that a large fraction of the states of backgammon are irrelevant in normal play.

RTDP is closely related to Monte Carlo algorithms that achieve computational effi-

A.G. Bario et al. /Artificial Intelligence 72 (1995) 81-138 129

ciency by automatically allocating computation so that, for example, unimportant terms
in a sum correspond to very rare events in the computational process [171. For this
reason, the computational efficiency of Monte Carlo methods can exceed that of other
methods for some classes of problems. However, Monte Carlo methods are generally
not competitive with deterministic methods for small problems or when high-precision
answers are required. More research is needed to fully elucidate these correspondences
and to exploit them in refining DP-based learning methods and understanding their
computational complexity.

For problems that have very large states sets (such as backgammon), the lookup-
table method for storing evaluation functions to which we have restricted attention is
not practical. Much of the research on DP-based learning methods has made use of other
storage schemes. For problems in which DP-based learning algorithms focus on increas-
ingly small subsets of states, as illustrated in our simulations of the race track problem,
data structures such as hash tables and M-trees can allow the algorithms to perform well
despite dramatically reduced space requirements. One can also adapt supervised leam-
ing procedures to use each backup operation of a DP-based learning method to provide
training information. If these methods can generalize adequately from the training data,
they can provide efficient means for storing evaluation functions. Although some success
has been achieved with methods that can generalize, such as connectionist networks, the
theory we have presented in this article does not automatically extend to these cases.
Generalization can disrupt the convergence of asynchronous DP. Additional research is
needed to understand how one can effectively combine function approximation methods
with asynchronous DP.

In addition to the case in which an accurate model of the decision problem is available,
we also devoted considerable attention to Markovian decision problems with incomplete
information, i.e., problems for which an accurate model is not available. Adopting
the terminology of the engineering literature, these problems require adaptive control
methods. We described indirect and direct approaches to these problems. The method
we called the generic indirect method is representative of the majority of algorithms
described in the engineering literature applicable to Markovian decision problems with
incomplete information. A system identification algorithm adjusts a system model on-
line during control, and the controller selects actions based on a current estimate of
the optimal evaluation function computed by a conventional DP algorithm under the
assumption that the current model accurately models the system. The DP algorithm is re-
executed whenever the system model is updated. Although this approach is theoretically
convenient, it is much too costly to apply to large problems.

Adaptive RTDP results from substituting RTDP for conventional DP in the generic
indirect method. This means that RTDP is executed using the most recent system model
generated by the system identification algorithm. Adaptive RTDP can be tailored for
the available computational resources by adjusting the number of DP stages it executes
at each time step of control. Due to the additional uncertainty in this case, learning
is necessarily slower than in the non-adaptive case when measured by the number of
backups required. However, the amount of computation required to select each control
action is roughly the same. This means that it is practical to apply Adaptive RTDP to
problems that are much larger than those for which it is practical to apply methods, such

130 A.G. Burto et trl. /Art@d Intellipwce 72 (1995) 81-138

as the generic indirect method, that re-execute a conventional DP algorithm whenever
the system model is updated.

In addition to indirect adaptive methods, we discussed direct adaptive methods. Direct
methods do not form explicit models of the system underlying the decision problem. We
described Watkin’s [811 Q-Learning algorithm, which approximates the optimal eval-
uation function without forming estimates of state-transition probabilities. Q-Learning
instead uses sample state transitions, either generated by a system model or observed
during actual control. Q-Learning is an asynchronous DP algorithm that operates at

a finer grain than the asynchronous DP algorithm described in Section 5.3. Whereas
the basic operation of asynchronous DP is backing up the cost of a state, requiring
computation proportional to the number of possible successor states, the basic oper-
ation of Q-Learning is backing up the Q-value of a state-action pair, a computation
that does not depend on the number of possible successor states. The fine grain of the
basic Q-Learning backup allows Real-Time Q-Learning to focus on selected actions in
addition to selected states in a way that is responsive to the behavior of the controlled

system. The cost of this flexibility is the increased space required to store the Q-values
of state-action pairs and the fact that a Q-Learning backup does not gather as much
information as does a complete DP backup operation.

Sophisticated exploration strategies are important in solving Markovian decision prob-
lems under conditions of both complete and incomplete information. With complete
information, a sophisticated exploration strategy can improve control performance by

decreasing the time required to reach goal states or, in the case of RTDP, by focusing
DP stages on states from which information most useful for improving the evaluation
function is likely to be gained. Knowledgeable ordering of backups can accelerate con-
vergence of asynchronous DP, whether applied off- or on-line. When information is
incomplete, sophisticated exploration is useful for other reasons as well. In this case,

exploration strategies must also address the necessity to gather information about the

unknown structure of the system being controlled. Unlike exploration in the case of
complete information, which can be conducted in simulation mode, this kind of ex-
ploration must be conducted on-line. We discussed how exploration performed for this
reason conflicts with the performance objective of control, at least on a short-term basis,
and that a controller should not always execute actions that appear to be the best based
on its current evaluation function.

Although we did not use sophisticated exploration strategies in our simulations of the
race track problem, and we made no attempt in this article to analyse issues pertinent
to exploration, sophisticated exploration strategies will play an essential role in making
DP-based learning methods practical for larger problems. From what we did mention,
however, it should be clear that it is not easy to devise a consistent set of desiderata for
exploration strategies. For example, researchers have argued that an exploration strategy
should (1) visit states in regions of the state space where information about the system
is of low quality (to learn more about these regions), (2) visit states in regions of
the state space where information about the system is of high quality (so that the
backup operation uses accurate estimates of the state-transition probabilities), or (3)
visit states having successors whose costs are close to their optimal costs (so that the
backup operation efficiently propagates cost information). Each of these suggestions

A.G. Barto et al. /Artificial Intelligence 72 (1995) 81-138 131

makes sense in the proper context, but it is not clear how to design a strategy that best
incorporates all of them. It is encouraging, however, that the convergence results we
have presented in this article are compatible with a wide range of exploration strategies.

Throughout this article we have assumed that the states of the system being controlled
are completely and unambiguously observable by the controller. Although this assump-
tion is critical to the theory and operation of all the algorithms we discussed, it can be
very difficult to satisfy in practice. For example, the current state of a robot’s world
is vastly different from a list of the robot’s current “sensations”. On the positive side,

effective closed-loop control policies do not have to distinguish between all possible
sensations. However, exploiting this fact requires the ability to recognize states in the
complex flow of sensations. Although the problem of state identification has been the

subject of research in a variety of disciplines, and many approaches have been studied
under many guises, it remains a critical factor in extending the applicability of DP-
based learning methods. Any widely applicable approach to this problem must take the

perspective that what constitutes a system’s state for purposes of control-indeed what
constitutes the system itself-is not independent of the control objectives. The frame-
work adopted in this article in which “a dynamic system underlies the decision problem”
is misleading in suggesting the existence of a single definitive grain with which to de-
lineate events and to mark their passage. In actuality, control objectives dictate what
is important in the flow of the controller’s sensations, and multiple objective-dependent

models at different levels of abstraction are needed to achieve them. If this caution is
recognized, however, the algorithms described in this article should find wide application
as components of sophisticated embedded systems.

Acknowledgment

The authors thank Rich Yee, Vijay Gullapalli, Brian Pinette, and Jonathan Bachrach for
helping to clarify the relationships between heuristic search and control. We thank Rich
Sutton, Chris Watkins, Paul Werbos, and Ron Williams for sharing their fundamental
insights into this subject through numerous discussions, and we further thank Rich Sutton
for first making us aware of Korf’s research and for his very thoughtful comments on

the manuscript. We are very grateful to Dimitri Bertsekas and Steven Sullivan for
independently pointing out an error in an earlier version of this article. Finally, we
thank Harry Klopf, whose insight and persistence encouraged our interest in this class
of learning problems. This research was supported by grants to A.G. Barto from the
National Science Foundation (ECS-8912623 and ECS-9214866) and the Air Force
Office of Scientific Research, Bolling AFB (AFOSR-89-0526).

Appendix A. Proof of the trial-based RTDP theorem

Here we prove Theorem 3, which extends Korf’s [381 convergence theorem for
LRTA* to Trial-Based RTDP applied to undiscounted stochastic shortest path problems.

132 A.G. Barre et al./Artijicial Intelligence 72 (199.5) 81-138

Proof of Theorem 3. We first prove the theorem for the special case in which only the
cost of the current state is backed up at each time interval, i.e., B, = {st} and k, = t,
for t = 0, 1, . . . (see Section 6). We then observe that the proof does not change when
each B, is allowed to be an arbitrary set containing sy. Let G denote the goal set and let

s, , uf, and f, respectively denote the state, action, and evaluation function at time step
t in an arbitrary infinite sequence of states, actions, and evaluation functions generated
by Trial-Based RTDP starting from an arbitrary start state.

First observe that the evaluation functions remain non-overestimating, i.e., at any time
t, f,(i) 6 f*(i) for all states i. This is true by induction because ft+, (i) = ft (i) for

all i Z sI and if ft(j) < f*(j) for all j E S, then for all t

f,+~(s,) = min
UEWi)

[
c,~,(u) + Cps,,j(u)ft(j)

,iES 1

< u~~j,
[

C,,(U) + Cp,,(u)f*(j) = f*(h),

,iES 1
where the last equality restates the Bellman Optimality Equation (Eq. 6).

Let I C S be the set of all states that appear infinitely often in this arbitrary sequence;
I must be nonempty because the state set is finite. Let A(i) c U(i) be the set of
admissible actions for state i that have zero probability of causing a transition to a
state not in I, i.e., A(i) is the set of all actions u E U(i) such that p;j(u) = 0 for all
j E (S - I). Because states in S - I appear a finite number of times, there is a finite
time To after which all states visited are in I. Then with probability one any action
chosen an infinite number of times for any state i that occurs after TO must be in A(i)
(or else with probability one a transition out of I would occur), and so with probability
one there must exist a time T] > TO such that for all t > 7’1, we not only have that

sI E I but also that u[E A($,).

We know that at each time step t, RTDP backs up the cost of s, because s, E B,. We
can write the backup operation as follows:

ft+1 (St) = & 6, CutI + ~ps,,(ut)ft(j) + C p,j(ut>ft(j> 1 . (A.1)
.IEl jf(S-I)

But for all t > Tl, we know that s, E I and that ps,i(ur) = 0 for all j E S - I because
ur E A (s,) . Thus, for t > Tl the right-most summation in Eq. (A. 1) is zero. This means
that the costs of the states in S - I have no influence on the operation of RTDP after
T,. Thus, after TI, RTDP performs asynchronous DP on a Markovian decision problem
with state set I.

If no goal states are contained in I, then all the immediate costs in this Markovian
decision problem are positive. Because there is no discounting, it can be shown that
asynchronous DP must cause the costs of the states in I to grow without bound. But
this contradicts the fact that the cost of a state can never overestimate its optimal cost,

A.G. Barto et al. /Art@cial Intelligence 72 (1995) 81-138 133

which must be finite due to the existence of a proper policy. Thus I contains a goal
state with probability one.

After r,, therefore, Trial-Based RTDP performs asynchronous DP on a stochastic
shortest path problem with state set I that satisfies the conditions of the convergence
theorem for asynchronous DP applied to undiscounted stochastic shortest path problems
(Bertsekas and Tsitsiklis [12, Proposition 3.3, p. 3181). Consequently, Trial-Based
RTDP converges to the optimal evaluation function of this stochastic shortest path
problem. We also know that the optimal evaluation function for this problem is identical
to the optimal evaluation function for the original problem restricted to the states in I

because the costs of the states in S - I have no influence on the costs of states in I
after time rt.

Furthermore, with probability one I contains the set of all states reachable from any
start state via any optimal policy. Clearly, I contains all the start states because each start
state begins an infinite number of trails. Trial-Based RTDP always executes a greedy

action with respect to the current evaluation function and breaks ties in such a way
that it continues to execute all the greedy actions. Because we know that the number of
policies is finite and that Trial-Based RTDP converges to the optimal evaluation function
restricted to I, there is a time after which it continues to select all the actions that are
greedy with respect to the optimal evaluation function, i.e., all the optimal actions.
Thus with probability one, I contains all the states reachable from any start state via

any optimal policy, and there is a time after which a controller using RTDP will only
execute optimal actions.

Finally, with trivial revision the above argument holds if RTDP backs up the costs of
states other than the current state at each time step, i.e., if each B, is an arbitrary subset

of s. cl

Appendix B. Simulation details

Except for the discount factor y, which we set to one throughout the simulations,
and the sets B,, which we set to {sI} for all t, RTDP does not involve any parameters.
Gauss-Seidel DP only requires specifying a state ordering for its sweeps. We selected
an ordering without concern for any influence it might have on convergence rate. Both
Adaptive RTDP and Real-Time Q-Learning require exploration during the training trials,
which we implemented using Eq. (11). To generate the data described in Section 4.1,
we decreased the parameter T with successive moves as follows:

T(0) = T~ax, (B.1)

T(k+ 1) =TMin+P(T(R) -T’in)T (B.2)

where k is the move number (cumulative over trials), p = 0.992, TM,, = 7.5, and
TMin = 0.5.

Real-time Q-Learning additionally requires sequences of learning rate parameters
LY~(i, U) (Eq. (14)) that satisfy the hypotheses of the Q-Learning convergence theorem
[8 1,821. We defined these sequences as follows. Let (Ye (i, u) denote the learning rate

134 A.C. Barto et ~1. /Artificial Intelligence 72 (1995) 81-138

parameter used when the Q-value of the state-action pair (i, U) is backed up at time
step t. Let n, (i, u) be the number of backups performed on the Q-value of (i, U) up to
time step t. The learning rate CY~ (i, U) is defined as follows:

cu,(i,u.) =
ffO7

7-t n,(i,u) ’

where aa is the initial learning rate. We set “0 = 0.5 and r = 300. This equation
implements a search-r&n-converge schedule for each cut(i, u) as suggested by Darken
and Moody [191. They argue that such schedules can achieve good performance in

stochastic optimization tasks. It can be shown that this schedule satisfies the hypotheses
of the Q-Learning convergence theorem.

References

1 I 1 C.W. Anderson, Strategy learning with multilayer connectionist representations, Tech. Report TR87-

S09.3, GTE Laboratories, Incorporated, Waltham, MA (1987); (this is a corrected version of the report

published in: Proceedings Fourth International Conference on Machine Learning, Irvine, CA (1987)
103-I 14).

12

13

A. Barto, Reinforcement learning and adaptive critic methods, in: D.A. White and D.A. Sofge, eds.,
Handbook of Intelligent Control: Neuml. Fu77t ond Adaptive Approaches (Van Nostrand Reinhold,

New York, 1992) 469-49 I.

A. Barto and S. Singh, On the computational economics of reinforcement learning, in: D.S. Touretzky,

J.L. Elman, T.J. Sejnowski and G.E. Hinton, eds.. Connectionist Models: Proceedings of the 1990

Sumnzer School (Morgan Kaufmann, San Mateo, CA, 199 I) 35-44.
14 I A.G. Barto, R.S. Sutton and C.W. Anderson, Neuronlike elements that can solve difficult learning

I.51

161

I71

I81

I91

1101

IIll

1121

1131

I141

1151

1161

control problems. fEEE Trans. Sysr. Man Cybern. 13 (1983) 835-846; reprinted in: J. A. Anderson

and E. Rosenfeld. Neurowmpufing: Foundations of’ Research (MIT Press, Cambridge, MA, 1988).
A.G. Barto, R.S. Sutton and C. Watkins. Sequential decision problems and neural networks, in: D.S.

Touretzky, ed., Advunce.~ m Neural Information Processing Sysfems 2 (Morgan Kaufmann, San Mateo,

CA. 1990) 686-693.

A.G. Barto, R.S. Sutton and C.J.C.H. Watkins, Learning and sequential decision making, in: M. Gabriel

and J. Moore, eds., Learning and Computational Neuroscience: Foundations of Adaptive Networks (MIT

Press, Cambridge, MA, 1990) 539-602.
R. Bellman and SE. Dreyfus, Functional approximations and dynamic programming, Math Gbles rmd

Other Aides to Computation 13 (1959) 247-25 I.

R. Bellman, R. Kalaba and B. Kotkin. Polynomial approximation-a new computational technique in

dynamic programming: allocation processes, Math. Camp. 17 (1973) 155-161.

R.E. Bellman, Dynamic Programming (Princeton University Press, Princeton, NJ, 19.57).

D.P. Bertsekas, Distributed dynamic programming, lEEE Trans. Autom. Control 27 (1982) 6 I O-6 16.

D.P. Bettsekas, Dynamic Prqrummin,q: Deterministic and Stochastic Models (Prentice-Hall, Englewood

Cliffs, NJ, 1987).
D.P. Bertsekas and J.N. Tsitsiklis. Pamfiel trnd Disrributed Computation: Numerical Methods (Prentice-

Hall, Englewood Cliffs. NJ. 1989).

S.J. Bradtke, Reinforcement learning applied to linear quadratic regulation, in: C.L. Gil%, S.J. Hanson

and J.D. Cowan, eds., Advances in Neural lrzformation Processing 5 (Morgan Kaufmann, San Mateo,

CA, 1993) 295-302.

D. Chapman, Penquins can make cake. Al Meg. 10 (1989) 45-50.

D. Chapman and L.P. Kaelbling, input generalization in delayed reinforcement learning: an algorithm

and performance comparisons, in: Proceedings IJCAI-91, Sydney, NSW (199 1).

J. Christensen and RX. Korf, A unified theory of heuristic evaluation functions and its application to
learning, in: Proceedings AAAI-86, Philadelphia, PA (1986) 148-152.

A.G. Barto et al. /Art#cial Intelligence 72 (1995) 81-138 135

I 17 J J.H. Curtis& A theoretical comparison of the efficiencies of two classical methods and a Monte Carlo

method for computing one component of the solution of a set of linear algebraic equations, in: H.A.

Meyer, ed., Symposium on Monre Carlo Methods (Wiley, New York, 1954) 191-233.

[I8 I J.W. Daniel, Splines and efficiency in dynamic programming, J. Math. Annl. Appl. 54 (1976) 402-407.
[191 C. Darken and J. Moody, Note on learning rate schedule for stochastic optimization, in: R.P. Lippmann,

J.E. Moody and D.S. Touretzky, eds., Advances in Neural Information Processing Systems 3 (Morgan
Kaufmann, San Mateo, CA, 1991) 832-838.

[201 P. Dayan, Navigating through temporal difference, in: R.P Lippmann, J.E. Moody and D.S. Touretzky,

eds., Advances in Neural Information Processing Systems 3 (Morgan Kaufmann, San Mateo, CA, 1991)

464-470.

[21 1 F? Dayan, Reinforcing connectionism: learning the statistical way, Ph.D. Thesis, University of Edinburgh,

Edinburgh, Scotland (1991).

[22] P Dayan, The convergence of TD(A) for general A, Mach. kurn. 8 (1992) 341-362.

123 1 T.L. Dean and M.P. Wellman, Planning nnd Control (Morgan Kaufmann, San Mateo, CA, 199 1).

[241 E.V. Denardo, Contraction mappings in the theory underlying dynamic programming, SIAM Rev. 9

(1967) 165-177.

1251 M. Gardner, Mathematical games, Sci. Amer. 228 (1973) 108.
[26] D. Gelperin, On the optimality of A *, Artif: Intell. 8 (1977) 69-76.

[27) M.L. Ginsberg, Universal planning: an (almost) universally bad idea, AI Mug. 10 (1989) 40-44.

[28 1 SE. Hampson, Connectionisr Problem Solving: Computational Aspects of Biological Learning
(Birkhauser. Boston, MA, 1989).

129 1 PE. Hart, N.J. Nilsson and B. Raphael, A formal basis for the heuristic determination of minimum cost

paths, IEEE Trans. Syst. Sci. Cybern. 4 (1968) 100-107.

[30] J.H. Holland, Escaping brittleness: the possibility of general-purpose learning algorithms applied to

rule-based systems, in: R.S. Michalski, J.G. Carbonell and T.M. Mitchell, eds., Muchine Learning: An
Arfljicial Inteitigence Approach. Volume II (Morgan Kaufmann, San Mateo, CA, 1986) 593-623.

[3 1] D.H. Jacobson and D.Q. Mayne, Differenrial Dynamic Programming (Elsevier, New York, 1970).

[321 A. Jalali and M. Ferguson, Computationally efficient adaptive control algorithms for Markov chains, in:

Proceedings 28rh Conference on Decision and Control, Tampa, FL (1989) 1283- 1288.

[33 1 M.1. Jordan and R.A. Jacobs, Learning to control an unstable system with forward modeling, in: D.S.

Touretzky, ed., Advances in Neurul Information Processing Systems 2 (Morgan Kaufmann, San Mateo,

CA, 1990).

[34 I L.P. Kaelbling, Learning in Embedded Systems (MIT Press, Cambridge, MA, 1991); revised version
of: Teleos Research TR-90-04 (1990).

1351 S. Kirkpatrick, CD. Gelatt and MI? Vecchi. Optimization by simulated annealing, Sci. 220 (1983)

671-680.

1361 A.H. Klopf, Brain function and adaptive systems-a heterostatic theory, Tech. Report AFCRL-72-0164,

Air Force Cambridge Research Laboratories, Bedford, MA (1972); a summary appears in: Proceedings
International Conference on Systems, Man, and Cybernetics (1974).

[37 I A.H. Klopf, The Hedonistic Neuron: A Theory of Memory, Learning, and Intelligence (Hemishere,

Washington, DC, 1982).

[381 R.E. Korf, Real-time heuristic search, A@ Inrell. 42 (1990) 189-211.
[39) P.R. Kumar, A survey of some results in stochastic adaptive control, SIAM J. Control Optimizufion 23

(1985) 329-380.
I40] V. Kumar and L.N. Kanal, The CDP: a unifying formulation for heuristic search, dynamic programming,

and branch-and-bound, in: L.N. Kanal and V. Kumar, eds., Search in Artificial Inrelligence (Springer-

Verlag, Berlin, 1988) l-37.

[41 I H.J. Kushner and P. Dupuis, Numerical Methods for Stochastic Control Problems in Continuous 7ime
(Springer-Verlag. New York, 1992).

1421 W.H. Kwon and A.E. Pearson, A modified quadratic cost problem and feedback stabilization of a linear

system, fEEE Trans. Aurom. Control 22 (1977) 838-842.
[431 Y. le Cun, A theoretical framework for back-propagation, in: D. Touretzky, G. Hinton and T. Sejnowski,

eds., Proceedings I988 Connectionisr Models Summer School (Morgan Kaufman% San Mateo, CA,

1988) 21-28.

136 A.ti. Btrrto PI trl. /Art[jificirzl Intellz~ence 72 (1995) RI-138

I44 I M. Lemmon, Real-time optimal path planning using a distributed computing paradigm, in: Proceedings

American Control Conferenre, Boston, MA (1991).

I45 I L.J. Lin. Programming robots using reinforcement learning and teaching, in: Proceedings AAAI-91,

Anaheim, CA (1991) 781-786.

I46 I L.J. Lin. Self-improvement based on reinforcement learning, planning and teaching, in: L.A. Bimbaum

and G.C. Collins, eds., Muclzing Learning: Proceedings Eighih Internationul Workshop (Morgan

Kaufmann, San Mateo. CA, 1991) 323-327.

I47 I L.J. Lin, Self-improving reactive agents: case studies of reinforcement learning frameworks, in: From

Arzimczls fo Animus: Proceedings Fir.yt International Corzference on Simulation of Adaptive Behavior.

Cambridge, MA (1991) 297-305.

I48 I L.J. Lin, Self-improving reactive agents based on reinforcement learning, planning and teaching, Much.

Leclrn. 8 (1992) 293-32 I,
I49 1 S. Mahadevan and J. Connell, Automatic programming of behavior-based robots using reinforcement

learning, Artif Intell. 55 (1992) 31 I-36.5.

I SO I D.Q. Mayne and H. Michalska, Receding horizon control of nonlinear systems. /EXE Trans. Aufom.

Control 35 (1990) 8 14-824.

IS1 I L. Mdro, A heuristic search algorithm with modifiable estimate, Artif: Intell. 23 (1984) 13-27.

I S2 I D. Michie and R.A. Chambers, BOXES: an experiment in adaptive control, in: E. Dale and D. Michie,

eds.. Muchine lrztelligetzce 2 (Oliver and Boyd, Edinburgh, 1968) 137- 152.

153 1 M.L. Minsky, Theory of neural-analog reinforcement systems and its application to the brain-model

problem, Ph.D. Thesis, Princeton University. Princeton, NJ (1954).

I54 I M.L. Minsky, Steps toward artificial intelligence, Proceedings Institute of Radio Engineers 49 (196 I)
8-30: reprinted in: E. A. Feigenbaum and J. Feldman, eds., Conzpufers and Thought (McGraw-Hill,

New York, 1963) 406-490.

IS5 I A.W. Moore, Efficient memory-based learning for robot control, Ph.D. Thesis, University of Cambridge,

Cambridge, England (1990).

IS6 I A.W. Moore, Variable resolution dynamic programming: efficiently learning action maps in multivariate

real-valued state-spaces, in: L.A. Bimbaum and G.C. Collins, eds., Mac/zing Leurning: Proceedings

Eighth /nrernurionul Workshop (Morgan Kaufmann, San Mateo, CA, 1991) 333-337.

157) A.W. Moore and C.G. Atkeson, Memory-based reinforcement learning: efficient computation with

prioritized sweeping, in: S.J. Hanson, J.D. Cowan and C.L. Giles, eds., Advances in Neural Informafion

Processing 5 (Morgan Kaufmann, San Mateo, CA, 1993).

1581 J. Peng and R.J. Williams, Efficient learning and planning within the dyna framework, Adaptive

Behavior 2 (1993) 437-454.

IS9 j M.L. Puterman and M.C. Shin, Modified policy iteration algorithms for discounted Markov decision

problems, Munage. Sci. 24 (1978) I I27- I 137.

I 60 I S. Ross, Introduction to Stochastic Dynttmic Pro,qnzmming (Academic Press, New York, 1983).

161 I A.L. Samuel, Some studies in machine learning using the game of checkers, IBM J. Rex Develop.

(1959) 210-229; reprinted in: E.A. Feigenbaum and J. Feldman, eds., Computers and Thought

(McGraw-Hill, New York, 1963).

I62 I A.L. Samuel. Some studies in machine learning using the game of checkers. II-Recent progress, IBM

J. Res. Dewlo+ (1967) 601-6 17.

I63 I J. Schmidhuber, Adaptive confidence and adaptive curiosity, Tech. Report FKI-149-91 lnstitut ftir

Informatik, Technische Universitat Miinchen, 800 Miinchen 2, Germany (199 I).

I64 I M.J. Schoppers, Universal plans for reactive robots in unpredictable environments, in: Proceedings

IJCAI-87, Milan, Italy (1987) IO39- 1046.

16.51 M.J. Schoppers, In defense of reaction plans as caches, A/ &fag. 10 (1989) 51-60.

(661 S.P. Singh and R.C. Yee, An upper bound on the loss from approximate optimal value functions.

technical note, Mach. Lenm. 16 (1994) 227-233.

167 I R.S. Sutton, Temporal credit assignment in reinforcement learning, Ph.D. Thesis, University of

Massachusetts, Amherst, MA (1984).

[68 I R.S. Sutton. Learning to predict by the method of temporal differences, Mach. Lerzm. 3 (1988) 9-44.

1691 R.S. Sutton, Integrated architectures for learning, planning, and reacting based on approximating

dynamic programming, in: Prwerdings Seventh fnterruzfional Conference on Machine Learning (Morgan

Kaufmann, San Mateo, CA. 1990) 2 I h-224.

A.G. Barto et al. /Artificial Intelligence 72 (1995) 81-138 137

170 I R.S. Sutton, Planning by incremental dynamic programming, in: L.A. Bimbaum and G.C. Collins, eds.,
Maching Learning: Proceedings Eighth International Workshop (Morgan Kaufmann, San Mateo, CA,

1991) 353-357.

I71] R.S. Sutton, ed., A Special Issue c$ Machine Learning on Reinforcement Learning, Mach. Learn. 8
(1992); also published as: Reinforcement Learning (Kluwer Academic Press, Boston, MA, 1992).

[721 R.S. Sutton and A.G. Barto, Toward a modem theory of adaptive networks: expectation and prediction,

Psychol. Rev. 88 (1981) 135-170.

1731 R.S. Sutton and A.G. Barto, A temporal-difference model of classical conditioning, in: Proceedings
Ninth Annual Conference of the Cognifive Science Society, Seattle, WA (1987)

[741 R.S. Sutton and A.G. Barto, Time-derivative models of Pavlovian reinforcement, in: M. Gabriel and

J. Moore, eds., Learning and Computational Neuroscience: Foundations of Adaptive Networks (MIT

Press, Cambridge, MA, 1990) 497-537.

1751 R.S. Sutton, A.G. Batto and R.J. Williams, Reinforcement learning is direct adaptive optimal control,

in: Proceedings American Control Conference, Boston, MA (1991) 2143-2146.

[761 M. Tan, Learning a cost-sensitive internal representation for reinforcement learning, in: L.A. Bimbaum

and G.C. Collins, eds., Maching Learning: Proceedings Eighth International Workshop (Morgan

Kaufmann, San Mateo, CA, 1991) 358-362.

177 1 G.J. Tesauro, Practical issues in temporal difference learning, Mach. Learn. 8 (1992) 257-277.

[78 1 S. Thrun, The role of exploration in learning control, in: D.A. White and D.A. Sofge, eds., Handbook
of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches (Van Nostrand Reinhold, New York,

1992) 527-559.

1791 S.B. Thrun and K. Moller, Active exploration in dynamic environments, in: J.E. Moody, S.J. Hanson

and R.P. Lippmann, eds., Advances in Neural infortnafion Processing Sysfems 4 (Morgan Kaufmann,

San Mateo, CA, 1992).

[801 PE. Utgoff and J.A. Clouse, Two kinds of training information for evaluation function learning, in:

Proceedings AAAI-91, Anaheim, CA (I99 1) 596-600.

(81 1 C.J.C.H. Watkins, Learning from delayed rewards. Ph.D. Thesis, Cambridge University, Cambridge,

England (1989)

1821 C.J.C.H. Watkins and P Dayan, Q-learning, Mach. Learn. 8 (1992) 279-292.

[83] P. Werbos, Approximate dynamic programming for real-time control and neural modeling, in: D.A.

White and D.A. Sofge, eds., Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches
(Van Nostrand Reinhold, New York, 1992) 493-525.

[841 P.J. Werbos, Beyond regression: new tools for prediction and analysis in the behavioral sciences, Ph.D.

Thesis, Harvard University, Cambridge, MA (1974).

1851 P.J. Werbos, Advanced forecasting methods for global crisis warning and models of intelligence, General

Systems Yearbook 22 (1977) 25-38.
1861 P.J. Werbos, Applications of advances in nonlinear sensitivity analysis, in: R.F. Drenick and F. Kosin,

eds., System Modeling an Optimization (Springer-Verlag, Berlin, 1982).

[87 1 PJ. Werbos, Building and understanding adaptive systems: a statistical/numerical approach to factory

automation and brain research, IEEE Trans. Syst. Man Cybern. (1987).

1881 PJ. Werbos, Generalization of back propagation with applications to a recurrent gas market model,

Neural Networks 1 (1988) 339-356.

[891 D. White and M. Jordan, Optimal control: a foundation for intelligent control, in: D.A. White and D.A.

Sofge, eds., Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches (Van Nostrand

Reinhold, New York, 1992) 185-214.

1901 S.D. Whitehead, Complexity and cooperation in Q-learning, in: L.A. Bimbaum and G.C. Collins, eds.,

Maching Learning: Proceedings Eighth International Workshop (Morgan Kaufmann, San Mateo, CA,

199 1) 363-367.

[911 R.J. Williams and L.C. Baird III, A mathematical analysis of actor-critic architectures for learning

optimal controls through incremental dynamic programming, in: Proceedings Sixth YaZe Workshop on
Adaptive and Learning Systems, New Haven, CT (1990) 96-101.

1921 I.H. Witten, An adaptive optimal controller for discrete-time Markov environments, Infor. Control 34
(1977) 286-295.

138 A.G. Barfo er al. /Artijicial lnfelligence 72 (1995) RI-138

I93 1 1.H. Witten, Exploring, modelling and controlling discrete sequential environments, IN. J. Man-Mach.

Stud. 9 (1977) 715-735.

1941 R.C. Yee, Abstraction in control learning, Tech. Report 92-16, Department of Computer Science,

University of Massachusetts, Amherst, MA (1992).

