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A B S T R A C T

Wheat is one of the main grains produced across the globe and wheat yields are sensitive to changes in
climate. Australia is a major exporter of wheat, and variations in its national production influence trade
supplies and global markets. We evaluated the effect of climate change in 2030 compared to a baseline
period (1980–1999) by upscaling from farm to the national level. Wheat yields and gross margins under
current and projected climates were assessed using current technology and management practices and
then comparedwith ‘best adapted’ yield achieved byadjustments to planting date, nitrogen fertilizer, and
available cultivars for each region. For the baseline climate (1980–1999), there was a potential yield gap
modelled as optimized adaptation gave potential up scaled yields (tonne/ha) and gross margins (AUD
$/ha) of 17% and 33% above the baseline, respectively. In 2030 and at Australian wheatbelt level, climate
change impact projected to decline wheat yield by 1%. For 2030, national wheat yields were simulated to
decrease yields by 1% when using existing technology and practices but increase them by 18% assuming
optimal adaptation. Hence, nationally at 2030 for a fully-adaptedwheat system, yield increased by 1% and
gross margin by 0.3% compared to the fully adapted current climate baseline. However, there was
substantial regional variation with median yields and gross margins decreasing in 55% of sites. Full
adaptation of farm systems under current climate is not expected, and so this will remain an on-going
challenge. However, by 2030 there will be a greater opportunity to increase the overall water use and
nitrogen efficiencies of the Australian wheat belt, mostly resulting from elevated atmospheric CO2

concentrations.
ã2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Wheat production is known to be sensitive to variations in both
temperature and rainfall (Lobell et al., 2011). Changes in climate
are expected to have varying impacts in different regions of the
globe although negative impacts are expected to be more common
than positive ones (Porter et al., 2014). A reduction in Australian
wheat production can potentially affect global food security (FAO,
1996) and its global availability (Ingram, 2011), as Australia is the
fourth largest wheat exporter in the world (Connor et al., 2011). Its
production can affect the global food market, as shown by
increased global wheat prices during the drought between 2002
and 2009 (Lobell et al., 2011).

Changes in climate over the past century interact with advances
in agricultural technology and farming systems (Lobell et al., 2011).
As, greater changes in climate are predicted in the near future
compared to the changes of the late 20th century (Parry et al.,
2007) continued technology and farming systems adaptations will
be needed.

A viable response strategy for regions such as the Australian
wheatbelt where climate change is largely anticipated to be
negative is via improvement of farm management practices to
offset anticipated declines in production and profitability (e.g.
Stokes and Howden, 2010). Climate adaptation is the process of
adjustment in natural or human systems in response to actual or
expected climatic stimuli to moderate harm or exploit oppor-
tunities (Parry et al., 2007). In farming, management adaptations
vary resource use in accordance with changes in climate and its
seasonal variability to gain benefit for example from increased
yield (Bassu et al., 2009; Hunt and Kirkegaard, 2012). However,
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there often exists a ‘yield gap’ between actual farm practices and
those which would maximise benefits. This is important when
assessing climate change scenarios so as to not conflate closing the
existing yield gapwith optimised adaptation under climate change
(Stokes and Howden, 2010).

Some potential benefits from changes in climate are related to
fertilization by elevated atmospheric CO2, which is an important
part of the climate change impact in water-limited environments
i.e. the great majority of Australian production (Tubiello et al.,
2007). The primary adaptation opportunities arise frommanaging
soil watermore efficiently through the growing season (Kirkegaard
et al., 2014) by choosing variety, sowing time, sowing density and
fertilizer timing and amount. It should be noted that management
strategies that are optimized for present-day climate may not
necessarily be optimal for future climate. This suggests that it is
worthwhile exploring optimal adaptation under projected climate.

Previous evaluations of climate change impacts on Australian
wheat production have indicated a substantial decline in produc-
tion in Western Australia (Ludwig et al., 2009) and a decrease in
production in the southern part of the Australian wheatbelt
(Ludwig and Asseng, 2006), including cross-regional assessments
of impacts and adaptations (Howden, 2002; Howden and Crimp,
2005). However, these analyses of yield and gross margin change
have been applied to a limited number of sites and have not
included effective methods to scale up the analyses to a national
level to provide industry and policy makers with a clearer insight
for high level planning.

In this paper we evaluate the impact of climate change and the
effectiveness of adaptations for projected climate scenarios in
2030 relative to a historical baseline of 1980–1999 (with current
management), in order to estimate the value of adaptation in terms
of production and financial returns. We use a bottom-up
methodology that optimally exploits local knowledge and data
(van Ittersum et al., 2013) and requires extensive biophysical
system modelling. We predict wheat production/gross margin in
2030 through the biophysical modelling of unit scale results and
use farm survey data and a survey estimation method to upscale
results to a cross-regional/ national level.

2. Methods

The impacts of climate change and adaptations were evaluated
in terms of the resulting yield (per ha) and gross margin (per ha),
which is the difference between estimated income and the fixed
and variable costs of production, excluding capital costs. The
adapted yield (AY) and adapted gross margin (AG) are upper limits
for fully enhanced systems with all adaptation strategies (in this
study, all currently-existing technologies) at the efficiency frontier
(EF). For historical climate, lower limits are the historical yield (HY)
and historical gross margin (HG) under current practice. For future
climatewe defined lower limits as current practice yield (CPY) and
current practice gross margin (CPG). AY and AG are reported in
comparisonwith those of HYand HG for the historical baseline and
CPY and CPG for the future. It should be note that AY and AG are
fully adapted (enhanced) systems on the EF. These modeled values
may not be achievable due to biophysical, management, social, or
economic constraints. Here, all projections in 2030 have been
associated with the effect of elevated atmospheric CO2 unless
otherwise indicated. Concepts, abbreviations, impact, and adapta-
tion framework are presented in Fig. 1.

2.1. Study area and sites

The study area is the Australian wheatbelt (Fig. 2). Averaged
over 1980–1999, about 10.2million ha of this area has beenplanted
to wheat (ABARES, 2003). Across this region the climate and soil

types (Table 1) and cultivars (Table 2) vary widely. A set of
representative wheat farming sites was therefore selected by
aggregating statistical areas level 2 within the wheatbelt (SA2s,
Australian Bureau of Statistics, 2011) into a set of 30 regions (Fig. 2)
so that each region had approximately equal gross value of average
agricultural production (GVAP). SA2s were grouped according to
their average annual rainfall and land use (i.e. the proportions of
GVAP attributable to cropping). A single location (Fig. 1) was then
selected from each of the 30 regions to ensure a good spread of
sites across the wheat belt (as in Moore and Ghahramani, 2013).
The baseline climate was 1980–2010 at each location as recorded
by the Bureau of Meteorology.

2.2. Climate change scenarios

Research has demonstrated that global carbon dioxide (CO2)
emissions, atmosphericCO2concentrations, sea-level riseandglobal
temperatures are already tracking along the upper bounds of the
previously-projected range (Peters et al., 2012). We therefore used
two high-emissions CMIP3 (Meehl et al., 2007) scenarios (A1FI and
A2) with high and medium sensitivity that allowed us to sample
across the more likely range of possible future climates in the focus
year of 2030 using six global climate models (GCM): ECHAM 5
(Roeckner et al., 2003), GFDL 2.1 (Delworth et al., 2006), HADCM3
(Pope et al., 2000),HADGEM1(Johnset al., 2006),MIROC-H (Burgess
et al., 2012),MRI-GCM232(Yukimotoet al., 2001). TheseGCMswere
selected based on performance and ranking by 11 criteria (Crimp
et al., 2010) of which the most important were (i) demerit points
based on criteria for rainfall, temperature and mean sea level
pressure (Suppiah et al., 2007), (ii) M-statistics representing
goodness of fit at simulating rainfall, temperature and mean sea
level pressure (Watterson, 2008) and (iii) predictive skill for daily
rainfall over Australia (Perkins et al., 2007). At the time of analysis
Coupled Model Intercomparison Project Phase 5 (CMIP5; Taylor
et al., 2012) projections were not yet available.

Projections from each GCMwere statistically downscaled using
the quantile matching (QM) method (Kokic et al., 2013; Burgess
et al., 2012) to produce daily weather data sequences for each of
the 30 locations. The QM algorithmworks by modifying historical
weather sequences (in this case for 1980–2010), and therefore
preserves spatial correlations in climate; for example a drought at
one location is likely to coincidewith a drought at nearby locations.
This is essential when attempting to scale up effects across the

[(Fig._1)TD$FIG]

Fig.1. Concepts and framework for climate change impact and adaptation analysis.
HY: historical yield, HG: historical gross margin, AY: adapted yield, AG: adapted
gross margin, CPY: current practice yield, CPG: current practice gross margin. AY
and AG are on the efficiency frontier when implementing systemic combination of
incremental adaptation options from current technologies.
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country. Atmospheric CO2 concentrations of 350ppm for historical
climate and 449 and 444ppm for 2030 under the A1FI and A2
scenarios were assumed (Houghton et al., 2001).

2.3. Simulation setup and base parameters

APSIM (the Agricultural Production Systems Simulator) version
7.5 was used to simulate biophysical processes. We applied
additional functions to account for frost and heat stress further to
APSIM’s current formulation (Bell et al., 2015; Farre et al., 2010),
because the effects of frost and heat are expected to contribute to a
direct decline in yield (Porter et al., 2014). The time period 1980–
1999 was used as the historical baseline. Soil parameters for all
locations except Hamilton (Rennick Peries, Victoria, DPI, personal
communication) were selected from the APSoil data base
(Dalgliesh et al., 2006).

A set of simulations were performed for parameterization of
soil characteristics. Initial soil Nitrogen (N) of each location was
estimated from a longer term historical run (1957–2010) under
continuous sowing without resetting soil N at the end of each year.
A test simulationwith extractable soil water (esw) varied between

20% and 100% of soil water holding capacity showed that it took
less than 10 years to stabilize yields if esw was not reset each year.
Thus, initial years prior to 1980 were removed to equilibrate soil
water. Models were setup for continuous sowing (Bryan et al.,
2014) while soil nitrogen was reset at the end of each year.

The baseline sowing window and reference wheat cultivar for
each locationwere selected based on local conditions (Chenu et al.,
2013; Hunt and Kirkegaard, 2012) and expert opinions (e.g.
personal communications with James Hunt of CSIRO and David
Bowran of the Department of Agriculture and Food of Western
Australia via producer workshops). Sowing was simulated when
3-day total rainfall exceeded 10mm and plant available soil water
(PASW) exceeded a threshold (Chenu et al., 2013). Long term
simulation results (1957–2010) indicated that a PASW threshold of
0mmwas appropriate in all locations except those in Queensland
and northern New South Wales where 50–150mm PASW thresh-
olds were required for sowing (Table 2). Water use efficiency
parameters (Moore et al., 2011) were modelled for each site and
management� climate combinations.

Statistical data collection in Australia is inadequate to allow
current practice for N input rates to be identified across our

[(Fig._2)TD$FIG]

Fig. 2. (a) Simulated sites across the wheatbelt (yellow) and within ABARES farm survey regions with point size represents relative contribution in cross-regional scale
production during baseline, (b) change in annualmean temperature in 2030 across all GCMs, sensitivities, and scenarios (see text), (c) relative change inmean annual growing
season rainfall in 2030 across all GCMs, sensitivities, and scenarios, (d) relative change in median in 2030 that averaged across sites for rainfall, and changes in maximum
temperature (Max T), and minimum temperature (Min T) from historical period. Legend caption inside Fig denotes to the climate scenarios (A1FI and A2) and examined
sensitivity (High and Medium). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 1
Attributes of modeled wheat production systems. ABM is weather station code. PASW is plant available soil water used in sowing rule.

Location
name

Longitude Latitude State Soil description ABM Id Annual rainfall
(mm)

Annual mean
temperature (�C)

PASW threshold for
sowing (mm)

Dalwallinu 116.6619 �30.2772 WA Red sandy loam 008039 378 16.7 0
Mullewa 115.5142 �28.5367 WA Red sandy earth 008095 347 17.1 0
Esperance 121.8925 �33.8300 WA Sand over clay 009789 497 15.8 0
Cunderdin 117.2511 �31.6597 WA Grey deep sandy duplex 010035 374 16.6 0
Northam 116.6703 �31.6408 WA Grey deep sandy duplex 010111 423 16.5 0
Katanning 117.5553 �33.6886 WA Sandy duplex 010579 466 15.0 0
Lake Grace 118.4625 �33.1006 WA Yellow sodsol 010592 353 15.6 0
Southern
Cross

119.3281 �31.2319 WA Calcareous loamy earth 012074 348 16.3 0

Cummins 135.7253 �34.2661 SA Clay loam over red clay 018023 397 15.4 0
Minnipa 135.1500 �32.8361 SA Red sandy loam over light clay 018052 322 16.7 0
Waikerie 139.9806 �34.1778 SA Sandy loam 024018 275 16.2 0
Lameroo 140.5175 �35.3288 SA Sandy loam 025509 382 15.9 0
Naracoorte 140.7402 �36.9564 SA Sandy loam over brown clay 026023 555 15.0 0
Emerald 148.1617 �23.5267 QLD Black vertosol 035027 619 17.4 80
Dalby 151.2639 �27.1839 QLD Grey vertosol–cecilvale 041023 668 15.7 80
Goondiwindi 150.3075 �28.5481 QLD Grey vertosol 041038 656 17.0 150
Roma 148.7897 �26.5719 QLD Brown vertosol 043030 620 16.6 80
Condobolin 147.2283 �33.0664 NSW Sandy clay over medium clay 050052 472 15.4 50
Gilgandra 148.6600 �31.7100 NSW Loam over a clay loam 051018 574 15.1 50
Walgett 148.1223 �30.0372 NSW Grey vertosol 052088 481 16.7 80
Moree 149.8383 �29.4819 NSW Black vertosol 053048 606 15.7 80
Wellington 148.8000 �32.8000 NSW Sandy clay 065028 613 14.5 50
Cootamundra 148.0236 �34.6411 NSW Sandy loam over 073009 677 13.9 0
Narrandera 146.5500 �34.7500 NSW Medium clay over heavy clay 074082 456 15.1 50
Birchip 142.9156 �35.9825 VIC Clay loam 077007 373 15.0 0
Swan Hill 143.5533 �35.3406 VIC Sandy clay loam 077042 350 15.4 0
Dookie 145.7036 �36.3717 VIC Sandy loam 081013 592 13.1 0
Ararat 142.9500 �37.2833 VIC Sandy clay loam over heavy clay 089000 605 13.1 0
Colac 143.6614 �38.2794 VIC Heavy clay 090022 680 13.5 0
Hamilton 142.0636 �37.6486 VIC Rennick Peries’ soil description (personal

communication)
090173 636 13.5 0

Table 2
Attributes of sowing metrics and maximum simulated top-dress N input rate. Day1 and Day 2 are days of year defining sowing window. N rates are without bias correction.

Locations Reference
cultivar

Earlier
cultivar

Later
cultivar

Day1 Day
2

Sowing density
(plantsm�2)

Optimized N rate in baseline
(kg ha_1)

Optimized N rate in adapted 2030
(kgha_1)

Dalwallinu Mace Axe Endure 121 153 100 60 80
Mullewa Mace Axe Endure 121 153 100 60 30
Esperance Mace Axe Endure 105 166 150 60 120
Cunderdin Mace Axe Endure 105 166 150 75 100
Northam Mace Axe Endure 105 166 150 60 80
Katanning Mace Axe Endure 105 166 150 15 20
Lake Grace Mace Axe Endure 105 166 100 20 20
Southern
Cross

Mace Axe Endure 105 166 100 60 60

Cummins Wyalkatchem Axe Yitpi 123 176 150 60 120
Minnipa Gladius Axe Bolac 123 176 100 5 5
Waikerie Gladius Axe Bolac 123 176 100 3.8 4
Lameroo Gladius Axe Bolac 123 176 100 80 40
Naracoorte Scout Axe Bolac 123 176 100 37.5 150
Emerald Gregory Spitfire Eaglehawk 123 176 100 20 20
Dalby Gregory Spitfire Eaglehawk 123 176 100 20 80
Goondiwindi Gregory Spitfire Eaglehawk 123 176 100 60 60
Roma Gregory Spitfire Eaglehawk 123 176 100 25 25
Condobolin Gregory Lincoln Wedgetail 116 173 100 60 60
Gilgandra Gregory spitfire Eaglehawk 123 176 100 80 80
Walgett Gregory spitfire Eaglehawk 123 176 100 50 50
Moree Gregory spitfire Eaglehawk 123 176 100 120 120
Wellington Gregory Lincoln Wedgetail 117 173 150 90 120
Cootamundra Gregory Lincoln Wedgetail 115 173 150 75 150
Narrandera Gregory Lincoln Wedgetail 115 173 100 120 120
Birchip Yitpi Axe Bolac 123 176 100 60 60
Swan Hill Yitpi Axe Bolac 123 176 100 10 40
Dookie Yitpi Axe Bolac 123 176 150 120 120
Ararat Bolac Derrimut Revenue 123 176 150 150 200
Colac Bolac Derrimut Revenue 123 176 100 200 150
Hamilton Bolac Derrimut Revenue 123 176 150 150 150

*Sites in Western Australia may need deep sowing in order to protect from heat stress in early sowing.
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regions. Since many Australian farmers are already applying
financially optimized N fertiliser (Carberry et al., 2013), we
modeled a financially optimized N fertilizer policy in which
20 kgha�1 of N was applied at sowing, and a second application
(optimized top-dressing) was made at Zadoks stage 30 (Zadoks
et al., 1974). A set of simulations with differing N top-dressing rates
was carried out and the rate thatmaximized the long-term average
gross margin for each location� cultivar� sowing date� climate
combination was selected for each location. In this analysis,
therefore, current practice means the combination of a typical
cultivar and sowing date window with a financially optimized,
fixed N fertilizer rate (Table 2).

Elevated atmospheric CO2 concentrations in 2030 are expected
to affect plant growth rates. APSIM simulates crop growth via
radiation-use efficiency, transpiration efficiency and the critical
nitrogen concentration, which are modified by atmospheric CO2

concentration using leaf-level mechanistic equations (Cammerer
and Farquhar, 1981; Reyenga et al., 1999). The APSIM response
functions have been reported to reproduce the effect of elevated
atmospheric CO2 in FACE experiments well (Asseng et al., 2004;
Tubiello et al., 2007b). In APSIM, yield has a linear response to
elevated atmospheric CO2 consistent with the FACE experiments
(Olesen and Bindi, 2002).

Gross margins for each year were calculated using a fixed farm
gate price of wheat (AUD$225/tonne), nitrogen fertiliser cost (AUD
\$ 1.33/kg N), and the cost of growing the crop using 10-year
average data from the Australian Bureau of Statistics (Australian
Bureau of Statistics, 2012).

A factorial simulation experiment was conducted in which the
factors were climate (2 scenario�2 sensitivity�6 GCMs), location
(30), and adaptation options (11 sowing offsets�4 levels fertilizer
�3 cultivars). Because of the large size of these simulations, we
used the Condor cycle-harvesting software (Department of
Computer Science, University of Madison–Wisconsin; http://
research.cs.wisc.edu/htcondor) to conduct simulations using up
to 10,000 processors across the CSIRO network.

2.4. Adaptation options

Adaptation to climate change requires changing current
practices to generate better results under the prevailing climate.
It can include reducing risk and vulnerability and building the
capacity to cope with climate impacts while seeking opportunities
(Tompkins et al., 2010), such as reducing the current gap between
realised and potential production.

Here we assessed 3 incremental adaptation options that can
have substantial potential benefits undermoderate climate change
for many cropping systems (Crimp et al., 2012). These included
varying the input nitrogen fertiliser, the sowing dates and the
choice of crop variety maturity type (Howden et al., 2007). These
options provide opportunities to enhance the system’s efficiencies
toward the efficiency frontier (Keating et al., 2010) by increasing
water use efficiency. We identified the financially optimal
combination of the above options at each location under historical
and projected climate to determine the management resulting in
the best financial output averaged over time. Management was
optimised for the historical climate in order tomake comparison of
historical and future without exaggeration. The adapted packages
of management policies were chosen to be those that maximised
the long term average gross margin. Note that because the optimal
adaptation is a fixed strategy, it will not necessarily produce the
best financial outcome in any individual year. Farmers are not ever
able to realise the best outcome for an individual year as the
seasonal weather is never able to be accurately predicted.

For the baseline period we applied the reference sowing
window shown in Table 1 and financially optimal N input for each

site presented in Table 2. For baseline and each projected climate
for 2030, sowing windows were progressively varied by 10-day
increments from a maximum 50 days earlier to 30 days later than
the reference dates. We considered three cultivars at each site
(earlier-flowering, reference, and later-flowering cultivars as
presented in Table 2) and re-optimized the N top-dressing rate
for each combination.

Historically in Australia, sowing of cereal crops has taken place
after the occurrence of planting rainfalls which usually occurs in
mid-autumn. However, the high climate variability in Australia
means that these rainfalls may occur substantially earlier or later
than the average, requiring flexibility in planting dates. Hence
there is usually a sowing window for each site and planting rules
based on accumulated rainfall and on stored soil moisture which
can have important impacts on crop yields (French and Schultz,
1984; Hunt and Kirkegaard, 2012). The scenarios of rainfall change
indicate possibilities of both drier conditions during the planting
window and also a shift of the initial planting rains to earlier in the
year. The potential impacts of less rainfall would likely be a
decrease in the number of days suitable for sowing, resulting in
later sowing which would then require shorter-season varieties
(Crimp et al., 2012). If the sowingwindowcomes earlier, then using
longer-season cultivars may become favoured along with changes
in agronomic practice such as deeper sowing depth to protect the
seed against heat stress.

Higher N input rates could produce more reliable yield
responses, but these are not always profitable. Here we used
financially-optimizedN input rates asmany Australian commercial
wheat producers already aim to have base-N applications at
financially-optimized rates (Carberry et al., 2013). We evaluated
different levels of top-dressed N in the baseline at each sites to
select an optimized profitable rate based onmaximizing long term
average gross margins. Estimated top-dress N rate was used as a
base for modelling under future climate change, however, again
different rates (upper and lower than baseline's optimized base-N)
evaluated in combination with other adaptation options.

2.5. Upscaling

A multipurpose model based survey estimation methodology
(Bardsley and Chambers, 1984; referred to as the BC methodology)
was used to upscale the simulation results to a national scale. This
is the same methodology as used by the Australian Bureau of
Agricultural and Resource Economics and Sciences to produce
estimates from its national broadacre farm survey (ABARES, 2003).
Simulation results for the 30 case study sites are expressed on a
per-hectarewheat area harvested basis. In the BCmethod aweight
(wi, dimensionless) is computed for each case study unit, i. To
achieve this, units are categorized into a typology, in this case the
ABARES (Australian Bureau of Agricultural and Resource Econom-
ics and Sciences) farm survey regions (Fig. 1), from which
covariates can be calculated for upscaling. These covariates are
the mean wheat yield (x1) and wheat price (x2) averaged over the
base time period 1980–1999 and estimated from ABARES’s farm
survey. All financial values were deflated by the consumer price
index (CPI) and expressed in 2007 AUD. Corresponding national
estimates of these quantities were obtained for the farm survey
from ABARES’s Agsurf website1 (X1 for total broadacre wheat
production, and X2 for total broadacrewheat receipts). Theweights
are approximately calibrated to these totals, i.e.Si wi xji: =Xj, where
j indicates either production of wheat (j =1) or receipts (j =2). In
addition we imposed a calibration constraint on the weights for

1 website: http://apps.daff.gov.au/AGSURF/.
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total broadacre wheat area sown (X0). Note that x0 = 1 for all the
case study sites. The weights calculated by the BC method are
referred to as caseweights because they can be applied to any other
variable (yi) to produce a total broadacre estimate for that variable:

~Y ¼ P
i wiyi (1)

The weights are interpreted as the relative number of hectares of
broadacre wheat that each case study site i represents for
estimation. The calibration implies that wi xji is the amount each
site represents of Xj in estimation. The BC-weights aremodel based
in the sense that they rely on the fit of a linear model to the data to
produce an accurate estimate of Y:

yi ¼ b0x0i þ b1x1i þ b2x2i þ ei; (2)

where ei is a random error term with mean zero and variance
proportional to some size measure (we used average capital value
per hectare). For example, when yi is the average wheat yield over
1980–1999 computed from APSIM, the R2 for the model fit is over
95%. This indicates that the BC-method will produce an accurate
estimate of national average yield per unit area and total national
simulatedwheat production for the base time period. Regardless of
the variable, y, Eq. (1) will be an unbiased estimator of the
population total of y as long as Eq. (2) is satisfied (Bardsley and
Chambers, 1984). However, assumptions made in the APSIM
modelling stage imply that this may not necessarily be an accurate
estimate of the total national real wheat production (as derived
from ABARES’s farm survey). In fact, it over-estimates the amount
by approximately 24%. Thus all estimates produced from APSIM-
derived variables need to be bias-corrected to compensate for
modelling assumptions that differ from reality. Bias correction
factors were computed for ABARES regions and applied equally to
all sites within each region (Table 3). Two factors were computed,
one for wheat production and the other for wheat receipts. For
each region, r, these bias correction factors were calculated as the

ratios of the region level estimates of the ABARES wheat
production variable using Eq. (1) (or wheat receipts variable)
and the corresponding APSIM variable. The wheat production bias
correction factor, fpi, was applied to all production variables
simulated from APSIM, whereas the wheat receipt bias correction
factor, ffi, was applied to all simulated financial estimates such as
gross margin. The bias corrected estimate is then a simple
modification of expression (1):

~Y ¼ P
i f iwiyi (3)

where fi is either the production or financial bias correction factor
depending on the type of variable (income or yield) being upscaled
as described above. Note that wheat receipts bias correction is
done separately to the production bias correction.

3. Results

3.1. Climate

Projected long term average rainfall for 2030 (averaged across
all scenarios) decreased at all 30 sites between �10.4% (Cunderdin
in Western Australia) and �2.2% (Naracoorte in South Australia)
compared to the baseline. Growing season rainfall (Apr–Oct) at all
30 locations decreased between �12.0% (Mullewa in Western
Australia) and �4.8% (Colac in Victoria) (Fig. 2c). For sites with
annual rainfall less than 500mm there was a similar decline in
Apr–Oct rainfall relative to the annual rainfall. Across locations and
averaging over climate scenarios and GCMs, there is a decline in
projected May rainfall, which is in general the sowing time.
However, projected rainfall in April increased in 57% of locations by
up to 8%, providing an opportunity for early sowing. April is also
projected to have one of the smaller increases in mean maximum
temperature (Fig. 2b).

3.2. Validation and bias correction

Modeled results for individual sites in the baseline period
(Figs. 3 and 4) upscaled to the ABARES regions and compared with
ABARES farm survey results during 1980–1999. Simulated yields
for the ABARES regions were over-estimated while gross margin is
roughly in agreement with the survey results once they were
upscaled (Fig. 5a and b). The yield over-estimation occurs because
simulations were conducted under optimized N input rates
(in reality all are not optimized) and ideal farm system manage-
ment without accounting for effects of pests and diseases. To
adjust, bias correction factors fi (Section 2.5) were applied to the
baseline and future scenarios when the site scale simulation
results were upscaled.

3.3. Impact and adaptation at local scale

Enhancing system efficiency of the baseline period (AY) could
increase yields across sites up to 79% (Emerald, Queensland) with a
median of 15% compared to HY (Fig. 4). In the baseline, gross
margin increased by optimal adaptations (AG) across sites in range
between 1% (Lake Grace, Western Australia) and 216% (Emerald,
Queensland) with a median of 20% compared to HG (Fig. 3).

By applying current practice in 2030, relative yield compared to
the baseline varied between�37% (Walgett, New SouthWales) and
+19% (Cootamundra, New South Wales) with a median of �1%
(Fig. 4). Adaptations could offset the impact of climate change on
yield across sites up to +76% (greatest in Emerald, Queensland)
with a median of +15% compared to the baseline without
adaptation in the baseline. This offset by adaptation in terms of
gross margin was up to 208% (Emerald, Queensland).

Table 3
Bias correction factors and upscaling weights. The factor fpi is for APSIM production
variables and ffi is for APSIM financial variables.

State Location wi fpi ffi

NSW Walgett 334159 0.750 1.231
Moree 334159 0.750 1.231
Condobolin 330938 0.610 0.929
Gilgandra 330938 0.610 0.929
Wellington 330938 0.610 0.929
Cootamundra 265973 0.530 0.835
Narrandera 265973 0.530 0.835

VIC Birchip 606406 0.865 1.403
Swan Hill 606406 0.865 1.403
Dookie 171876 0.483 0.791
Ararat 15915 0.476 0.711
Colac 15915 0.476 0.711
Hamilton 15915 0.476 0.711

QLD Dalby 124244 0.844 1.585
Emerald 122543 0.592 0.980
Goondiwindi 122543 0.592 0.980
Roma 122543 0.592 0.980

SA Cummins 258242 0.496 0.749
Minnipa 258242 0.496 0.749
Waikerie 289663 1.085 1.636
Lameroo 289663 1.085 1.636
Naracoorte 42333 0.601 0.893

WA Esperance 518840 0.636 0.956
Cunderdin 518840 0.636 0.956
Northam 518840 0.636 0.956
Katanning 518840 0.636 0.956
Dalwallinu 449160 0.648 0.959
Mullewa 449160 0.648 0.959
Lake Grace 449160 0.648 0.959
Southern Cross 449160 0.648 0.959
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3.4. Impact and adaptation at cross-regional (national) scale

By applying adaptation options to the baseline, yield (tonnes/
ha) and gross margin (AUD$/ha) changed by +17% and +33%,
respectively, at the EF.

Under projected climate for 2030 (averaging over scenarios,
sensitivities, and GCMs) and without enhancing current efficiency
of the farm systems, yield and gross margin over the entire
wheatbelt were projected to decline by 1% compared to the
baseline, i.e. a 0.15 million tonne decline in production. With
current cost and prices this will result in AUD$32M p.a. lower
gross margin compared to the baseline.

Yield and gross margin per unit area of the wheatbelt increased
by applying the adaptation options in both the baseline and 2030
climate while inter-annual variability (1980–1999) increased
(Fig. 5c and e).

As shown in Fig 5c–f elevated atmospheric CO2 has a
significant effect on yield and gross margin both with and
without enhancing system efficiency. In 2030, the modelled
fertilisation effect of the elevated atmospheric CO2 closely

compensates the effect of changes in rainfall and temperature
(Fig. 4c–f).

3.5. Changes in adaptation practices

In the baseline, earlier sowing and later sowing would increase
gross at 80% and 7% of sites, respectively. These became 83% and 3%
for future climate without the effect of elevated CO2, while
elevated CO2 had little impact with 80% and 7% for early and late
sowing respectively.

For the baseline climate, later or earlier maturity cultivars
became more useful for achieving the EF in 40% and 13% of sites,
while in 2030 late and earlier cultivars were used to reach the EF in
37% and 13% of sites.

In the baseline, there was capacity to increase financially
optimized N fertilizer rate at 43% of sites to attain the EF, where
management was associated with changes in cultivar and sowing
window. In 2030 this opportunity was identified at 50% of sites.

For the whole wheatbelt, as shown in Tables 4 and 5, optimal N
fertilizer rate for the EF increased WUE by 20% in the baseline and

[(Fig._3)TD$FIG]

Fig. 3. Variability of annual grossmargin (AUD$/ha) in historical period (1980–2010) and projected climate for 2030 (averaged amongGCMs and scenarios) under current and
optimal management (adaptations). Results are not bias corrected. Those optimal adaptation options selected that resulted in the greatest gross margin over 1980–1999 and
projections for 2030, however, optimal adaptations may result in smaller gross margin compared to the baseline in an individual year (e.g. Ararat).
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37% in 2030 without considering the effect of elevated CO2, and
25% in 2030with considering the effect of the elevated CO2 (Table 4
and 5). The effect of elevated CO2 could support a greater rate of
optimized top-dressed N for the whole wheatbelt at the EF.
However, optimized N rate at the EF did not exceed that of the
baseline (Table 4 and 5). In optimally adapted systems of 2030, N
input rate, sowing day, and cultivar changed at 23%, 50% and 17% of
sites, respectively, compared to the optimal adapted systems under
the baseline climate.

3.6. Effect of changes in rainfall, temperature, and elevated CO2

Changes in yield across locations and years were non-linearly
related to the changes in mean rainfall and temperature projected
for 2030 (Fig. 6).Without considering the fertilisation effect of CO2,
adaptation options had an increasing benefit for seasonal
temperature increases up to +0.9 �C, with positive effects up to
+1.1 �C (Fig. 6a), contrary to the results of Porter et al. (2014) in a
more global analysis. Under the effect of elevated CO2 the response

pattern did not change, but the fitted line for relative changes
shifted up (Fig. 6a). Increasing system efficiency by adaptation
options at locations and years produced a slight decrease in yield
sensitivity to rainfall (Fig. 6b) with relative yield increasing at
lower seasonal rainfall. Without adaptation, changes in yield were
spatially and temporally less sensitive to changes in rainfall than to
changes in temperature (Fig. 6a and b). However, over the long
term, sites presented a diverse response in yield, indicating the
importance of climatic or biophysical factors other than annual
rainfall and temperature, perhaps including the seasonal pattern of
rainfall. Overall, elevated CO2 did not change the pattern of
interactions but shifted the system to amore productive one, more
so at moderate temperature increases and rainfall decreases
(Fig. 6).

At the national scale, the simulated fertilisation effects of the
elevated atmospheric CO2 on yield are predicted to be large
enough to not only offset the negative impacts of changes in
rainfall and temperature but also to increase yields without
enhancing current efficiency (Fig. 7, Table 4 and 5). In 2030 and

[(Fig._4)TD$FIG]

Fig. 4. Variability of annual yield (kgha�1) in historical period (1980–2010) and projected climate for 2030 (averaged among GCMs and scenarios) under current and optimal
management (adaptations). Results are not bias corrected. Those optimal adaptation options selected that resulted in the greatest gross margin over 1980–1999 and
projections for 2030, however, optimal adaptations may result in smaller yield compared to the baseline in an individual year (e.g. Ararat).

A. Ghahramani et al. / Agriculture, Ecosystems and Environment 211 (2015) 112–125 119



at the national scale, the effect of CO2 is to increase median yield
and gross margin by 11% and 20% if current practices are
maintained. However, this effect declined to 9% and 12% for
yield and gross margin at the EF (Fig. 6 b, c, e, and f). In 2030,

compared to the baseline, under the fertilisation effect of
elevated CO2, the efficiency frontier of the total wheatbelt
shifted up by 1% (Fig. 7f) and increased between 0% and 13% at
53% of individual sites.

[(Fig._5)TD$FIG]

Fig. 5. Model validation and variability of year to year wheat yield at the national scale, including historical and projected impact and adaptation. (a–b) Validation of
simulation results by comparing long-term average (1980–1990) simulated yield and incomewith those from ABARES’s farm survey (Fig 2). After bias correction (Eq. (3)) the
points in both sub-figures will lie on the 1:1 line. From c to f: Variability of upscaled yield and gross margin over 1980–1999 and projections in 2030 (c) Yield per unit area
(tonne/ha), (d) total yield (million tonne), (e) grossmargin per unit area (tonne/ha), (f) total grossmargin (AUD$million). –CO2 and +CO2 are atmospheric CO2 concentration in
baseline level and projected for 2030 (averaged for A1FI and A2).
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Table 4
Wheat yield and top-dress N input of wheat belt (weighted average) for 1980–1999.

item Unit Baseline Baseline adapted 2030 not adapted
�CO2

2030 adapted
�CO2

2030 not adapted
+CO2

2030 adapted
+CO2

Wheat yield Tonneha�1 1.56a 1.83 1.39 1.69 1.55 1.85
Top-dress nitrogen kgha�1 37.00b 45.00 27.00 37.00 35.00 45.00

a This is 1.54 t/ha in ABARES survey (ABARES, 2003) for the same time period of 1980–1999.
b This is 30.00 kg/ha in Angus (2001) for slightly different area and time period.

Table 5
Relative changes in yield, N andwater use efficiencymetrics (seeMoore et al., 2011 forWUEmetrics) of wheat belt (weighted average) for 1980–1999. Rainfall is for period of
growing season Apr–Oct. Last row is weighted average N for all wheat belt.

Efficiency
index

AY Baseline
vs. HY
Baseline

�CO2, CPY 2030
vs. HY Baseline

�CO2, AY 2030
vs. AY Baseline

+CO2, CPY 2030
vs. HY Baseline

+CO2, AY 2030
vs. AY Baseline

�CO2, AY
2030 vs. CPY
2030

+CO2, AY 2030
vs. CPY 2030

Yield – +17% �16% +7% +4% +23% +23% +18%
N – +21% �27% �18% �6% 0% +36% +29%
WUE Gross water use

efficiency for grain
production

Yield/rain +17% �8% �2% +11% +13% +24% +19%

RCE Rainfall capture
efficiency

(Rainfall/
runoff)�1

0% 0% 0% 0% 0% 0% 0%

SWUE Soil water use
efficiency

Transpiration/
(rainfall–
Runoff)

+14% 1% +6% +2% +2% +19% +14%

TE Transpiration efficiency Biomass/
transpiration

+3% �6% �7% +8% +6% +2% +1%

HI Harvest index Yield/biomass 0% �2% 0% +1% +4% +2% +3%

[(Fig._6)TD$FIG]

Fig. 6. Yield change in 2030 (averaged over all GCMs, sensitivities, and scenarios) compared to baseline related to the changes in the local climate (Apr–Oct) at each simulated
year by location, with andwithout adaptation and themodelled fertilisation effect of elevated atmospheric CO2. Effects of changes in rainfall and temperature are not isolated
in (a) and (b), respectively. The fitted lines are non-parametric regressions; the shaded areas are the 95% confidence intervals.
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3.7. Yield

For the baseline period, the increase in AY varied among
ABARES regions by between +4% and +54%, while in 2030 it was
between 0% and +59% (computed from Fig. 3). In the baseline and
on upscaling over thewheatbelt, the median AY (tonne/ha) and AG
(AUD$/ha) was 17% and 33% greater than HYand HG. For 2030, the
corresponding changes became +19% for AY and +35% for AG.

The probability of occurrence for yield and gross margin varied
over time under different climate and management practices with
less opportunity to increase yield and gross margin at the upper
and lower limits of systems productivity (Fig. 7a and d), which
correspond to dry and wet years.

In 2030 and upscaled to the national scale, CPY (with elevated
CO2 effect) changed by �1.0% compared to CPY of the baseline,
while AY changed by +1.0% compared to AYof the baseline (Fig. 7 e
and f).

There was little change in the yield and gross margin of 2030
compared to the baseline with and without enhancing systems
efficiency at national scale (Fig. 7c and f). However, this isn't the
case at all individual sites as at 55% of sites a decline was projected
in both production and gross margin.

3.8. Increase in water use efficiency

The adaptation options could improve system water use
efficiency. In the baseline we predicted +16% and +14%, and +3%

changes in wheatbelt’s EF from CY in water use efficiency
(kgha�1mm), soil water utilization efficiency (mm/mm), and
transpiration efficiency (kgha�1mm), respectively (Table 5).

To reach the EF in 2030 there would be a need to apply more N
(Table 5) to achieve a slightly greater WUE than in the baseline
(+2%) if we consider the fertilisation effect of elevated CO2

(Table 5). Without considering the fertilisation effect of CO2, there
will be a greater need in increasing WUE up to +23% of that in the
CPY scenario (Table 5). Elevated atmospheric CO2 had a positive
effect on increasing WUE up to 15%.

The fertilisation effect of the elevated atmospheric CO2

maintained the opportunity for higher N input rates (financially
feasible) at the EF, but at CPY the financially optimal N rate was, on
average, 3 kgha�1 less than that in the baseline period which
resulted in less production (Table 5).

4. Discussion

4.1. Methodological concepts

The adaptation options we evaluated for 2030 were adjust-
ments of current systems with currently available technologies. As
2030 is only 15 years away, applying current technologies could be
the most feasible and reliable way to offset the impact of climate
change or to explore opportunities to increase production. At the
majority of sites, earlier sowing is themain opportunity to enhance
farm systems for both the baseline and future. This option is

[(Fig._7)TD$FIG]

Fig. 7. Grossmargin and yield in Australianwheatbelt (a) Probability of occurrences for upscaled grossmargin over time (national and per unit area), (b) total grossmargin of
wheatbelt, (c) average gross margin per unit area, (d) Probability of occurrences for upscaled yield, (e) total yield of wheatbelt, (f) yield per unit area. HG: Historical gross
margin, AG: adapted grossmargin, CPG: current practice grossmargin, HY: historical yield, AY: Adapted yield, CPY: current practice yield, AG and AYwith fertilisation effect of
elevated atmospheric CO2. Arrows are to compare gaps in Figs and all are downscaled with the same size ratio.
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currently being promoted in the Australian wheatbelt as a method
to adapt to climate variability and to increase water use efficiency
(Hunt and Kirkegaard, 2012). Change of cultivar maturity is an
important adaptation option at 17% of sites and has also been
suggested as an adaptation to manage changes in the on-farm risk
of frost and heat effects during the reproductive stages of growth
(Zheng et al., 2012).

The modelled fertilization effects of elevated CO2 in this paper
are consistent with experiments (Tubiello et al., 2002) that have
shown positive response of wheat yield to elevated atmospheric
CO2, particularly when water is a limiting factor (Chaudhuri et al.,
1990; Kimball et al., 1995).

Based on literature, modelling the effect of the elevated CO2 on
wheat production is somewhat uncertain (Tubiello et al., 2000) but
mainly for high CO2 concentrations and large temperature
increases (Asseng et al., 2013a). Amthor (2001) in an open-top
field chamber experiment reported yield increases in the range of
7% to 30% (and an average of 15%) for 440ppm of atmospheric CO2

(close to the future concentration in this work). A similar increase
in yieldwas reported for an experiment inWestern Australiawith a
median of about 15% (Asseng et al., 2013), and by Ainsworth and
Long (2005), but both results were without an increase in
temperature. In this paper, relatively greater temperature
increases in 2030 are mostly predicted for sites that make a small
contribution (Fig. 2b) to cross-regional production (�9% in
baseline). In addition, considering the fact that overall there is a
relatively small increase in temperature across sites (0.2–1.2 �C)
this would not have significant effects on the cross-regional and
local scale averaging over time (Fig. 4) but may reduce the benefits
of adaptation in individual years� locations if temperature
increase exceeds 1.1 �C (Fig. 6a).

The upscaling methodology described in this paper is based on
the approach used in the ABARES national farm survey (Bardsley
and Chambers, 1984; ABARES, 2003). Thus the methodology
produces estimates that are consistent with the mainstream
Australian agricultural commodity statistics. Not only is it a tried
and well tested methodology, it is an approach that can be used
when the sample of case study sites is unbalanced relative to the
whole population. The upscaling weights approximately calibrate
the estimates to totals of the benchmark variables in the base
period at the national level. Accurate estimation of the potential
value of adaptation relies on a strong linear relationship between
the benchmark variables and income (Fig. 5), as well as the bias
correction. It is not possible to predict changes in the bias so it was
necessary to assume that this component remains fixed in relative
terms in the projection period and at the EF.

4.2. Enhancement in N and water use efficiency

The increase in national yield at the adapted yield point (Fig. 7)
is associated with improved water use efficiency and increased N
input rates (Mueller et al., 2012). Currently in many regions in
Australia it is unlikely that producers can increase current yield by
increasing N fertiliser rate (van Rees et al., 2014); higher-N systems
would not be economically exploitable because many farms are
already optimized in termof N supply (Carberry et al., 2013). This is
consistent with our results in Tables 4 and 5, as the optimized N
input rate at AY in 2030 is modeled to be identical to that of the
baseline climate.

The adapted management systems have improved water use
efficiency for both baseline and 2030 climate; in 2030 WUE is
boosted by elevated atmospheric CO2 (Table 5). There is likely to be
benefits obtained in terms of yield (and consequently profit) from
adjustments in planting date and cultivar in the baseline (Hoch-
man et al., 2012; Hunt and Kirkegaard, 2012) and these options are
expected to be more useful in the future because they are

associated with improved WUE under elevated atmospheric CO2

(Table 5). We note that further optimizing WUE by tactically
adjusting planting date each season (rather than strategically, over
the long term, as in this study) would need to be aided by an
improvement in seasonal forecasting of rainfall.

Adaptation is expected to decrease failure risk (Challinor et al.,
2010), but here our examined options would not be effective in
extreme dry years or relatively high rainfall years (Fig. 7a and d).
This suggests a requirement for a long term perspective (20 years
in this study) on the benefits of adaptation.

4.3. Yield under adaptation

The results indicate the potential to increase yield by 17% and
gross margin by 33% in the baseline climatewhen systems are fully
enhanced by the considered adaptation options. In 2030 this
potential increase is projected to be 19% and 35%, respectively over
an unadapted management. This concept of potential increase in
yield is similar to the ‘yield gap’ approach (e.g. Cassman, 1999;
Lobell et al., 2009) although our estimated potential for change is
less than yield gaps estimated in the literature for Australia (van
Rees et al., 2014). In this paper, potential increase in yield was
estimated by feasible options which are economically optimized.
Potential yield gaps in the literature, on the other hand, are the
prospects for potential productivity increases established between
actual farmyield and production attained using optimal inputs, the
best agronomy, and an absence of limiting stresses without
financial constraints (Carberry et al., 2013). This potential yield is
not all financially achievable and this would be valid for our
estimated potential as well because of biophysical and economical
constraints to increase water and N use efficiencies.

Given the consistency of our modelling results for CO2 effect
with experiments (Ainsworth and Long, 2005; Amthor, 2001;
Asseng et al., 2013) we expect that thewheatbelt should realize the
benefits of elevated atmospheric CO2 (Fig. 5) projected here. This
will apparently offset potential declines in national wheat
production and profitability. As shown in Figs. 5 and 7, without
enhancing current efficiencies there would be a decline in
production and profit by 2030 at the national scale but not a
significant change compared to current levels. There are further
opportunities for system-level adaptation viawheat breeding itself
as new varieties are gradually adapted to higher temperature
conditions and maturity requirements (Chapman et al., 2012).

Losses from pests and foliar disease are not substantial issues in
Australian wheat farm systems although control costs can be high
(Murray and Brennan, 2009) and in this paper we assumed that
this issue will not have changed greatly by 2030. Despite likely
resilience of the industry at the national scale and in major
production regions, there would be a decline in production/profit
at CYP in 2030 in 55% of individual sites which will require local
adaption.

Full enhancement of the current system (baseline) with current
technology is not expected, and this will remain a future challenge.
However, moderately elevated atmospheric CO2 in 2030 may
provide an opportunity for greater yield by enhancing transpira-
tion efficiency while helping to keep N rates at the same level as
under the baseline climate (Table 5).

4.4. Future trade constraints

We predicted AG and AY based on current prices and costs,
mainly determined by the wheat and N fertiliser prices.
Historically there is less effect from variations in N fertiliser cost
on optimal management of Australianwheat farms, as the trend in
ratio of N fertiliser cost to grain price has been stable (Angus,
2001). There is evidence of crop market sensitivity to climate
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extremes in key producing regions of theworld (Porter et al., 2014).
However, for 2030, projections that include the effects of CO2

changes (without ozone and pest and disease impacts), indicate
little increase in global crop price (Porter et al., 2014). In line with
the last 50 years or so of agricultural expansion, the World Bank
(2014) predicts a moderate decline in the current global price of
wheat and N fertiliser up to 2025, in which the ratio of N fertiliser
cost to wheat price remains almost stable. Therefore, based on
available commodity prices, and acknowledging that there is
uncertainty, our predicted AG and AY are not expected to be
significantly impacted by changes in the global market.

4.5. Limitations

Despite the consistency of our simulation results with field
experiments, it still might not be possible to realize the modelled
benefit from elevated CO2 due to non-modelled interactions e.g.
potential plant-pest interactions (Tubiello et al., 1999). Overall this
uncertainty can be assumed as small because of the relatively small
changes in projected CO2 for 2030. Probable but unpredictable
economic, social and trade shocks are not included in our
estimations. This work does not consider improvements in
technologies (e.g. new cultivars) and short term negative effects
on yield or gross margin from changes in climate.

5. Conclusions

Over the Australian wheatbelt as a whole, the projected yield
and the gross margin at 2030 did not change substantially
compared to the baseline with current practices. At the national
scale, there might be a greater opportunity to increase yield over
current levels by applying currently available management
options, due to a boost from the moderate elevated atmospheric
CO2 effect on enhanced water use efficiency in 2030. It is expected
that production at national scalewould be resilient averaged over a
long time period (20 years). It should be noted, however, that at
55% of sites a decline was projected in production and gross
margin.
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