
Science of Computer Programming 13 (1989/90) 181-218

North-Holland

181

LAWFUL FUNCTIONS AND
PROGRAM VERIFICATION IN MIRANDA

Simon THOMPSON

Computing Laboratory, University of Kent at Canterbury, Canterbury, Kent, CT2 7NF, UK

Communicated by J. Darlington

Received September 1987
Revised June 1989

Abstract. Laws in the Miranda programming language provide a means of implementing non-free

algebraic types, by means of term rewriting. In this paper we investigate program verification in

such a context. Specifically, we look at how to deduce properties of functions over these “lawful”

types. After examining the general problem, we look at a particular class of functions, the faithful
functions. For such functions we are able, in a direct manner, to transfer properties of functions

from free types to non-free types. We introduce sufficient model theory to explain these transfer
results, and then find characterisations of various classes of faithful functions. Then we investigate

an application ofthis technique to general, unfaithful, situations. In conclusion we survey Wadler’s

work on views and assess the utility of laws and views.

1. Introduction

The Miranda’ programming language is purely functional and combines features

from a number of earlier such languages. It features lazy (or “demand-driven”)

evaluation, allows the user to define new types, contains a mechanism for program

modularisation and is strongly typed. We survey the language in Section 3-further

details can be found in [9].

Program design considerations often dictate that we model certain objects by data

items which are kept in some sort of standard, or normal, form. Common sense

suggests that we try to separate the concerns of

l data manipulation, and

l preserving standard form

as much as possible. This motivates the introduction of a novel language feature:

when we introduce an algebraic data type, by giving its constructors, we can specify

laws, which are rewrite rules, which rewrite expressions involving the constructors.

We present a number of examples in Section 4 and in [8].

Functional programming languages are notable for their amenability to formal

treatment, in particular to transformation and verification, [l]. How does the

’ Miranda is a trademark of Research Software Ltd.

1167-6423/90/$03.50 @ 1990- Elsevier Science Publishers B.V. (North-Holland)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82354207?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

introduction of laws affect this important property? In [S] we investigated ways that

we could establish properties of data types with laws. We showed that for a number

of classes of example we could derive laws from function definitions. Specifically,

we showed that we could derive the law for the type of ordered lists from a definition

of a function performing insertion sort and that the memoisation [6] of function

values could be achieved using laws which were derived automatically from the

function definition itself. We also saw that there was a general means by which we

could derive properties of objects of lawful type, by means of deduction using

pattern expressions. This is only half the story, unfortunately. Once we have defined

our lawful type we shall use it and this will involve defining functions over that

type-we need to be able to infer properties of such functions. That is the aim of

this paper.

In Section 5 we discuss the meaning and implementation of laws and lawful

functions: we decide that associated with every lawful type is a free type (the

associated free type or AFT) over which the constructors of the lawful type are

functions. Functions over the lawful type are interpreted as functions over the AFT.

In the following section we look at the denotational semantics of the types, and

on the basis of this show how properties of the lawful type and lawful functions

can be expressed. After discussing various methods of proof, we turn, in Section 7

to examining an example. We give a type of ordered sets, implemented by ordered

lists without repetitions, and prove the characteristic properties of the cardinality

function over this type. We also assess the proof techniques introduced in Section 6

in the light of this example.

Many of the functions which act over lawful types have a special property. Their

related functions, i.e., the functions which are given by their definitions when

interpreted over the AFT with the laws ignored, act independently of the laws. For

example, the sum of a list of numbers is independent of the ordering of the list.

We call such related functionsfaithful, relative to the set of laws under consideration.

In Section 8 we prove that certain properties of faithful functions transfer from the

lawless to the lawful situation. (The mathematical prerequisites for this material

appear in Section 2.) Section 9 introduces a necessary and sufficient condition for

a function to be faithful, and this is examined further in the section that follows.

We give a number of classes of faithful functions in Section 11.

One of the advantages of functional programming can be seen here. The classes

we mentioned are characterised as classes of applications of certain higher-order

functions. In languages without such functions we would have to look rather harder

to characterise faithfulness, and perhaps to prove it time and time again for classes

of intuitively similar operations.

In Section 12 we show that faithfulness is a useful notion even in a general context.

We introduce the idea of a faithful representative of an unfaithful function. For

example, the minimum function is a faithful representative of the head function

over ordered lists. We show how a faithful representative is used in a crucial lemma

from the cardinality characterisation theorem of Section 7.

Law:fu/ functions and program uer$cation in Miranda 183

Wadler has proposed a views construct [5, lo] which is related to that of laws.

We survey this in Section 13 and assess it in the conclusion, where we also assess laws.

The appendices contain proofs which we felt would interrupt the flow of exposition

if they had been left to succeed their statements.

We might conclude that laws in Miranda are a “mixed blessing”. They add a

certain complexity and also a potential unpredictability if we cannot give them a

suitable formal treatment. We hope to have shown that we can still prove properties

of functions in a lawful situation, and indeed that such proofs may be unnecessary,

if a function is faithful.

2. Mathematical preliminaries

In this section we give a brief sketch of the basics of model theory, in order to

give a formal foundation to a result we prove below. Further background on logic

and model theory can be found in [3,4].

Properties of objects are expressed by propositions in a language, when the objects

in question are deemed to be the interpretations of particular symbols. Our concern

here will be languages which can be used to assert formal properties of functions.

A function symbol in this language can be interpreted in myriad ways. Our concern

will be to explore the link between two different interpretations. In one example

we shall interpret a particular symbol by intersect and intersect* for example.

If f and g are symbols for functions, then the formula

vx,y.z f x (g y 2) = 9 (f x Y)(f x 2)

will be either true or false depending upon how we interpret the symbols f and g.

An interpretation of a statement is provided by a structure, which will consist of

l a domain (or domains) which form the interpretations of the type(s) of objects,

l functions over the domains which will interpret the function symbols of the

language.

We can give some examples, for the formula above.

l A structure could consist of the domain of natural numbers, with f interpreted

by * and g by +. This interpretation makes the formula true, as it asserts that

multiplication distributes over addition. If we swop the interpretations, assign-

ing * to g and + to f the formula is @se-addition does not distribute over

multiplication.

l Referring forward to the terminology of Section 7, call ti the structure with

domain oset, and with f, g interpreted by intersect and concat. Similarly, call

&* the structure with domain oset’, and with f, g interpreted by intersect* and

concat”.

We write “k” for the relation “models” or makes true. For instance,

d I= vx.y.2 f x (g y z) = g (f x y) (f x z)

184 s. Tl1ompson

but it is not the case that

&I=Vx,y.fxy=x

The two structures are not unconnected, of course. There is a function which links

the two:

norm :: oset’ + oset

We call a function h :: .& + ti a homomorphism if it respects the operations of the

functions, i.e.,

h (intersect* x y) = intersect (h x) (h y)

h (concat* x y) = concat (h x) (h y)

Our logical result concerns the preservation of validity of certain formulas. We call

a formula positive if it is built from equations using only the connectives A, v, W

and 3. Such formulas are called positive because it is impossible to use them to

express differences between objects, such as the simplest difference, an inequality.

How can we read the properties (l)? They have the consequence of preserving

equations: Suppose that

intersect* x x = concat* y 2

Now,

h (intersect* x x) = h (concat* y z)

because h is a function. The left-hand side equals

intersect (h x) (h x)

and the right-hand side

concat (h y) (h z)

so that

intersect (h x) (h x) =concat (h y) (h z)

Suppose that, in fact,

Vx. 3y.z intersect* x x = concat* y 2

we therefore have

Vx .3y,z. intersect (h x) (h x) = concat (h y) (h z)

Recall that, in full, this says

Vx :: oset’ 3y,z :: oset’.

intersect (h x) (h x) = concat (h y) (h z)

and if h is an onto or surjective function, then,

Vx :: oset .3y,z :: oset intersect x x = concat y z

La~;ful ,funcfions and program uerijcarion in Miranda 185

This shows how a formula may be carried over from the lawless situation (&*) to

the lawful (&)-we can prove a general result in a similar way, using induction

over the complexity of positive formulas:

Preservation Theorem. Suppose that h :: .~4* + & is an onto homomorphism, and C$ is

a positive formula. Then, if d* b C$J then & I= 4-onto homomorphisms preserve the

truth of positive formulas.

3. The Miranda language: An overview

Miranda is a functional programming language, in which functions and other

objects are defined by (conditional) equations, and in which programs, or scripts,

are collections of definitions. The evaluation of expressions (which refer to the

objects defined in a script) corresponds to program execution in imperative

languages.

Consider an example. The value of the function perfnum, from numbers to

booleans, is True if and only if its argument is perfect, that is equal to the sum of

its proper divisors.

perfnum x = False, -posint x

= (sumdivs x = x), otherwise

where

posint x = (x > 0) & integer x

sumdivs n

= sum (filter (divs n) [l ..n div 21)

divs n m = (n rem m = 0)

The expression in the first clause following the comma, -posint x, is a guard on the

clause, the second clause being the default. Definitions local to the equation follow

the where. The predefined function filter removes the elements of the list [l ..n div 21

which fail to satisfy the predicate divs n. We can see that divs n is itself a function

and is passed as a parameter to filter-functions are treated just as other data objects

in Miranda, a characteristic property of functional languages. Now consider

sum :: [num] + num adding the elements of a list:

sum [] =0

sum (a:x) = a + sum x

The equations here contain patterns on their left-hand sides. These serve a twofold

purpose: they act as guards, and if their condition is satisfied they cause a composite

data item to have its components selected by pattern matching with the component

variables. If we use [2,3] as shorthand for 2:(3:[]) (lists are built from the empty list

[] using the infix constructor “ : “) then

sum [2,3] = sum (2:[3]) = 2 + sum [3] = etc.

186 S. Thompson

This definition is one of a class of similar ones, which involve an operator

into a list, “from the right”:

foldr op st [] = st

foldr op st (a:x) = op a (foldr op st x)

(st is the starting value). sum is foldr (+) 0, if (+) is prefix plus. Concatenation of

lists, concat, can be defined similarly:

concat x y = foldr (:) y x

where (:) is the prefix form of “ : “. We shall meet these functions again below.

Remark 3.1. We have encountered two uses of the symbol “=” in Miranda. In a

definition we use “=” to separate the name from the expression with which it is

associated, thus:

name = expression

We also use it as an operator, which returns a boolean value. In this guise it appears

in boolean expressions and in particular in guards which appear on the right-hand

sides of expressions. In the following definition the first use is a dejining use, and

the second a operator:

fat n=l, n=O

= n * fat (n - I), otherwise

The value that a boolean expression of the form

I=r

can take is one of

True, False, I

We shall encounter a third use of the symbol, as forming a logical predicate, in the

informal mathematical metalanguage in which we conduct our discussion. This is

not computable equality, as it is a logical axiom that for every x,

x=x

is true, even if x is given the value 1. This is not the case with the boolean operator,

which will be undefined on the “undefined” value 1.

The equations of a Miranda script are interpreted as logical assertions, so the

defining equality can be seen as of this sort. However, this will not always be the

case. The one exception is for definitions of functions over lawful types. We say

more about this in Section 5 after looking at the details of our interpretation of

types with laws.

We hope that no confusion is caused by this multiple use of a single symbol. The

careful reader might like to replace all logical assertions of equality with a triple

bar, for example, but should have no difficulty in so doing.

Lawjiilfirnctions and program wr$fication in Miranda 187

4. Algebraic types in Miranda

A constructor is a particular kind of function, the effect of which is to form a

composite data item from its component parts. A well-known constructor is the

(Lisp) cons, which builds the list

cons a x

from the item a and the list x. cons a x is the list whose first item (or head) is a and

whose remainder (or tail) is x. In the Miranda language there is a facility for defining

types built using constructors-such types are called algebraic. For example, we

might define a type of numerical lists thus:

numlist ::= Nil 1

Cons num numlist

This declares two constructor functions. Nil is a nullary function (or constant), the

null list, and Cons has the functionality of the cons discussed above. Note the

Miranda syntactic convention that function names being with small letters and that

constructors begin with capitals.

In the Miranda notation for types

Nil :: numlist

Cons :: num + numlist -+ numlist

constructors such as Nil and Cons have no computational content-they simply stand

for themselves. We might like to think of some data items as being maintained in

some normal form as the items are constructed, and it is to this end that the laws

mechanism is a feature of Miranda. While declaring an algebraic type such as

olist ::= Onil 1

Ocons num olist

the user can specify one or more laws which are applied to keep the data in a

particular form. In our example we aim to keep the lists ordered by writing

Ocons a (Ocons b x) => Ocons b (Ocons a x), a > b

Instead of the constructor standing for itself, we have added some computational

information to it, so that an expression like

Ocons 3 (Ocons 2 Onil)

does not denote a list whose first element is 3; rather it denotes an ordered list,

consisting of 2 followed by 3.

Another example is the type poly of polynomials:

poly ::= Null)

Term coeff power poly

188 S. Thompson

where coeff and power are synonyms for num and poly is a special type of linked

list. Each Term node contains the information about a polynomial term. Our laws are

Term 0 n p => p

Terms with zero coefficient are removed, whilst

Term a n (Term b m p)

=> Term (a + b) n p, n=m

=> Term b m (Term a n p), n<m

ensure (respectively) that terms of the same power are amalgamated, and that the

terms are held in descending power order.

A third example is the type of rationals, given by

rational ::= Rat num num

with the law

Rat a b=> error “zero denominator”, b=O

=> Rat (-a) (-b), b<O

=> Rat a’, b’, g>l

where

a’= a div g

b’ = b div g

g = gcd a b

Rationals are reduced to their lowest terms with a positive denominator, and an

error message is produced, halting evaluation, by a rational with zero denominator.

A number of other examples, including a type of AVL trees and a mechanism

for memoising values of functions “in the data”, are given in [8].

The examples show the utility of the construction: assuming that the system

“manages” the data type according to the laws, we can, while programming, confine

ourselves to the essentials of the algorithms. Looking at the case of the polynomials,

addition becomes simple concatenation, whilst multiplication is performed by taking

all possible termwise products. The programmer does not have to concern him- or

herself with the (re)normalisation of data items after computation.

In concluding this section we should note that a nai’ve interpretation of laws as

equations between data items is inconsistent. Re-examining the type of olists, we

can define

head (Ocons a x) = a

Now, if we interpret the law as an equality, we have

3 = head (Ocons 3 (Ocons 2 Onil))

= head (Ocons 2 (Ocons 3 Onil))
= 2

which is a contradiction. In the next section we state clearly how the lawful types

are defined, and why contradictions such as these do not occur.

Lawfu/,finctions and program ~erijicafion in Miranda 189

5. Explaining the laws mechanism

How do we give a formal account of this behaviour, in the context of a functional

programming language? We focus on a particular type, that of olists in our discussion,

but it should be clear that the techniques we use are applicable to all lawful types-we

use the example to make the explanation clearer.

We observe that the information contained in the declaration of a lawful type is

of two distinct kinds:

(1) Information about how to construct a type is provided if we ignore the laws.

We call the type thus defined the associatedfree type or AFT and write its declaration

in primed form

olist’ ::= Onil’ 1

Ocons’ num olist’

to reinforce the distinction.

(2) The objects of the type olist will be objects of type olist’ which are of a special

form. This is because they are formed only by means of thefunctions Onil and Ocons.

The laws define these functions:

Ocons :: num + olist’ + olist’

Ocons a (Ocons’ b x)

= Ocons b (Ocons a x), a>b

= Ocons’ a (Ocons’ b x), otherwise

Ocons a Onil’ = Ocons’ a Onil’

Ocons is a function which returns an olist’ when applied to a number and an 0Iis.t’.

When that list is null, Onil’, the result returned is the singleton olist’, with member

a. When the list is non-null, there is a case analysis. If a>b, the head element of

the list argument, the front of the list is rebuilt, using Ocons recursively, with the

order of a and b reversed. Otherwise, the result is the olist’ with the front elements

in the same order. In other words, Ocons is changed to Ocons’ except when the law

should be invoked, in which case the swop of elements takes place, and the

conversion is invoked recursively. Since no law is associated with Onil, we have,

Onil :: olist’

Onil = Onil’

Consider an example, where we use the symbol “--+‘I to indicate “is rewritten to

by the evaluator”

Ocons 3 (Ocons 2 Onil)

--+ Ocons 3 (Ocons 2 Onil’)

--+ Ocons 3 (Ocons’ 2 Onil’)

--+ Ocons 2 (Ocons 3 Onil’)

--+ Ocons 2 (Ocons’ 3 Onil’)

--+ Ocons’ 2 (Ocons’ 3 Onil’)

190 S. Thnpson

Note that in the example that evaluation proceeds in a leftmost-outermost fashion.

It may not appear so to do, but observe that the pattern matching in the definition

of Ocons forces the (at least partial) evaluation of its argument.

Remark 5.1. The explanation above suggests that this mechanism has something in

common with an abstract type definition. The implementation of the type is given

by olist’, and access to this is provided by the functions Onil and Ocons. Indeed, all

the properties of lawful types can be provided by the abstype mechanism, apart

from pattern matching as used, for example, in the definition of functions over

lawful types. According to Turner, this provided one of the original motivations for

the work.

To recap, we have explained how to interpret a type definition with laws as a

declaration of the associated free type together with functions over that type, which

are defined by the laws. This explains how expressions containing occurrences of

the lawful constructors (Onil and Ocons) are given values. We should explain how

the other use of the constructors is interpreted.

Constructors can appear within patterns on the left-hand sides of definitions such

as that of head in Section 4. We have already decided to interpret olists as olist’s,

and as Ocons is afunction rather than a constructor, we replace it with the constructor

Ocons’:

head :: olist + num

head (Ocons’ a x) = a

(2)

The reader will see that this has the intended effect if s/he examines

head (Ocons 3 (Ocons 2 Onil))

The list argument is ordered, and so its head should be 2. In order to evaluate the

head of that list, the evaluator has to perform a pattern match on the argument,

which gives the reduction

--+ head (Ocons 3 (Ocons 2 Onil’))

--+

--+ head (Ocons’ 2 (Ocons’ 3 Onil’))

--+ 2

as desired.

We noted in the overview (Section 3) that not every definition could be read as

a logical truth, and we gave an example illustrating that at the end of Section 4. We

can see by the example above how the implementation avoids the inconsistency:

Ocons is treated as a function and not as a constructor, and therefore we do not

pattern match against it, thereby avoiding the deduction that

head (Ocons 3 (Ocons 2 Onil)) = 3

Lawfiiljitnc~ionc and program verjficafion in Miranda 191

Remark on notation. In Turner’s explanation [9] the functions are primed and the

constructors of the AFT are unprimed, the opposite of our choice here. There are

advantages to each, but we felt that our choice was more convenient for our purposes

as it leaves unchanged expressions to be evaluated. We apologise for any unintended

confusion that the choice may have caused.

Clearly the definition (2) yields a definition of an extended function:

head’ :: olist’ + num

head’ (Ocons’ a x) = a

Indeed, head is simply the restriction of head’ to the ordered members of olist’.

Because of this identity, we will not make a distinction between these two functions,

or in general between any function and its primed version. (Note, however, that we

will continue to make a distinction between the primed and unprimed versions of

constructors-the primed version of a constructor is a pure constructor, whereas the

unprimed version is a function.)

Finally, we look at the example of the concatenation function on ordered lists.

It has the Miranda definition

concat :: olist + olist + olist

concat (Ocons a x) y = Ocons a (concat x y)

concat Onil y = y

This will be interpreted

(3)

concat (Ocons’ a x) y = Ocons a (concat x y)

concat Onil’ y = y

Occurrences of Ocons on the left-hand sides of the equations have been replaced

by Ocons’, whereas on the right-hand sides calls to Ocons remain. Again, this is as

we intend, as the reader might like to convince her/himself that

concat (Ocons’ 2 (Ocons’ 3 Onil’)) (Ocons’ 1 Onil’)

--+ Ocons’ 1 (Ocons’ 2 (Ocons’ 3 Onil’))

the result of which is ordered.

Definition 5.2. There is a related function, whose behaviour is different in general.

We write concat” for this related function, which results from replacing all occurren-

ces of Ocons by Ocons’, and is the function given by the definition (3) when the law

is ignored completely:

concat* :: olist’ + olist’ + olist’

concat* (Ocons’ a x) y = Ocons’ a (concat* x y)

concat* Onil’ y = y

Its behaviour is different:

concat* (Ocons’ 2 (Ocons’ 3 Onil’)) (Ocons’ 1 Onil’)

--+ Ocons’ 2 (Ocons’ 3 (Ocons’ 1 Onil’))

192 S. Thompson

In the sequel we shall see that in some circumstances a function and its related

function, (like concat and concat*), will exhibit similar behaviour, and that this can

be exploited for the purposes of program verification. (In some cases the function

definitions of f and f* are identical-we shall sometimes drop the star in such

circumstances.) We turn to this general topic in Section 8.

6. Semantics and proof

The explanation of types with laws in Section 5 is operational-we have shown

how expressions involving the lawful constructors can be given meaning by means

of a syntactic transformation. We can give a denotational explanation, if we recast

the interpretation of the lawful constructors. Any expression which involves these

operators has a primed analogue (in the AFT). The effect of replacing the primed

constructors by the unprimed variants and evaluating the resulting expression is

given by the function:

norm :: olist’ + olist’

norm Onil’ = Onil’

norm (Ocons’ a Onil’) = Ocons’ a Onil’

norm (Ocons’ a (Ocons’ b Onil’))

= Ocons’ a (Ocons’ c y), -(a>c)

= norm (Ocons’ c (Ocons’ a y)), otherwise

where

Ocons’ c y = norm (Ocons’ b x)

The effect of the final equation can be rendered thus in English: “First normalise

the tail of the expression, gving the expression Ocons’ c y. If c is no smaller than a

simply cons a onto the front of the result; otherwise, swop c and a and re-normalise

the result.”

There are standard methods for giving a denotational semantics to lists, [2], and

these work equally well for any algebraic type. Given such an interpretation of the

AFT we can interpret the lawful type as the range qfthefunction norm. We interpret

functions over this type as we explained in Section 5. The function norm forms a

retraction mapping on the domain of lists; this approach is mentioned in a remark

in [9].

Given such an interpretation we can see one route by which we can prove

properties of objects of the type olist and of functions over this type. To prove a

result of the form

Vx::olist P(x)

we can instead show

Vy::olist’ P(norm y)

Luw:ful,functions and program uerjfication in Miranda 193

In exactly the same way,

3x::olist. P(x)

is equivalent to

3y::olist’. P(norm y)

Algebraic types in Miranda will, in general, contain infinite and partial elements.

If we write “I” (pronounced “bottom”) for the undefined element, then

1

2:3:~

2:1:3:1

1:2:3:. . :n: .

will all be members of the type [num]. (The constructor “:” associates to the right.)

In a similar way a lawful type can contain infinite and partial objects. If we write

elist ::= Enil 1

Econs num elist

Econs a x => x, odd a

then

2:4:~
2:4:fj:. :2*n:. .

will be elists. (It is to explain the presence of such items that a denotational approach

is necessary-it is only such an approach that can explain

2:4:tj:. . :‘Jsn:.

as the “infinite normal form” of the infinite list

1:2:3:. :n:)

Can we define a function

normal :: olist’ + bool

which identifies the olists? For each x we require that normal x is either True or False,

i.e. non-bottom. By the monotonicity of computable functions, as I is an olist we

must have

normal x = True

for every x !

We could relax our restriction, and ask only that normal x be non-bottom on finite

definite or infinite lists.

A list is jnite dejinite if and only if it is terminated by Onil’ and not J_. The finite

definite lists are exactly those for which the following function returns True:

findef Onil’ = True

findef (Ocons’ a x) = findef x

194 S. Thompson

Again, since the (interpretation of) a computable function must be continuous, the

fact that for an infinite list ilist in normal form

normal ilist = True

must be based on a finite amount of information about ilist. There will obviously be

other, nonnormal, lists which share these properties yet which are not normal, since

normality is an injinitary property. Roughly it is expressed by

Vn ilist!n <= ilist!(n + 1)

where x!m is the mth member of x. If we restrict ourselves to the finite definite

members of olist’, we can derive a normality predicate from the laws:

normal Onil’ = True

normal (Ocons’ a Onil’) = True

normal (Ocons’ a (Ocons’ b x)) = -(a>b) & normal (Ocons’ b x)

Since we are able to identify the finite definite olists in this way we can prove results

for such lists in a different manner:

Vx :: findef(olist) P(x)

will be true if and only of

Vx :: findef(olist’) [(normal x = True) =$ P(x)]

We can prove results of the latter form by a straightforward structural induction.

We discuss the pros and cons of the two approaches in the following section. The

retraction method (using norm) is more powerful, but in a wide class of cases the

predicate approach (using normal) results in simpler proofs.

Remark 6.1. So far our exposition here has been completely general-this remark

is not. In the particular case of olists there will be no infinite or non-trivial partial

objects. We can prove that

Vx::olist’ (findef (norm x) = True v (norm x) = I)

The result is proved by a structural induction over olist’, with a subsidiary induction

over the number of “out-of-order pairs” in the lists of a particular length. The proof

may be found in Appendix A.

Since we can see olist as a subtype of olist’, then clearly any result of the form

Vx::olist’ P(x)

has as an immediate corollary the fact that

Vx::olist P(x)

This is a trivial example of a logical preseruation result. We shall see a more subtle

and useful example in Section 8.

7. An example: The cardinality of ordered sets

A lawful type of ordered sets of numbers is given by

oset ::= Empty 1

Add num oset

Add a (Add b x) => Add a x, a=b

=> Add b (Add a x), a>b

We define the cardinality function on ordered sets thus:

card :: oset + num

card Empty = 0

card (Add a x) = 1 + card x

and the membership function is given by

member a Empty = False

member a (Add b x) =True, a=b

= member a x otherwise

We aim to show that, for all x and a,

(‘1 member a x = False + card (Add a x) = 1 + card x

(4 member a x = True =+ card (Add a x) = card x

The laws give us definitions of the Add function over oset’,

Add :: num + oset’ + oset’

Add a Empty’=Add’ a Empty’

Add a (Add’ b y) = Add’ a (Add’ b y), a<b

= Add’ b y, a=b

=Add b (Add a y), a>b

the norm function

norm :: oset’ + oset’

norm Empty’ = Empty’

norm (Add’ a Empty’) = Add’ a Empty’

norm (Add’ a (Add’ b y))

= Add’ a (Add’ c z), a<c

= Add’ c z, a=c

= norm (Add’ c (Add’ a z)), a>c

where

Add’ c z = norm (Add’ b y)

and the normality predicate:

normal :: oset’ -+ boo1

normal Empty’ = True

normal (Add’ a Empty’) = True

normal (Add’ a (Add’ b y)) = (a<b) & normal (Add’ b y)

196 s. Thompson

Consider the proof of (1). We only expect to prove this for finite definite sets, x, as

only such sets have a (finite) cardinality-a proof of this latter fact is left as an

exercise for the reader; it follows much the same lines as the finite definiteness

proof for ordered lists which is found in Appendix A. Formally, therefore, we want

to show that

Vx::findef(oset)

(member a x = False + card (Add a x) = 1 + card x)

The finite definite osets are precisely the images of the finite definite oset’s under

norm (exercise), so one way to prove the result is to show

(Al) Vy::findef(oset’)

(member a (norm y) = False +

card (Add a (norm y)) = 1 + card (norm y))

Alternatively, we can use our normality test and show that

(Bl) Vx::findef(oset’)

(normal x = True & member a x = False =S

card (Add a x) = 1 + card x)

Which of the two methods should we use? The expressions whose identity we have

to prove are simpler in (Bl) than (Al), as norm does not appear embedded in the

former. This suggests that (Bl) might be the easier to demonstrate. More evidence

is provided for this hypothesis when we think about how induction proofs of each

might proceed. In proving (Al) we would be faced with showing something like

card (Add a (norm (Add c y))) = 1 + card (norm (Add c y)))

on the basis of

card (Add a (norm y)) = 1 + card (norm y))

and sundry other propositions. The difficulty in effecting such a proof lies in the

fact that norm (Add c y) and norm y will nof necessarily be related in any simple

way (indeed this is precisely the point of the introduction of the nontrivial law),

and so the induction will not succeed directly. We can produce a proof, which

contains a subsidiary induction over the lengths of oset’ objects, noting that norm

preserves length.

On the basis of the discussion above, it seems that to prove results for all Jinite

dejinite objects we are best advised to use the normality function. In cases like those

of olist and osets this technique will be sufficient to establish full universal quan-

tifications, as we saw from the result in the appendix.

In a case where there are nontrivial partial and infinite objects, we will need to

use the norm function together with a more subtle, “admissible”, induction to prove

general universal results. In the remainder of this section we give the proofs of (1)

197

and (2), in the form of

(El) Vx::findef(oset’)

and

(normal x = True & member a x = False =+

card (Add a x) = 1 + card x)

(B2) Vx::findef(oset’)

(normal x = True & member a x = True +

card (Add a x) = card x)

Before we look at the details of the proof we define an auxiliary function

sta a Empty = True

sta a (Add b x) = (a<b) & sta a x

sta is meant to stand for smaller than all. We use this in the proof of (Bl). Our proof

proceeds by means of a number of lemmas, some of whose proofs depend upon

the fuirhfulness properties we discuss subsequently. Although they could all be

proved without recourse to such definitions or transfer results, the proofs are

simplified by such means.

7.1. The proof of (Bl)

We are to prove

(normal x = True & member a x = False +

card (Add a x) = 1 + card x)

for all finite definite x of type oset’. The proof proceeds by induction. Take x = Empty’

first. The hypotheses of the implication are both true, and the conclusion states

card (Add a Empty’) = 1 + card Empty’

By definition of Add,

Add a Empty’ = Add’ a Empty’

and so the left-hand side of the conclusion is

card (Add’ a Empty’) = 1 +card Empty’

as required. Now consider the case that

x=Add’b y

We assume the result for y and also assume the hypotheses of the implication.

(1) normal (Add’ b y) =True

(2) member a (Add’ b y) = False

By Lemma B.3 from Appendix B, (1) has the consequence that

(3) sta b y=True

198 S. Tlmnp.wn

and by definition of the normality function,

(4) normal y = True

The definition of the member function means that

(5) a-=b

Now, by (5), we can exclude the equality case from the definition of Add:

Add a (Add’ b y) =Add’ a (Add’ b y), a<b

= Add b (Add a y), a>b

In the first case,

card (Add a x) = card (Add’ a x)

=I +card x

as required. In the second case,

card (Add a x) =card (Add b (Add a y))

which gives, by Lemma B.5,

card (Add a x) = card (Add’ b (Add a y))

= 1 +card (Add a y)

By (4) and the consequence of (2) that

member a y = False

we can apply the induction hypothesis to conclude that

card (Add a y) = 1 +card y

so that

card (Add a x) =2 +card y

Now, x = Add’ b y and

card (Add’ b y) = 1 + card y

This means that

card (Add a x) = 2 + card y

= 1 + (1 + card y)

= 1 +card x

as we wanted.

7.2. The proof of (B2)

In this subsection we look at the proof of the other of the pair of characteristic

(conditional) equations for the cardinality function over oset. In the course of the

Law&l functions and program uer$cation in Miranda 199

proof we will appeal to a lemma whose proof we defer until after our discussion

of faithfulness. Recall that (62) states

normal x = True & member a x = True =+

card (Add a x) = card x

The proof is by induction over x::oset’. The base case is trivial, since

member a Empty’ = False

Now, we assume the result is true for y and try to plrove it for

x=Add’ by

To effect the proof we assume the hypotheses of the theorem,

(1) normal (Add’ b y) = True

(2) member a (Add’ b y) = True

and attempt to prove the conclusion.

From (2) and the definition of the member function, we have either

or

a=b

member a y = True

In the case of (4),

Add a x = Add a (Add’ b y)

=Add’b y=x

so

card (Add a x) = card x

Now consider the case (.5), and let us examine Add a x.

Add a x = Add’ a (Add’ b y), a<b

=Add b (Add a y), aab

In the first case, we know that, by Lemma B.3,

sta b y = True

and by Lemma B.4 we have

sta a y = True

Using Lemma B.6 we get

member a y = False

(4)

(5)

in contradiction to (5). Now, finally, we look at the second clause. Our induction

allows us to conclude that

card (Add a y) = card y

200 S. Thompson

If we can conclude that

member b (Add a y) = False

then we can use (Bl) to conclude that

card (Add a x) = card (Add b (Add a y))

= 1 + card (Add a y)

= 1 + card y

= card x

as required. In order to conclude (6), we use the following lemma:

(6)

Lemma 7.1. member b (Add a y) = member b (Add’ a y)

We postpone a proof of this until we have discussed the notion of faithfulness

which formalises the idea of the operation of a function being independent of the

laws on a particular type. Intuitively, member is of this sort. The proof appears in

Section 11.

8. A preservation result

In the foregoing we saw how results about functions over lawful types could be

proved. Functions over such types have analogues over their AFTs-we called these

analogues the related functions in Section 5. In this section we reintroduce the

definition of the related function, before we give a general method by which results

about the related function can be transferred to the function itself.

Recall that given a function f over a lawful type, the related function, f”, over

the AFT is the function whose definition results from replacing every occurrence

of a lawful constructor by its primed version (see Definition 5.2). If the definition

of a function involves another function using the lawful type, this should be replaced

by its starred version too.

The intersection function over ordered sets is given by

intersect :: oset + oset + oset

intersect x Empty = Empty

intersect x (Add a y)

=Add a (intersect x y), member a x

= intersect x y, otherwise

The related function is defined by

intersect* :: oset’ + oset’ + oset’

intersect* x Empty’ = Empty’

intersect* x (Add’ a y)

=Add’ a (intersect* x y), member* a x

= intersect* x y, otherwise

Lawful junctions and program verification in Miranda 201

Note that the type oset’ is (isomorphic to) the type of numerical lists, and that

intersect* is a standard list manipulating function. Amongst its properties is

intersect* x (concat* y 2)

= concat* (intersect* x y) (intersect* x 2)

where the concatenation, or union, function over ordered sets is given by

concat :: oset + oset + oset

concat Empty x =x

concat (Add a v) x = Add a (concat y x)

Under what circumstances do results about a function like intersect* transfer to the

lawful situation? We explore that question presently, but we should first note one

of the implications of these “transfer” results.

Many theorems which we prove for functions over a lawless type will

carry over to a lawful types (for which the former is the AFT)-this

re-usability is a desirable feature, and is only to be expected, since we

will in general expect to re-use functions, and such re-use is underpinned

by the transfer of properties.

Before we go any further we look at an important example. The head function

over ordered sets has the definition

head (Add a x) = a

Recall that we explained the action of head by saying that

head (Add’ a x) = a

which is a definition identical to that of head*:

head* (Add’ a x) = a

However they have rather different relative to their constructors.

not in general the case that

head (Add a x) = a

In other words, a function over a lawful type will not necessarily satisfy its defining

equations, when interpreted as an equation between expressions. We should not be

surprised at this when we remember the evaluation of

head (Ocons 3 (Ocons 2 Onil))

in Section 5.

Our interest here is in the transfer of properties of the related function to the

lawful function, when the properties of the former are expressed relative to the

lawless constructor-it is with respect to this constructor that such properties will

naturally be expressed, whereas properties of the head function itself tend to be

expressed in terms of the lawful constructor Add.

202 s. 7h?lp.wl

We can now apply the model theory we outlined in Section 2 to give a transfer

result.

What is the situation, in general ? We have a possible homomorphism

f” is faithful, the positive properties of f” carry over to f.

Every equation is positive as it has the form

vx,y,.. f x = g y

We can also express the existence of particular values (with positive properties),

and using both quantifiers, express the fact that a function is onto:

Vx3y.x=f y

which has the consequence that f has a left inverse.

What does it mean for norm to be a homomorphism between the two structures

for f? It means that

the value of the function f is independent of the laws of the lawful type.

Once we observe this it should be clear why properties are preserved: the laws have

no effect on the function. We have achieved a separation of concerns-the law

handles the (re-)normalisation of the data, and we operate on these data in a

law-independent way, not concerning ourselves with the details of the normal form.

Clearly, not all operations on lawful objects can be of this kind, but many will be.

The result is not simply of formal value. As we remarked above, any positive

properties of functions will be carried over if we re-use those functions in a lawful

context. These library function, such as the list concatenation operator, ++ (which

is concat” in fact) will appear in a number of lawful environments.

Before we go on to find a characterisation of faithful behaviour, we should explain

the details of the correspondence in the case where types other than the lawful type

are involved. All we need to do is to explain how the possible homomorphism,

norm, is extended to these types. Since we are not concerned with their lawful

behaviour (if any), we simply map them to themselves-norm is extended by the

identity function.

In the next section we examine the definition of faithfulness further, and aim to

find a characterisation of it.

203

9. Characterising faithfulness

Recall that we call a (one argument) function

f* :: t’ + s

faithful if for each x::t’,

norm (f* x) = f (norm x) (7)

If we write a - b for

norm a = norm b

then (7) implies that

x - y =3 (f* x) - (f*y) (8)

In the case that s is distinct from t, since norm is the identity on s, we have the

particular case that

x - y =3 (f* x) = (f* y) (9)

In fact, (8) is equivalent to (7). We show that (8) implies (7) now.

Proof. Recall that we defined f by

f (norm x) = f’ (norm x)

Now, since f’ contains only instances of constructors of the lawful type, and none

of the AFT, its results will be normalised, so

f’ (norm x) = norm (f’ (norm x)) (10)

How do f’ and f* differ? Only in the constructors that they contain. f* contains the

(primed) constructors of the AFT whereas f’ contains the constructors of the lawful

type. It is not hard to see that for any x and y, if x - y then

c x - c’ y

for any constructor c and its primed version. Using an induction proof (specifically

a fixed point induction) we have

norm (f’ x) = norm (f* x)

for every f and x, so

norm (f’ (norm x)) = norm (f* (norm x))

Now, we can use (8), since

norm x - x

to give

norm (f* (norm x)) = norm (f* x)

204 S 7hmpson

Putting together this chain of equalities, we have

f (norm x) = norm (f* x)

as required. 0

To summarise, we have shown in this section that

x - y * (f* x) - (f* y)

(and the special case of

x - y=2 (f* x) = (f* y)

when the types s and t are distinct) are sufficient conditions for the function f* to

be faithful.

10. Proving faithfulness

We saw in the last section that there is a premium in showing that functions are

faithful. In this section we examine a way of characterising the relation - in order

to find a means by which we can prove particular functions are faithful. In this

section we return to looking at our first example, which was of a type olist of ordered

lists. We shall make some remarks about ordered sets and the type oset in the

following section.

We characterise the equivalence relation - in the particular case of ordered lists,

but the same method used here will apply in any lawful situation.

Recall the definition of olists in Section 4, and remember that x - y is defined by

norm x = norm y.

How do we characterise -? We certainly require that

(Rl) x-x

(R2) x-y*y-x

(R3) (x-y) & (y--)*x-z

(where + is the logical implication symbol) which are the three axioms for

equivalence relations. We also want closure under expression substitution:

(R4’) x - Y =+ C[xl - C]Yl

where C[_] is any context, and finally closure under the law:

(R5’) a:b:x-b:a:x if a>b

Note that we have used an infix version of Ocons’, (:) for brevity, and also to

underline the fact that the AFT of olist is simply the type [num].

We can simplify (R4’) and (R5’) somewhat

(R4) x-y*a:x-a:y

(R5) a:b:x - b:a:x

(R4’) simplifies since any context is built by iterating cons, and (R5’) simplifies in

the presence of the other rules. How do (RI)-(R5) characterise the equivalence

relation? The relation - is the smallest relation satisfying these axioms, an inductive

definition [7] in other words. The minimality property can be stated as an induction

principle:

Principle of induction for -. If the relation P has the property that

(I1) P(x, x)

(12) P(x, Y) =+ P(Y, x)

(13) P(x, Y) 84 P(Y! 2) =+ P(x, 2)

(14) P(x, y) * P(a:x, a:y)

(15) P(a:b:x, b:a:x)

then, for all x and y, x - y + P(x, y)

The principle is simply a restatement of the minimality of -. In general such a

minimal relation need not exist. Consider the smallest equivalence relation such

that either 1 and 2 are related or 1 and 3 are related-there are two minimal solutions,

but no minimum one. On the other hand, it is easy to see for our example that:

l there is some relation satisfying the axioms: the relation relating everything to

everything else;

l given a collection of relations satisfying (RI)-(R5), then their intersection will

satisfy (RI)-(R5);

So the smallest such relation is the intersection of the set of all such relations.

The principle of induction is simply a restatement of the definition of -, as it

states that if P satisfies (RI)-(R5) (or (ll)-(15)) it is a superset ofthe equivalence relation.

Our aim in proving the faithfulness of the function f is to show that

P(x,y): f x - f y

has the properties (ll)-(15). For any function f, P has the properties (ll)-(l3), a simple

exercise for the reader, so we should show:

(Fl) f x- f y=+f (a:x) -f (a:y)

(F2) f (a:b:x) - f (b:a:x)

The approach outlined in this and the previous sections will generalise to a situation

in which we might have infinite objects in our domain of interpretation (the oddlist

type, defined above, exemplified this). We say x - y if x and y are given the same

interpretation (in the semantics) and we can find a similar, but in$nitarq,, inductive

characterisation of this relation. We find conditions similar to (Fl) and (F2) augmented

by a clause which requires that the application of f commutes with limits. This

clause will not in fact be necessary, as f will be continuous and therefore commute

206 S. Thompson

with limits. Before we close this section we should clarify our definition of faithful-

ness for a function f :: t’+ s, a function which takes an object of AFT as argument

and returns an object of unrelated type as result. We require that

x-y*fx=fy

and the conditions on f to which this leads are

(Fl’) f x=f y=+f (a:x)=f (a:y)

(F2’) f (a:b:x) =f (b:a:x)

11. Exhibiting some faithful functions

In this section we give some examples of faithful functions and properties which

we can transfer. Consider first sum, defined in Section 2. sum satisfies (Fl’) and (F2’),

i.e., if sum x = sum y then

sum (a:x) = a + sum x

=a+sumy

=sum (a:y)

and

sum (a:b:x) = a + sum (b:x)

= a + (b + sum x)

= (a + b) + sum x

= (b + a) + sum x

= b + (a + sum x)

= b + sum (a:x)

= sum (b:a:x)

Note that the only properties of the operator + which we use are its associativity

and commutativity. Now, since that we observed that

sum =foldr (+) 0

it is not hard to see that the argument above is a special case of the proof of the

following Lemma:

Lemma 11.1. If op :: * + * + * is commutative and associative, then

foldr op st

is faithful for any value st.

Corollary 11.2. Zf we dejine product and min by

product =foldr (*) 1

min = foldr min_pair infinity

where infinity is an “imaginary” greatest integer, then they are both faithful.

Lawful funcfions and program uerjfication in Miranda

We can push the result slightly further. An operator

op 1: * + ** + **

is left commutative if

op a (op b c) = op b (op a c)

for all a, b, c. By a proof similar to the above, we have:

Lemma 11.3. If op is left commutative, then foldr op st is faithful for every st.

Corollary 11.4. 7ke constant concatenation functions concat_x defined

207

concat_x = foldr (:) x

are ,faithful.

The corollary is proved by the analogue of the lemma

(F2)-we weaken the requirements ot left commutativity

form.

for the conditions (Fl) and

up to equivalence qf normal

We can prove that concat itself is faithful, since (:) satisfies the hypothesis of the

following lemma.

Lemma 11.5. If f is faithful in its second argument, then foldr f is faithful in its first

argument.

We can now show an example. The equation

sum x + sum y = sum (concat x y)

which involves faithful functions, will be a theorem for olists as well as for lists (the

AFT of olist).

There are a number of other general results, some of which concern the full

primitive recursion operator on lists, of which foldr is a special case. We give one

last result for foldr here. Observe that

(foldr g st) (map h) = foldr f st

where f x y = g (h x) y and map is the higher-order function which applies a function

to all the members of a list. Now, if g is left commutative, then so is f, irrespective

of h (an exercise for the reader). This implies:

Lemma 11.6. If g is left commutative, then

(foldr g st) (map h)

is faithful for any h and st.

208 S. Thompson

One example of such a function is

alleven = (foldr (a) True) (map even)

Clearly there are similar general results for other types, like the type of ordered

sets, defined in Section 7, the polynomials defined above, etc. We note that the

explicit use of higher-order operations in function definitions contributes not only

to their comprehensibility, but also allows us to infer properties of functions more

easily. If we had kept our explicit recursive definitions of sum, product, etc., we

would need to prove a new theorem on faithfulness for each function-the general

result for foldr does the work once and for all.

The operation foldr embodies primitive recursion over lists, and so we have shown

how to verify faithfulness for a wide class of functions. For each algebraic data

type there is a corresponding “recursor”, and we can prove analogous results for

these operators. Take, for instance, the type of ordered sets, which we saw in Section

7.

The function foldr op st will be faithful for ordered sets if op is left commutative

and left idempotent, i.e.,

opa(opac)=opac

for all a and c.

The maximum and minimum functions on sets are defined by folding left commu-

tative and left idempotent operators into the list. We can also show that a suitable

definition of the member function is faithful by such a method:

We can see that member is defined by the following equation (or equivalently

satisfies the equation):

member a = (foldr (v) False). (map ((=) a))

Now, v is associative, commutative and idempotent, so that it is left commutative

(by the first two of these) and left idempotent (by the first and the last). This means

that by the analogue of Lemma 11.6, the function itself is faithful.

Note that in our use of this property in Lemma 7.1, we require that

member a (Add b y) = member a (Add’ b y)

This is a consequence of faithfulness, since

member b z = member b (norm z)

for any b and z, and so the two applications above have the same value.

12. Faithful representatives of functions

In Section 7 we saw that not every function over a lawful type would have a

faithful related function. The example we have discussed at some length is the head

Lawful,funcfions and program uerijication in Miranda 209

function on ordered sets of lists. Even if head itself is not faithful, we can sometimes

find a faithful function which represents it. We have already remarked that the min

functions on lists is faithful-moreover it agrees with the head function on normal

forms:

normal x = True =+ min x = head x

a fact which it is easy to prove by induction. We can then use the fact that this

function is faithful in proofs of properties of head. We do this in proving the

implication of Lemma B.l (Appendix B):

Lemma 12.1

normal y = True + normal (Add a y) = True

Proof. The proof is by induction on y. The result obviously holds for y = Empty’, so

consider the case of y = Add’ b z where we assume the result for z. We also assume

the hypothesis of the implication, that is the normality of y.

Add a (Add’ b z) =Add’ a (Add’ b z), a<b

= Add’ b z, a=b

=Add b (Add a z), a>b

The results of the first two clauses are obviously normal. Since we assumed that y

was normal, we have

normal z = True

so by our induction hypothesis,

normal (Add a z) =True

In order to show that

(11)

normal (Add b (Add a z)) =True

we need (11) and to be able to conclude that

b < head (Add a z) (12)

Since we know that Add a z is normal, we can replace head by its faithful representa-

tive, min, and so try to prove

b < min (Add a z) (13)

Now, since min is faithful,

min (Add a z) = bi_min a (min z)

We know that b<a, by assumption, and that b < min z, since we have assumed the

normality of Add’ b Z. This allows us to conclude (13) and so (12), as required to

complete the proof. 0

210 S. Thompson

Every function will have a faithful representative, given by the composition

f norm

and so, in principle at least, we can apply these methods in any lawful situation.

13. Views

In this section we look at related work on views, particularly from the point of

view of program verification. Views were described by Wadler, first in [lo] and then

later in the Haskell draft standard, [S, Section 5.1.41. Views are intended to allow

pattern matching and data abstraction to “cohabit”. This is achieved by introducing

a free algebraic type, the viewing or view type, terms of which describe objects of

another type, the viewed type. The two types are related by the functions toView

and fromview which go to the view type from the viewed type and vice versa, and

which are intended to relate the objects of the viewed type to the images by which

they are accessed. Observe that in the earlier, but more expansive, [lo], these

functions were called in and out.

There are also other differences between the two expositions, in particular about

the circumstances in which a view is legitimate. Specifically, we need to state the

condition under which an expression in the view type can be said to denote a unique

member of the viewed type. Wadler [IO] calls for toView and fromview to provide

an isomorphism between (subsets of) the types, whereas this is relaxed but made

more rigorous in the later definition [5]. (In our account of the definition we omit

type variables-they only add to the notational overhead.)

Suppose the view declaration takes the form

view T=cl Tll. .Tlkl 1

cn..

where

fromview =

toView =

then expressions constructed using operations ci are to denote objects of type T.

Associated with the definition is a free type

View=cl’Tll..Tlkl 1

cd..

and the functions fromview and toView can then be viewed as ordinary functions

fromview :: View + T

toView :: T + View

Lawfulfirnctions and program urrification in Miranda 211

An example is given by

view (num, num) = Ratio num num

where

fromview (Ratio n d) = (n, d)

toView (n, d) = error “zero denominator”, d=O

= toView (-n, -d), d<O

= Ratio (n div g) (d div g), otherwise

where

g=gcd n d

and indeed this is a possible implementation of rationals as described in the Haskell

report [5, Section 6.4.31). In this case, we have a type

View = Ratio’ num num

where

fromview (Ratio’ n d) = (n, d)

toView (n, d) = error “zero denominator”, d=O

= toView (-n, -d), d<O

= Ratio’ (n div g) (d div g), otherwise

where

g = gcd n d

We can now state the condition for legitimacy of a view expression. Expressions

of the form

ci xl. .xin Ratio 34 8

are intended to denote expressions of the type T (respectively (num,num)). The

elements are defined to be

fromview (ci’ xl xin) fromview (Ratio’ 34 8)

if and only if the condition

ci’ xl. .xin = toView (fromview (ci’ xl. .xin)) (14)

is met. If (14) fails, then the expression is undejined. For many examples this

condition is met-in particular for the majority of Wadler’s examples in [lo] the

condition is obviously true. It is not always the case, however. For instance take

the example of Ratio 34 8.

toView (fromview (Ratio’ 34 8))

= toView (34, 8)

= Ratio’ 17 4

212 S. Thompson

So condition (14) fails here. A similar failure occurs if we define the obvious view

analogue of ordered lists, thus:

view [num] = Onil 1

Ocons num [num]

where

toView [] = Onil

toView (a:x) = insert a (toView x)

where

insert a Onil = Ocons a Onil

insert a (Ocons b y)

= Ocons a (Ocons b y), ash

= Ocons b (insert a y), otherwise

fromview Onil = []

fromview (Ocons a x) = a:x

Checking the condition for

Ocons 3 (Ocons 2 Onil)

we find that

toView (fromview (Ocons’ 3 (Ocons’ 2 Onil’)))

= toView [3,2]

= insert 3 (Ocons’ 2 Onil’)

= Ocons’ 2 (Ocons’ 3 Onil’)

and so all such unordered expressions using the constructor Ocons are formally

undefined. This contrasts with the lawful treatment under which such an expression

is taken to denote the ordered list with elements 2 and 3. This aspect of views has

consequences both for implementation and for program verification.

We usually interpret a definition of the form

head (Ocons a x) = a

as universally valid, or at least we do so if the constructor Ocons is lazy, as is the

case in Miranda and Haskell. If this is a definition over the view type, then we can

no longer see it as universally valid, for if so, we have

3 = head (Ocons 3 (Ocons 1 Onil))

= head I

= head (Ocons 2 (Ocons 1 Onil))

= 2

since all unordered lists built using the constructor Ocons are undefined. This echoes

the situation for laws where we saw that such an equation was no longer universally

valid, only its analogue over the associated free type was.

This situation also has something in common with a type of lists in which the

constructors are strict. Again, in such a case we must verify the well-formedness of

an argument before pattern matching against it.

La~~jii/,function.~ and program vrr$ication in Miranda 213

13.1. Implementation

Wadler discusses this briefly in the POPL paper, [lo], but we need to look in

more detail at condition (14) also. Some values created using the constructors will

be undefined, and the criterion for definedness uses an equality check. In terms of

implementation we shall have to use the equality operation, at run-time, to verify

particular expressions are defined. One consequence of this is that if the objects we

are comparing are infinite or partial then the equality operation will not return a

result. In turn this implies that we will be unable to give views of infinite or partial

objects, if constraint (14) is to be checked at run time.

There is an alternative to run time checking, and that is to use a sophisticated

compiler or a theorem prover to verify the condition (14) statically.

13.2. Verjfication

We have already seen one effect of the introduction of views: we cannot treat

defining equations simply as universally quantified equalities; we must check the

well-formedness of expressions before applying equations.

Wadler points to another difficulty in [lo, Section lo]: defining equations must

meet a homomorphism condition before they may be used. This is crucial since

otherwise the logic becomes inconsistent. This is in contrast with the mechanism of

laws, as examined earlier in the paper. We showed there that even in the difficult

situation of non-faithful functions we are able to perform program verification, and

in the happier situation of faithfulness we are able to transfer results from the

lawless to the lawful domian.

The constraint mentioned by Wadler must presumably be verified before programs

are executed. Again this will need support from a theorem proving system or a very

“smart” compiler.

14. Conclusion

We have shown that the general laws mechanism is a very powerful one, and

must be used with care. However, we have seen that the notion of faithfulness is a

natural one, and in many situations we shall be able to use that criterion as a

justification for the transfer of logical results from the lawless to the lawful type.

Even when we look at a function which is not faithful, we find that our proofs

can be aided by choosing faithful representatives of general functions-this notion

was suggested by the proof which we saw in Section 12, in fact.

The discipline suggested by the work we have discussed seems to be one that of

“use faithful functions as much as possible”-these have the twin advantages of

being independent of the laws (which is an aim of a software engineer keen to

separate concerns as much as possible) and of carrying proof-theoretic information

from the lawless type.

214 s. 7h?lpson

As Wadler mentions in [lo], we can think of laws as providing a view of an

algebraic data type, whereas the general view mechanism allows a view of any type.

On the other hand, as we saw in the previous section, views are unsuitable for

maintaining data in a normal form, one of the intended uses of laws which we

discussed in the introduction. The two features are therefore complementary and

irredundant.

As can be seen from the examples examined here and in [8, lo] both mechanisms

have unforeseen features. Neither is a fundamental feature of a (lazy) functional

programming language, yet we would argue that, especially in the case of laws, the

techniques outlined here are ones which provide for their disciplined use.

Appendix A. The finite definiteness of olists

In this section we give the proof of

Vx::olist’ (findef (norm x) = True v norm x = i)

The proof proceeds by induction. The body of the universal statement is syntactically

directedly complete [2], and so the universal statement will follow from the result

for I, Onil’ and the induction step. The proof is obvious in the first two cases so

we aim to show that

(findef (norm (Ocons’ a x)) =True v

norm (Ocons’ a x) = I)

on the basis of

(findef (norm x) = True v norm x = I)

The cases that x is either -t or Onil’ are obvious, so we assume that x = Ocons’ b y

for some b and y.

norm (Ocons’ a x)

= Ocons’ a (Ocons’ c z), -(a>c)

= norm (Ocons’ c (Ocons’ a z), otherwise

where

Ocons’ c z = norm (Ocons’ b y)

Now, if norm x = I then c will be _L and so the guard will fail, giving

norm (Ocons’ a x) = I

Similarly, if a is I, the guard will fail. Now, suppose that norm x # I and the guard

is defined, then

findef (norm x) = True

with the consequence that

findef z = True

Lawfulfunctions and program verijication in Miranda 215

This means that, in turn,

findef (Ocons’ a z) = True

If the guard is True then we have

findef (Ocons’ a (Ocons’ c z)) = True

which implies the result. On the other hand, if the guard is False then we need to

conclude that

findef (norm (Ocons’c (Ocons’a z)))=True

For similar reasons to those above we have

findef (Ocons’ c (Ocons’ a z))=True

If we define the number of crossing points of a list x to be the number of pairs (i, j)

with i<j and

x!i > x!j

then by an induction over the number of crossing points in lists of the same length

as this list we can conclude the desired result. The reduction in the number of

crossing points is due to the fact that the list is making progress to becoming ordered

under the action of the normalising laws.

This completes the proof.

Appendix B. Lemmas from the cardinality theorem

Lemma B.l.

normal y = True =+ normal (Add a y) = True

Proof. See proof of Lemma 12.1. 0

Lemma B.2.

normal x = True ,Y sta b x = True =S

Add b x=Add’b x

Proof. We consider two cases. If x = Empty’, then

Add b Empty’ = Add’ b Empty’

by definition. Suppose that x = Add’ a y, then

sta b x = True

216 S. Thompson

implies that b<a, so

Add b x = Add b (Add’ a y)

= Add’ b (Add’ a y)

= Add’ b x

completing the proof. 0

Lemma B.3.

normal (Add’ b x) = True =? sta b x = True

Proof. The proof is by induction on x. If x = Empty’, then the conclusion of the

implication is true. Suppose instead that x takes the form Add’ a z and that the result

is true for z. Assume that

normal (Add’ b (Add’ a z)) = True

This implies that

normal (Add’ a z) = True (B.1)

and that b<a. From the induction hypothesis and (B.l) we have

sta a z = True

The following lemma allows us to conclude that

sta b z = True

and combining this with b<a gives

sta b x = sta b (Add’ a z) = True

giving us the desired result. q

Lemma B.4.

b<c A sta c x = True 3 sta b x = True

Proof. The proof is a simple induction over x, using the transitivity of the “less

than” relation. q

Lemma B.5.

normal (Add’ b x) = True A b<a =3

Add b (Add a x) = Add’ b (Add a x)

Lawful.functions and program ueriJication in Miranda 211

Proof. Lemma B.2 provides sufficient conditions for the consequent of the implica-

tion to be true. We require that, under the assumption of the hypotheses of the

implication,

normal (Add a x) =True

sta b (Add a x) = True

Now, by the first hypothesis, we can deduce that

normal x = True

(B.2)

(B.3)

and so by Lemma B.1 we have (B.2). In order to deduce (B.3) we use that fact that

sta* is a faithful function, together with the identity of sta and sta* to conclude that

sta b (Add a x) = sta b (Add’ a x)

= (b<a) & sta b x

= sta b x

since (b<a) = True. The first hypothesis implies by Lemma B.3 that sta b x = True and

so we have (B.3), completing the proof. 0

Lemma B.6.

sta b y = True 9 member b y = False

Proof. Both the hypothesis and conclusion are true in the case that x = Empty’.

Assume the result for z-we aim to prove it for Add’ c z, on the assumption that

sta b (Add’ c z) =True

This means that

sta b z

and b<c. By induction the former gives us

member b z = False

and since b<c implies that (b=c) = False we have the rsult we wanted, by

induction. 0

Acknowledgement

Thanks are due to Drew Adams, Richard Kennaway and David Turner for

interesting comments on an earlier version of this paper, and to British Petroleum

plc and the Alvey directorate for partial funding of the research discussed here.

218 S. Thompson

References

[I J J. Backus, Can programming be liberated from the van Neumann style? A functional style and its

algebra of programs, Comm. ACM 21 (8) (1978).

[2] R. Cartwright and J. Donahue, The semantics of lazy (and industrious) evaluation, Tech. Rept.

CSL-83-9, Xerox PARC, Palo Alto, CA (1984).

[3] C.C. Chang and H.J. Keisler, Model ‘Theory, Studies in Logic and the Foundations of Mathematics

73 (North-Holland, Amsterdam, 2nd ed., 1977).

[4] W. Hodges, Logic (Penguin, Harmondsworth, 1977).
[5] P. Hudak and P. Wadler, Report on the functional programming language Haskell (1988).

[6] D. Michie, “Memo” functions and machine learning, Nature 218 (1968).

[7] Y.N. Moschovakis, E/emen/ar~ Induction on Abstract Structures, Studies in Logic and Foundations

of Mathematics 77 (North-Holland, Amsterdam, 1977).

[8] S.J. Thompson, Laws in Miranda, in: Conference Record of the 1986 ACM Conference on LISPand

Functional Programming (1986).

[9] D.A. Turner, Miranda: A non-strict functional language with polymorphic types, in: J.-P. Jouannaud,

ed., Functional Programming Languages and Computer Architecture (Springer, Berlin, 1985).

[IO] P. Wadler, Views: A way for pattern-matching to cohabit with data abstraction, in: Proceedings

14th ACM Symposium on Principles of Programming Languages (ACM, New York, 1987).

