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Abstract. Laws in the Miranda programming language provide a means of implementing non-free 

algebraic types, by means of term rewriting. In this paper we investigate program verification in 

such a context. Specifically, we look at how to deduce properties of functions over these “lawful” 

types. After examining the general problem, we look at a particular class of functions, the faithful 
functions. For such functions we are able, in a direct manner, to transfer properties of functions 

from free types to non-free types. We introduce sufficient model theory to explain these transfer 
results, and then find characterisations of various classes of faithful functions. Then we investigate 

an application ofthis technique to general, unfaithful, situations. In conclusion we survey Wadler’s 

work on views and assess the utility of laws and views. 

1. Introduction 

The Miranda’ programming language is purely functional and combines features 

from a number of earlier such languages. It features lazy (or “demand-driven”) 

evaluation, allows the user to define new types, contains a mechanism for program 

modularisation and is strongly typed. We survey the language in Section 3-further 

details can be found in [9]. 

Program design considerations often dictate that we model certain objects by data 

items which are kept in some sort of standard, or normal, form. Common sense 

suggests that we try to separate the concerns of 

l data manipulation, and 

l preserving standard form 

as much as possible. This motivates the introduction of a novel language feature: 

when we introduce an algebraic data type, by giving its constructors, we can specify 

laws, which are rewrite rules, which rewrite expressions involving the constructors. 

We present a number of examples in Section 4 and in [8]. 

Functional programming languages are notable for their amenability to formal 

treatment, in particular to transformation and verification, [l]. How does the 
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introduction of laws affect this important property? In [S] we investigated ways that 

we could establish properties of data types with laws. We showed that for a number 

of classes of example we could derive laws from function definitions. Specifically, 

we showed that we could derive the law for the type of ordered lists from a definition 

of a function performing insertion sort and that the memoisation [6] of function 

values could be achieved using laws which were derived automatically from the 

function definition itself. We also saw that there was a general means by which we 

could derive properties of objects of lawful type, by means of deduction using 

pattern expressions. This is only half the story, unfortunately. Once we have defined 

our lawful type we shall use it and this will involve defining functions over that 

type-we need to be able to infer properties of such functions. That is the aim of 

this paper. 

In Section 5 we discuss the meaning and implementation of laws and lawful 

functions: we decide that associated with every lawful type is a free type (the 

associated free type or AFT) over which the constructors of the lawful type are 

functions. Functions over the lawful type are interpreted as functions over the AFT. 

In the following section we look at the denotational semantics of the types, and 

on the basis of this show how properties of the lawful type and lawful functions 

can be expressed. After discussing various methods of proof, we turn, in Section 7 

to examining an example. We give a type of ordered sets, implemented by ordered 

lists without repetitions, and prove the characteristic properties of the cardinality 

function over this type. We also assess the proof techniques introduced in Section 6 

in the light of this example. 

Many of the functions which act over lawful types have a special property. Their 

related functions, i.e., the functions which are given by their definitions when 

interpreted over the AFT with the laws ignored, act independently of the laws. For 

example, the sum of a list of numbers is independent of the ordering of the list. 

We call such related functionsfaithful, relative to the set of laws under consideration. 

In Section 8 we prove that certain properties of faithful functions transfer from the 

lawless to the lawful situation. (The mathematical prerequisites for this material 

appear in Section 2.) Section 9 introduces a necessary and sufficient condition for 

a function to be faithful, and this is examined further in the section that follows. 

We give a number of classes of faithful functions in Section 11. 

One of the advantages of functional programming can be seen here. The classes 

we mentioned are characterised as classes of applications of certain higher-order 

functions. In languages without such functions we would have to look rather harder 

to characterise faithfulness, and perhaps to prove it time and time again for classes 

of intuitively similar operations. 

In Section 12 we show that faithfulness is a useful notion even in a general context. 

We introduce the idea of a faithful representative of an unfaithful function. For 

example, the minimum function is a faithful representative of the head function 

over ordered lists. We show how a faithful representative is used in a crucial lemma 

from the cardinality characterisation theorem of Section 7. 
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Wadler has proposed a views construct [5, lo] which is related to that of laws. 

We survey this in Section 13 and assess it in the conclusion, where we also assess laws. 

The appendices contain proofs which we felt would interrupt the flow of exposition 

if they had been left to succeed their statements. 

We might conclude that laws in Miranda are a “mixed blessing”. They add a 

certain complexity and also a potential unpredictability if we cannot give them a 

suitable formal treatment. We hope to have shown that we can still prove properties 

of functions in a lawful situation, and indeed that such proofs may be unnecessary, 

if a function is faithful. 

2. Mathematical preliminaries 

In this section we give a brief sketch of the basics of model theory, in order to 

give a formal foundation to a result we prove below. Further background on logic 

and model theory can be found in [3,4]. 

Properties of objects are expressed by propositions in a language, when the objects 

in question are deemed to be the interpretations of particular symbols. Our concern 

here will be languages which can be used to assert formal properties of functions. 

A function symbol in this language can be interpreted in myriad ways. Our concern 

will be to explore the link between two different interpretations. In one example 

we shall interpret a particular symbol by intersect and intersect* for example. 

If f and g are symbols for functions, then the formula 

vx,y.z f x (g y 2) = 9 (f x Y)(f x 2) 

will be either true or false depending upon how we interpret the symbols f and g. 

An interpretation of a statement is provided by a structure, which will consist of 

l a domain (or domains) which form the interpretations of the type(s) of objects, 

l functions over the domains which will interpret the function symbols of the 

language. 

We can give some examples, for the formula above. 

l A structure could consist of the domain of natural numbers, with f interpreted 

by * and g by +. This interpretation makes the formula true, as it asserts that 

multiplication distributes over addition. If we swop the interpretations, assign- 

ing * to g and + to f the formula is @se-addition does not distribute over 

multiplication. 

l Referring forward to the terminology of Section 7, call ti the structure with 

domain oset, and with f, g interpreted by intersect and concat. Similarly, call 

&* the structure with domain oset’, and with f, g interpreted by intersect* and 

concat”. 

We write “k” for the relation “models” or makes true. For instance, 

d I= vx.y.2 f x (g y z) = g (f x y) (f x z) 



184 s. Tl1ompson 

but it is not the case that 

&I=Vx,y.fxy=x 

The two structures are not unconnected, of course. There is a function which links 

the two: 

norm :: oset’ + oset 

We call a function h :: .& + ti a homomorphism if it respects the operations of the 

functions, i.e., 

h (intersect* x y) = intersect (h x) (h y) 

h (concat* x y) = concat (h x) (h y) 

Our logical result concerns the preservation of validity of certain formulas. We call 

a formula positive if it is built from equations using only the connectives A, v, W 

and 3. Such formulas are called positive because it is impossible to use them to 

express differences between objects, such as the simplest difference, an inequality. 

How can we read the properties (l)? They have the consequence of preserving 

equations: Suppose that 

intersect* x x = concat* y 2 

Now, 

h (intersect* x x) = h (concat* y z) 

because h is a function. The left-hand side equals 

intersect (h x) (h x) 

and the right-hand side 

concat (h y) (h z) 

so that 

intersect (h x) (h x) =concat (h y) (h z) 

Suppose that, in fact, 

Vx. 3y.z intersect* x x = concat* y 2 

we therefore have 

Vx .3y,z. intersect (h x) (h x) = concat (h y) (h z) 

Recall that, in full, this says 

Vx :: oset’ 3y,z :: oset’. 

intersect (h x) (h x) = concat (h y) (h z) 

and if h is an onto or surjective function, then, 

Vx :: oset .3y,z :: oset intersect x x = concat y z 
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This shows how a formula may be carried over from the lawless situation (&*) to 

the lawful (&)-we can prove a general result in a similar way, using induction 

over the complexity of positive formulas: 

Preservation Theorem. Suppose that h :: .~4* + & is an onto homomorphism, and C$ is 

a positive formula. Then, if d* b C$J then & I= 4-onto homomorphisms preserve the 

truth of positive formulas. 

3. The Miranda language: An overview 

Miranda is a functional programming language, in which functions and other 

objects are defined by (conditional) equations, and in which programs, or scripts, 

are collections of definitions. The evaluation of expressions (which refer to the 

objects defined in a script) corresponds to program execution in imperative 

languages. 

Consider an example. The value of the function perfnum, from numbers to 

booleans, is True if and only if its argument is perfect, that is equal to the sum of 

its proper divisors. 

perfnum x = False, -posint x 

= (sumdivs x = x), otherwise 

where 

posint x = (x > 0) & integer x 

sumdivs n 

= sum (filter (divs n) [l ..n div 21) 

divs n m = (n rem m = 0) 

The expression in the first clause following the comma, -posint x, is a guard on the 

clause, the second clause being the default. Definitions local to the equation follow 

the where. The predefined function filter removes the elements of the list [l ..n div 21 

which fail to satisfy the predicate divs n. We can see that divs n is itself a function 

and is passed as a parameter to filter-functions are treated just as other data objects 

in Miranda, a characteristic property of functional languages. Now consider 

sum :: [num] + num adding the elements of a list: 

sum [] =0 

sum (a:x) = a + sum x 

The equations here contain patterns on their left-hand sides. These serve a twofold 

purpose: they act as guards, and if their condition is satisfied they cause a composite 

data item to have its components selected by pattern matching with the component 

variables. If we use [2,3] as shorthand for 2:(3:[]) (lists are built from the empty list 

[ ] using the infix constructor “ : “) then 

sum [2,3] = sum (2:[3]) = 2 + sum [3] = etc. 
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This definition is one of a class of similar ones, which involve an operator 

into a list, “from the right”: 

foldr op st [] = st 

foldr op st (a:x) = op a (foldr op st x) 

(st is the starting value). sum is foldr ( +) 0, if ( + ) is prefix plus. Concatenation of 

lists, concat, can be defined similarly: 

concat x y = foldr (:) y x 

where ( : ) is the prefix form of “ : “. We shall meet these functions again below. 

Remark 3.1. We have encountered two uses of the symbol “=” in Miranda. In a 

definition we use “=” to separate the name from the expression with which it is 

associated, thus: 

name = expression 

We also use it as an operator, which returns a boolean value. In this guise it appears 

in boolean expressions and in particular in guards which appear on the right-hand 

sides of expressions. In the following definition the first use is a dejining use, and 

the second a operator: 

fat n=l, n=O 

= n * fat (n - I), otherwise 

The value that a boolean expression of the form 

I=r 

can take is one of 

True, False, I 

We shall encounter a third use of the symbol, as forming a logical predicate, in the 

informal mathematical metalanguage in which we conduct our discussion. This is 

not computable equality, as it is a logical axiom that for every x, 

x=x 

is true, even if x is given the value 1. This is not the case with the boolean operator, 

which will be undefined on the “undefined” value 1. 

The equations of a Miranda script are interpreted as logical assertions, so the 

defining equality can be seen as of this sort. However, this will not always be the 

case. The one exception is for definitions of functions over lawful types. We say 

more about this in Section 5 after looking at the details of our interpretation of 

types with laws. 

We hope that no confusion is caused by this multiple use of a single symbol. The 

careful reader might like to replace all logical assertions of equality with a triple 

bar, for example, but should have no difficulty in so doing. 
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4. Algebraic types in Miranda 

A constructor is a particular kind of function, the effect of which is to form a 

composite data item from its component parts. A well-known constructor is the 

(Lisp) cons, which builds the list 

cons a x 

from the item a and the list x. cons a x is the list whose first item (or head) is a and 

whose remainder (or tail) is x. In the Miranda language there is a facility for defining 

types built using constructors-such types are called algebraic. For example, we 

might define a type of numerical lists thus: 

numlist ::= Nil 1 

Cons num numlist 

This declares two constructor functions. Nil is a nullary function (or constant), the 

null list, and Cons has the functionality of the cons discussed above. Note the 

Miranda syntactic convention that function names being with small letters and that 

constructors begin with capitals. 

In the Miranda notation for types 

Nil :: numlist 

Cons :: num + numlist -+ numlist 

constructors such as Nil and Cons have no computational content-they simply stand 

for themselves. We might like to think of some data items as being maintained in 

some normal form as the items are constructed, and it is to this end that the laws 

mechanism is a feature of Miranda. While declaring an algebraic type such as 

olist ::= Onil 1 

Ocons num olist 

the user can specify one or more laws which are applied to keep the data in a 

particular form. In our example we aim to keep the lists ordered by writing 

Ocons a (Ocons b x) => Ocons b (Ocons a x), a > b 

Instead of the constructor standing for itself, we have added some computational 

information to it, so that an expression like 

Ocons 3 (Ocons 2 Onil) 

does not denote a list whose first element is 3; rather it denotes an ordered list, 

consisting of 2 followed by 3. 

Another example is the type poly of polynomials: 

poly ::= Null ) 

Term coeff power poly 
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where coeff and power are synonyms for num and poly is a special type of linked 

list. Each Term node contains the information about a polynomial term. Our laws are 

Term 0 n p => p 

Terms with zero coefficient are removed, whilst 

Term a n (Term b m p) 

=> Term (a + b) n p, n=m 

=> Term b m (Term a n p), n<m 

ensure (respectively) that terms of the same power are amalgamated, and that the 

terms are held in descending power order. 

A third example is the type of rationals, given by 

rational ::= Rat num num 

with the law 

Rat a b=> error “zero denominator”, b=O 

=> Rat (-a) (-b), b<O 

=> Rat a’, b’, g>l 

where 

a’= a div g 

b’ = b div g 

g = gcd a b 

Rationals are reduced to their lowest terms with a positive denominator, and an 

error message is produced, halting evaluation, by a rational with zero denominator. 

A number of other examples, including a type of AVL trees and a mechanism 

for memoising values of functions “in the data”, are given in [8]. 

The examples show the utility of the construction: assuming that the system 

“manages” the data type according to the laws, we can, while programming, confine 

ourselves to the essentials of the algorithms. Looking at the case of the polynomials, 

addition becomes simple concatenation, whilst multiplication is performed by taking 

all possible termwise products. The programmer does not have to concern him- or 

herself with the (re)normalisation of data items after computation. 

In concluding this section we should note that a nai’ve interpretation of laws as 

equations between data items is inconsistent. Re-examining the type of olists, we 

can define 

head (Ocons a x) = a 

Now, if we interpret the law as an equality, we have 

3 = head (Ocons 3 (Ocons 2 Onil)) 

= head (Ocons 2 (Ocons 3 Onil)) 
= 2 

which is a contradiction. In the next section we state clearly how the lawful types 

are defined, and why contradictions such as these do not occur. 
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5. Explaining the laws mechanism 

How do we give a formal account of this behaviour, in the context of a functional 

programming language? We focus on a particular type, that of olists in our discussion, 

but it should be clear that the techniques we use are applicable to all lawful types-we 

use the example to make the explanation clearer. 

We observe that the information contained in the declaration of a lawful type is 

of two distinct kinds: 

(1) Information about how to construct a type is provided if we ignore the laws. 

We call the type thus defined the associatedfree type or AFT and write its declaration 

in primed form 

olist’ ::= Onil’ 1 

Ocons’ num olist’ 

to reinforce the distinction. 

(2) The objects of the type olist will be objects of type olist’ which are of a special 

form. This is because they are formed only by means of thefunctions Onil and Ocons. 

The laws define these functions: 

Ocons :: num + olist’ + olist’ 

Ocons a (Ocons’ b x) 

= Ocons b (Ocons a x), a>b 

= Ocons’ a (Ocons’ b x), otherwise 

Ocons a Onil’ = Ocons’ a Onil’ 

Ocons is a function which returns an olist’ when applied to a number and an 0Iis.t’. 

When that list is null, Onil’, the result returned is the singleton olist’, with member 

a. When the list is non-null, there is a case analysis. If a>b, the head element of 

the list argument, the front of the list is rebuilt, using Ocons recursively, with the 

order of a and b reversed. Otherwise, the result is the olist’ with the front elements 

in the same order. In other words, Ocons is changed to Ocons’ except when the law 

should be invoked, in which case the swop of elements takes place, and the 

conversion is invoked recursively. Since no law is associated with Onil, we have, 

Onil :: olist’ 

Onil = Onil’ 

Consider an example, where we use the symbol “--+‘I to indicate “is rewritten to 

by the evaluator” 

Ocons 3 (Ocons 2 Onil) 

--+ Ocons 3 (Ocons 2 Onil’) 

--+ Ocons 3 (Ocons’ 2 Onil’) 

--+ Ocons 2 (Ocons 3 Onil’) 

--+ Ocons 2 (Ocons’ 3 Onil’) 

--+ Ocons’ 2 (Ocons’ 3 Onil’) 
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Note that in the example that evaluation proceeds in a leftmost-outermost fashion. 

It may not appear so to do, but observe that the pattern matching in the definition 

of Ocons forces the (at least partial) evaluation of its argument. 

Remark 5.1. The explanation above suggests that this mechanism has something in 

common with an abstract type definition. The implementation of the type is given 

by olist’, and access to this is provided by the functions Onil and Ocons. Indeed, all 

the properties of lawful types can be provided by the abstype mechanism, apart 

from pattern matching as used, for example, in the definition of functions over 

lawful types. According to Turner, this provided one of the original motivations for 

the work. 

To recap, we have explained how to interpret a type definition with laws as a 

declaration of the associated free type together with functions over that type, which 

are defined by the laws. This explains how expressions containing occurrences of 

the lawful constructors (Onil and Ocons) are given values. We should explain how 

the other use of the constructors is interpreted. 

Constructors can appear within patterns on the left-hand sides of definitions such 

as that of head in Section 4. We have already decided to interpret olists as olist’s, 

and as Ocons is afunction rather than a constructor, we replace it with the constructor 

Ocons’: 

head :: olist + num 

head (Ocons’ a x) = a 

(2) 

The reader will see that this has the intended effect if s/he examines 

head (Ocons 3 (Ocons 2 Onil)) 

The list argument is ordered, and so its head should be 2. In order to evaluate the 

head of that list, the evaluator has to perform a pattern match on the argument, 

which gives the reduction 

--+ head (Ocons 3 (Ocons 2 Onil’)) 

--+ 

--+ head (Ocons’ 2 (Ocons’ 3 Onil’)) 

--+ 2 

as desired. 

We noted in the overview (Section 3) that not every definition could be read as 

a logical truth, and we gave an example illustrating that at the end of Section 4. We 

can see by the example above how the implementation avoids the inconsistency: 

Ocons is treated as a function and not as a constructor, and therefore we do not 

pattern match against it, thereby avoiding the deduction that 

head (Ocons 3 (Ocons 2 Onil)) = 3 
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Remark on notation. In Turner’s explanation [9] the functions are primed and the 

constructors of the AFT are unprimed, the opposite of our choice here. There are 

advantages to each, but we felt that our choice was more convenient for our purposes 

as it leaves unchanged expressions to be evaluated. We apologise for any unintended 

confusion that the choice may have caused. 

Clearly the definition (2) yields a definition of an extended function: 

head’ :: olist’ + num 

head’ (Ocons’ a x) = a 

Indeed, head is simply the restriction of head’ to the ordered members of olist’. 

Because of this identity, we will not make a distinction between these two functions, 

or in general between any function and its primed version. (Note, however, that we 

will continue to make a distinction between the primed and unprimed versions of 

constructors-the primed version of a constructor is a pure constructor, whereas the 

unprimed version is a function.) 

Finally, we look at the example of the concatenation function on ordered lists. 

It has the Miranda definition 

concat :: olist + olist + olist 

concat (Ocons a x) y = Ocons a (concat x y) 

concat Onil y = y 

This will be interpreted 

(3) 

concat (Ocons’ a x) y = Ocons a (concat x y) 

concat Onil’ y = y 

Occurrences of Ocons on the left-hand sides of the equations have been replaced 

by Ocons’, whereas on the right-hand sides calls to Ocons remain. Again, this is as 

we intend, as the reader might like to convince her/himself that 

concat (Ocons’ 2 (Ocons’ 3 Onil’)) (Ocons’ 1 Onil’) 

--+ Ocons’ 1 (Ocons’ 2 (Ocons’ 3 Onil’)) 

the result of which is ordered. 

Definition 5.2. There is a related function, whose behaviour is different in general. 

We write concat” for this related function, which results from replacing all occurren- 

ces of Ocons by Ocons’, and is the function given by the definition (3) when the law 

is ignored completely: 

concat* :: olist’ + olist’ + olist’ 

concat* (Ocons’ a x) y = Ocons’ a (concat* x y) 

concat* Onil’ y = y 

Its behaviour is different: 

concat* (Ocons’ 2 (Ocons’ 3 Onil’)) (Ocons’ 1 Onil’) 

--+ Ocons’ 2 (Ocons’ 3 (Ocons’ 1 Onil’)) 
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In the sequel we shall see that in some circumstances a function and its related 

function, (like concat and concat*), will exhibit similar behaviour, and that this can 

be exploited for the purposes of program verification. (In some cases the function 

definitions of f and f* are identical-we shall sometimes drop the star in such 

circumstances.) We turn to this general topic in Section 8. 

6. Semantics and proof 

The explanation of types with laws in Section 5 is operational-we have shown 

how expressions involving the lawful constructors can be given meaning by means 

of a syntactic transformation. We can give a denotational explanation, if we recast 

the interpretation of the lawful constructors. Any expression which involves these 

operators has a primed analogue (in the AFT). The effect of replacing the primed 

constructors by the unprimed variants and evaluating the resulting expression is 

given by the function: 

norm :: olist’ + olist’ 

norm Onil’ = Onil’ 

norm (Ocons’ a Onil’) = Ocons’ a Onil’ 

norm (Ocons’ a (Ocons’ b Onil’)) 

= Ocons’ a (Ocons’ c y), -(a>c) 

= norm (Ocons’ c (Ocons’ a y)), otherwise 

where 

Ocons’ c y = norm (Ocons’ b x) 

The effect of the final equation can be rendered thus in English: “First normalise 

the tail of the expression, gving the expression Ocons’ c y. If c is no smaller than a 

simply cons a onto the front of the result; otherwise, swop c and a and re-normalise 

the result.” 

There are standard methods for giving a denotational semantics to lists, [2], and 

these work equally well for any algebraic type. Given such an interpretation of the 

AFT we can interpret the lawful type as the range qfthefunction norm. We interpret 

functions over this type as we explained in Section 5. The function norm forms a 

retraction mapping on the domain of lists; this approach is mentioned in a remark 

in [9]. 

Given such an interpretation we can see one route by which we can prove 

properties of objects of the type olist and of functions over this type. To prove a 

result of the form 

Vx::olist P(x) 

we can instead show 

Vy::olist’ P(norm y) 
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In exactly the same way, 

3x::olist. P(x) 

is equivalent to 

3y::olist’. P(norm y) 

Algebraic types in Miranda will, in general, contain infinite and partial elements. 

If we write “I” (pronounced “bottom”) for the undefined element, then 

1 

2:3:~ 

2:1:3:1 

1:2:3:. . :n: . 

will all be members of the type [num]. (The constructor “:” associates to the right.) 

In a similar way a lawful type can contain infinite and partial objects. If we write 

elist ::= Enil 1 

Econs num elist 

Econs a x => x, odd a 

then 

2:4:~ 
2:4:fj:. :2*n:. . 

will be elists. (It is to explain the presence of such items that a denotational approach 

is necessary-it is only such an approach that can explain 

2:4:tj:. . :‘Jsn:. 

as the “infinite normal form” of the infinite list 

1:2:3:. :n: . . . .) 

Can we define a function 

normal :: olist’ + bool 

which identifies the olists? For each x we require that normal x is either True or False, 

i.e. non-bottom. By the monotonicity of computable functions, as I is an olist we 

must have 

normal x = True 

for every x ! 

We could relax our restriction, and ask only that normal x be non-bottom on finite 

definite or infinite lists. 

A list is jnite dejinite if and only if it is terminated by Onil’ and not J_. The finite 

definite lists are exactly those for which the following function returns True: 

findef Onil’ = True 

findef (Ocons’ a x) = findef x 
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Again, since the (interpretation of) a computable function must be continuous, the 

fact that for an infinite list ilist in normal form 

normal ilist = True 

must be based on a finite amount of information about ilist. There will obviously be 

other, nonnormal, lists which share these properties yet which are not normal, since 

normality is an injinitary property. Roughly it is expressed by 

Vn ilist!n <= ilist!(n + 1) 

where x!m is the mth member of x. If we restrict ourselves to the finite definite 

members of olist’, we can derive a normality predicate from the laws: 

normal Onil’ = True 

normal (Ocons’ a Onil’) = True 

normal (Ocons’ a (Ocons’ b x)) = -(a>b) & normal (Ocons’ b x) 

Since we are able to identify the finite definite olists in this way we can prove results 

for such lists in a different manner: 

Vx :: findef(olist) P(x) 

will be true if and only of 

Vx :: findef(olist’) [(normal x = True) =$ P(x)] 

We can prove results of the latter form by a straightforward structural induction. 

We discuss the pros and cons of the two approaches in the following section. The 

retraction method (using norm) is more powerful, but in a wide class of cases the 

predicate approach (using normal) results in simpler proofs. 

Remark 6.1. So far our exposition here has been completely general-this remark 

is not. In the particular case of olists there will be no infinite or non-trivial partial 

objects. We can prove that 

Vx::olist’ (findef (norm x) = True v (norm x) = I) 

The result is proved by a structural induction over olist’, with a subsidiary induction 

over the number of “out-of-order pairs” in the lists of a particular length. The proof 

may be found in Appendix A. 

Since we can see olist as a subtype of olist’, then clearly any result of the form 

Vx::olist’ P(x) 

has as an immediate corollary the fact that 

Vx::olist P(x) 

This is a trivial example of a logical preseruation result. We shall see a more subtle 

and useful example in Section 8. 



7. An example: The cardinality of ordered sets 

A lawful type of ordered sets of numbers is given by 

oset ::= Empty 1 

Add num oset 

Add a (Add b x) => Add a x, a=b 

=> Add b (Add a x), a>b 

We define the cardinality function on ordered sets thus: 

card :: oset + num 

card Empty = 0 

card (Add a x) = 1 + card x 

and the membership function is given by 

member a Empty = False 

member a (Add b x) =True, a=b 

= member a x otherwise 

We aim to show that, for all x and a, 

(‘1 member a x = False + card (Add a x) = 1 + card x 

(4 member a x = True =+ card (Add a x) = card x 

The laws give us definitions of the Add function over oset’, 

Add :: num + oset’ + oset’ 

Add a Empty’=Add’ a Empty’ 

Add a (Add’ b y) = Add’ a (Add’ b y), a<b 

= Add’ b y, a=b 

=Add b (Add a y), a>b 

the norm function 

norm :: oset’ + oset’ 

norm Empty’ = Empty’ 

norm (Add’ a Empty’) = Add’ a Empty’ 

norm (Add’ a (Add’ b y)) 

= Add’ a (Add’ c z), a<c 

= Add’ c z, a=c 

= norm (Add’ c (Add’ a z)), a>c 

where 

Add’ c z = norm (Add’ b y) 

and the normality predicate: 

normal :: oset’ -+ boo1 

normal Empty’ = True 

normal (Add’ a Empty’) = True 

normal (Add’ a (Add’ b y)) = (a<b) & normal (Add’ b y) 
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Consider the proof of (1). We only expect to prove this for finite definite sets, x, as 

only such sets have a (finite) cardinality-a proof of this latter fact is left as an 

exercise for the reader; it follows much the same lines as the finite definiteness 

proof for ordered lists which is found in Appendix A. Formally, therefore, we want 

to show that 

Vx::findef(oset) 

(member a x = False + card (Add a x) = 1 + card x) 

The finite definite osets are precisely the images of the finite definite oset’s under 

norm (exercise), so one way to prove the result is to show 

(Al) Vy::findef(oset’) 

(member a (norm y) = False + 

card (Add a (norm y)) = 1 + card (norm y)) 

Alternatively, we can use our normality test and show that 

(Bl) Vx::findef(oset’) 

(normal x = True & member a x = False =S 

card (Add a x) = 1 + card x) 

Which of the two methods should we use? The expressions whose identity we have 

to prove are simpler in (Bl) than (Al), as norm does not appear embedded in the 

former. This suggests that (Bl) might be the easier to demonstrate. More evidence 

is provided for this hypothesis when we think about how induction proofs of each 

might proceed. In proving (Al) we would be faced with showing something like 

card (Add a (norm (Add c y))) = 1 + card (norm (Add c y))) 

on the basis of 

card (Add a (norm y)) = 1 + card (norm y)) 

and sundry other propositions. The difficulty in effecting such a proof lies in the 

fact that norm (Add c y) and norm y will nof necessarily be related in any simple 

way (indeed this is precisely the point of the introduction of the nontrivial law), 

and so the induction will not succeed directly. We can produce a proof, which 

contains a subsidiary induction over the lengths of oset’ objects, noting that norm 

preserves length. 

On the basis of the discussion above, it seems that to prove results for all Jinite 

dejinite objects we are best advised to use the normality function. In cases like those 

of olist and osets this technique will be sufficient to establish full universal quan- 

tifications, as we saw from the result in the appendix. 

In a case where there are nontrivial partial and infinite objects, we will need to 

use the norm function together with a more subtle, “admissible”, induction to prove 

general universal results. In the remainder of this section we give the proofs of (1) 
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and (2), in the form of 

(El) Vx::findef(oset’) 

and 

(normal x = True & member a x = False =+ 

card (Add a x) = 1 + card x) 

(B2) Vx::findef(oset’) 

(normal x = True & member a x = True + 

card (Add a x) = card x) 

Before we look at the details of the proof we define an auxiliary function 

sta a Empty = True 

sta a (Add b x) = (a<b) & sta a x 

sta is meant to stand for smaller than all. We use this in the proof of (Bl). Our proof 

proceeds by means of a number of lemmas, some of whose proofs depend upon 

the fuirhfulness properties we discuss subsequently. Although they could all be 

proved without recourse to such definitions or transfer results, the proofs are 

simplified by such means. 

7.1. The proof of (Bl) 

We are to prove 

(normal x = True & member a x = False + 

card (Add a x) = 1 + card x) 

for all finite definite x of type oset’. The proof proceeds by induction. Take x = Empty’ 

first. The hypotheses of the implication are both true, and the conclusion states 

card (Add a Empty’) = 1 + card Empty’ 

By definition of Add, 

Add a Empty’ = Add’ a Empty’ 

and so the left-hand side of the conclusion is 

card (Add’ a Empty’) = 1 +card Empty’ 

as required. Now consider the case that 

x=Add’b y 

We assume the result for y and also assume the hypotheses of the implication. 

(1) normal (Add’ b y) =True 

(2) member a (Add’ b y) = False 

By Lemma B.3 from Appendix B, (1) has the consequence that 

(3) sta b y=True 
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and by definition of the normality function, 

(4) normal y = True 

The definition of the member function means that 

(5) a-=b 

Now, by (5), we can exclude the equality case from the definition of Add: 

Add a (Add’ b y) =Add’ a (Add’ b y), a<b 

= Add b (Add a y), a>b 

In the first case, 

card (Add a x) = card (Add’ a x) 

=I +card x 

as required. In the second case, 

card (Add a x) =card (Add b (Add a y)) 

which gives, by Lemma B.5, 

card (Add a x) = card (Add’ b (Add a y)) 

= 1 +card (Add a y) 

By (4) and the consequence of (2) that 

member a y = False 

we can apply the induction hypothesis to conclude that 

card (Add a y) = 1 +card y 

so that 

card (Add a x) =2 +card y 

Now, x = Add’ b y and 

card (Add’ b y) = 1 + card y 

This means that 

card (Add a x) = 2 + card y 

= 1 + (1 + card y) 

= 1 +card x 

as we wanted. 

7.2. The proof of (B2) 

In this subsection we look at the proof of the other of the pair of characteristic 

(conditional) equations for the cardinality function over oset. In the course of the 
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proof we will appeal to a lemma whose proof we defer until after our discussion 

of faithfulness. Recall that (62) states 

normal x = True & member a x = True =+ 

card (Add a x) = card x 

The proof is by induction over x::oset’. The base case is trivial, since 

member a Empty’ = False 

Now, we assume the result is true for y and try to plrove it for 

x=Add’ by 

To effect the proof we assume the hypotheses of the theorem, 

(1) normal (Add’ b y) = True 

(2) member a (Add’ b y) = True 

and attempt to prove the conclusion. 

From (2) and the definition of the member function, we have either 

or 

a=b 

member a y = True 

In the case of (4), 

Add a x = Add a (Add’ b y) 

=Add’b y=x 

so 

card (Add a x) = card x 

Now consider the case (.5), and let us examine Add a x. 

Add a x = Add’ a (Add’ b y), a<b 

=Add b (Add a y), aab 

In the first case, we know that, by Lemma B.3, 

sta b y = True 

and by Lemma B.4 we have 

sta a y = True 

Using Lemma B.6 we get 

member a y = False 

(4) 

(5) 

in contradiction to (5). Now, finally, we look at the second clause. Our induction 

allows us to conclude that 

card (Add a y) = card y 
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If we can conclude that 

member b (Add a y) = False 

then we can use (Bl) to conclude that 

card (Add a x) = card (Add b (Add a y)) 

= 1 + card (Add a y) 

= 1 + card y 

= card x 

as required. In order to conclude (6), we use the following lemma: 

(6) 

Lemma 7.1. member b (Add a y) = member b (Add’ a y) 

We postpone a proof of this until we have discussed the notion of faithfulness 

which formalises the idea of the operation of a function being independent of the 

laws on a particular type. Intuitively, member is of this sort. The proof appears in 

Section 11. 

8. A preservation result 

In the foregoing we saw how results about functions over lawful types could be 

proved. Functions over such types have analogues over their AFTs-we called these 

analogues the related functions in Section 5. In this section we reintroduce the 

definition of the related function, before we give a general method by which results 

about the related function can be transferred to the function itself. 

Recall that given a function f over a lawful type, the related function, f”, over 

the AFT is the function whose definition results from replacing every occurrence 

of a lawful constructor by its primed version (see Definition 5.2). If the definition 

of a function involves another function using the lawful type, this should be replaced 

by its starred version too. 

The intersection function over ordered sets is given by 

intersect :: oset + oset + oset 

intersect x Empty = Empty 

intersect x (Add a y) 

=Add a (intersect x y), member a x 

= intersect x y, otherwise 

The related function is defined by 

intersect* :: oset’ + oset’ + oset’ 

intersect* x Empty’ = Empty’ 

intersect* x (Add’ a y) 

=Add’ a (intersect* x y), member* a x 

= intersect* x y, otherwise 
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Note that the type oset’ is (isomorphic to) the type of numerical lists, and that 

intersect* is a standard list manipulating function. Amongst its properties is 

intersect* x (concat* y 2) 

= concat* (intersect* x y) (intersect* x 2) 

where the concatenation, or union, function over ordered sets is given by 

concat :: oset + oset + oset 

concat Empty x =x 

concat (Add a v) x = Add a (concat y x) 

Under what circumstances do results about a function like intersect* transfer to the 

lawful situation? We explore that question presently, but we should first note one 

of the implications of these “transfer” results. 

Many theorems which we prove for functions over a lawless type will 

carry over to a lawful types (for which the former is the AFT)-this 

re-usability is a desirable feature, and is only to be expected, since we 

will in general expect to re-use functions, and such re-use is underpinned 

by the transfer of properties. 

Before we go any further we look at an important example. The head function 

over ordered sets has the definition 

head (Add a x) = a 

Recall that we explained the action of head by saying that 

head (Add’ a x) = a 

which is a definition identical to that of head*: 

head* (Add’ a x) = a 

However they have rather different relative to their constructors. 

not in general the case that 

head (Add a x) = a 

In other words, a function over a lawful type will not necessarily satisfy its defining 

equations, when interpreted as an equation between expressions. We should not be 

surprised at this when we remember the evaluation of 

head (Ocons 3 (Ocons 2 Onil)) 

in Section 5. 

Our interest here is in the transfer of properties of the related function to the 

lawful function, when the properties of the former are expressed relative to the 

lawless constructor-it is with respect to this constructor that such properties will 

naturally be expressed, whereas properties of the head function itself tend to be 

expressed in terms of the lawful constructor Add. 
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We can now apply the model theory we outlined in Section 2 to give a transfer 

result. 

What is the situation, in general ? We have a possible homomorphism 

f” is faithful, the positive properties of f” carry over to f. 

Every equation is positive as it has the form 

vx,y,.. f x = g y 

We can also express the existence of particular values (with positive properties), 

and using both quantifiers, express the fact that a function is onto: 

Vx3y.x=f y 

which has the consequence that f has a left inverse. 

What does it mean for norm to be a homomorphism between the two structures 

for f? It means that 

the value of the function f is independent of the laws of the lawful type. 

Once we observe this it should be clear why properties are preserved: the laws have 

no effect on the function. We have achieved a separation of concerns-the law 

handles the (re-)normalisation of the data, and we operate on these data in a 

law-independent way, not concerning ourselves with the details of the normal form. 

Clearly, not all operations on lawful objects can be of this kind, but many will be. 

The result is not simply of formal value. As we remarked above, any positive 

properties of functions will be carried over if we re-use those functions in a lawful 

context. These library function, such as the list concatenation operator, ++ (which 

is concat” in fact) will appear in a number of lawful environments. 

Before we go on to find a characterisation of faithful behaviour, we should explain 

the details of the correspondence in the case where types other than the lawful type 

are involved. All we need to do is to explain how the possible homomorphism, 

norm, is extended to these types. Since we are not concerned with their lawful 

behaviour (if any), we simply map them to themselves-norm is extended by the 

identity function. 

In the next section we examine the definition of faithfulness further, and aim to 

find a characterisation of it. 
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9. Characterising faithfulness 

Recall that we call a (one argument) function 

f* :: t’ + s 

faithful if for each x::t’, 

norm (f* x) = f (norm x) (7) 

If we write a - b for 

norm a = norm b 

then (7) implies that 

x - y =3 (f* x) - (f*y) (8) 

In the case that s is distinct from t, since norm is the identity on s, we have the 

particular case that 

x - y =3 (f* x) = (f* y) (9) 

In fact, (8) is equivalent to (7). We show that (8) implies (7) now. 

Proof. Recall that we defined f by 

f (norm x) = f’ (norm x) 

Now, since f’ contains only instances of constructors of the lawful type, and none 

of the AFT, its results will be normalised, so 

f’ (norm x) = norm (f’ (norm x)) (10) 

How do f’ and f* differ? Only in the constructors that they contain. f* contains the 

(primed) constructors of the AFT whereas f’ contains the constructors of the lawful 

type. It is not hard to see that for any x and y, if x - y then 

c x - c’ y 

for any constructor c and its primed version. Using an induction proof (specifically 

a fixed point induction) we have 

norm (f’ x) = norm (f* x) 

for every f and x, so 

norm (f’ (norm x)) = norm (f* (norm x)) 

Now, we can use (8), since 

norm x - x 

to give 

norm (f* (norm x)) = norm (f* x) 
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Putting together this chain of equalities, we have 

f (norm x) = norm (f* x) 

as required. 0 

To summarise, we have shown in this section that 

x - y * (f* x) - (f* y) 

(and the special case of 

x - y=2 (f* x) = (f* y) 

when the types s and t are distinct) are sufficient conditions for the function f* to 

be faithful. 

10. Proving faithfulness 

We saw in the last section that there is a premium in showing that functions are 

faithful. In this section we examine a way of characterising the relation - in order 

to find a means by which we can prove particular functions are faithful. In this 

section we return to looking at our first example, which was of a type olist of ordered 

lists. We shall make some remarks about ordered sets and the type oset in the 

following section. 

We characterise the equivalence relation - in the particular case of ordered lists, 

but the same method used here will apply in any lawful situation. 

Recall the definition of olists in Section 4, and remember that x - y is defined by 

norm x = norm y. 

How do we characterise -? We certainly require that 

(Rl) x-x 

(R2) x-y*y-x 

(R3) (x-y) & (y--)*x-z 

(where + is the logical implication symbol) which are the three axioms for 

equivalence relations. We also want closure under expression substitution: 

(R4’) x - Y =+ C[xl - C]Yl 

where C[_] is any context, and finally closure under the law: 

(R5’) a:b:x-b:a:x if a>b 

Note that we have used an infix version of Ocons’, (:) for brevity, and also to 

underline the fact that the AFT of olist is simply the type [num]. 

We can simplify (R4’) and (R5’) somewhat 

(R4) x-y*a:x-a:y 

(R5) a:b:x - b:a:x 



(R4’) simplifies since any context is built by iterating cons, and (R5’) simplifies in 

the presence of the other rules. How do (RI)-(R5) characterise the equivalence 

relation? The relation - is the smallest relation satisfying these axioms, an inductive 

definition [7] in other words. The minimality property can be stated as an induction 

principle: 

Principle of induction for -. If the relation P has the property that 

(I1 ) P(x, x) 

(12) P(x, Y) =+ P(Y, x) 

(13) P(x, Y) 84 P(Y! 2) =+ P(x, 2) 

(14) P(x, y) * P(a:x, a:y) 

(15) P(a:b:x, b:a:x) 

then, for all x and y, x - y + P(x, y) 

The principle is simply a restatement of the minimality of -. In general such a 

minimal relation need not exist. Consider the smallest equivalence relation such 

that either 1 and 2 are related or 1 and 3 are related-there are two minimal solutions, 

but no minimum one. On the other hand, it is easy to see for our example that: 

l there is some relation satisfying the axioms: the relation relating everything to 

everything else; 

l given a collection of relations satisfying (RI)-(R5), then their intersection will 

satisfy (RI)-(R5); 

So the smallest such relation is the intersection of the set of all such relations. 

The principle of induction is simply a restatement of the definition of -, as it 

states that if P satisfies (RI)-(R5) (or (ll)-(15)) it is a superset ofthe equivalence relation. 

Our aim in proving the faithfulness of the function f is to show that 

P(x,y): f x - f y 

has the properties (ll)-(15). For any function f, P has the properties (ll)-(l3), a simple 

exercise for the reader, so we should show: 

(Fl) f x- f y=+f (a:x) -f (a:y) 

(F2) f (a:b:x) - f (b:a:x) 

The approach outlined in this and the previous sections will generalise to a situation 

in which we might have infinite objects in our domain of interpretation (the oddlist 

type, defined above, exemplified this). We say x - y if x and y are given the same 

interpretation (in the semantics) and we can find a similar, but in$nitarq,, inductive 

characterisation of this relation. We find conditions similar to (Fl ) and (F2) augmented 

by a clause which requires that the application of f commutes with limits. This 

clause will not in fact be necessary, as f will be continuous and therefore commute 
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with limits. Before we close this section we should clarify our definition of faithful- 

ness for a function f :: t’+ s, a function which takes an object of AFT as argument 

and returns an object of unrelated type as result. We require that 

x-y*fx=fy 

and the conditions on f to which this leads are 

(Fl’) f x=f y=+f (a:x)=f (a:y) 

(F2’) f (a:b:x) =f (b:a:x) 

11. Exhibiting some faithful functions 

In this section we give some examples of faithful functions and properties which 

we can transfer. Consider first sum, defined in Section 2. sum satisfies (Fl’) and (F2’), 

i.e., if sum x = sum y then 

sum (a:x) = a + sum x 

=a+sumy 

=sum (a:y) 

and 

sum (a:b:x) = a + sum (b:x) 

= a + (b + sum x) 

= (a + b) + sum x 

= (b + a) + sum x 

= b + (a + sum x) 

= b + sum (a:x) 

= sum (b:a:x) 

Note that the only properties of the operator + which we use are its associativity 

and commutativity. Now, since that we observed that 

sum =foldr (+) 0 

it is not hard to see that the argument above is a special case of the proof of the 

following Lemma: 

Lemma 11.1. If op :: * + * + * is commutative and associative, then 

foldr op st 

is faithful for any value st. 

Corollary 11.2. Zf we dejine product and min by 

product =foldr (*) 1 

min = foldr min_pair infinity 

where infinity is an “imaginary” greatest integer, then they are both faithful. 
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We can push the result slightly further. An operator 

op 1: * + ** + ** 

is left commutative if 

op a (op b c) = op b (op a c) 

for all a, b, c. By a proof similar to the above, we have: 

Lemma 11.3. If op is left commutative, then foldr op st is faithful for every st. 

Corollary 11.4. 7ke constant concatenation functions concat_x defined 

207 

concat_x = foldr ( : ) x 

are ,faithful. 

The corollary is proved by the analogue of the lemma 

(F2)-we weaken the requirements ot left commutativity 

form. 

for the conditions (Fl ) and 

up to equivalence qf normal 

We can prove that concat itself is faithful, since ( : ) satisfies the hypothesis of the 

following lemma. 

Lemma 11.5. If f is faithful in its second argument, then foldr f is faithful in its first 

argument. 

We can now show an example. The equation 

sum x + sum y = sum (concat x y) 

which involves faithful functions, will be a theorem for olists as well as for lists (the 

AFT of olist). 

There are a number of other general results, some of which concern the full 

primitive recursion operator on lists, of which foldr is a special case. We give one 

last result for foldr here. Observe that 

(foldr g st) (map h) = foldr f st 

where f x y = g (h x) y and map is the higher-order function which applies a function 

to all the members of a list. Now, if g is left commutative, then so is f, irrespective 

of h (an exercise for the reader). This implies: 

Lemma 11.6. If g is left commutative, then 

(foldr g st) (map h) 

is faithful for any h and st. 
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One example of such a function is 

alleven = (foldr (a) True) (map even) 

Clearly there are similar general results for other types, like the type of ordered 

sets, defined in Section 7, the polynomials defined above, etc. We note that the 

explicit use of higher-order operations in function definitions contributes not only 

to their comprehensibility, but also allows us to infer properties of functions more 

easily. If we had kept our explicit recursive definitions of sum, product, etc., we 

would need to prove a new theorem on faithfulness for each function-the general 

result for foldr does the work once and for all. 

The operation foldr embodies primitive recursion over lists, and so we have shown 

how to verify faithfulness for a wide class of functions. For each algebraic data 

type there is a corresponding “recursor”, and we can prove analogous results for 

these operators. Take, for instance, the type of ordered sets, which we saw in Section 

7. 

The function foldr op st will be faithful for ordered sets if op is left commutative 

and left idempotent, i.e., 

opa(opac)=opac 

for all a and c. 

The maximum and minimum functions on sets are defined by folding left commu- 

tative and left idempotent operators into the list. We can also show that a suitable 

definition of the member function is faithful by such a method: 

We can see that member is defined by the following equation (or equivalently 

satisfies the equation): 

member a = (foldr (v) False). (map ((=) a)) 

Now, v is associative, commutative and idempotent, so that it is left commutative 

(by the first two of these) and left idempotent (by the first and the last). This means 

that by the analogue of Lemma 11.6, the function itself is faithful. 

Note that in our use of this property in Lemma 7.1, we require that 

member a (Add b y) = member a (Add’ b y) 

This is a consequence of faithfulness, since 

member b z = member b (norm z) 

for any b and z, and so the two applications above have the same value. 

12. Faithful representatives of functions 

In Section 7 we saw that not every function over a lawful type would have a 

faithful related function. The example we have discussed at some length is the head 
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function on ordered sets of lists. Even if head itself is not faithful, we can sometimes 

find a faithful function which represents it. We have already remarked that the min 

functions on lists is faithful-moreover it agrees with the head function on normal 

forms: 

normal x = True =+ min x = head x 

a fact which it is easy to prove by induction. We can then use the fact that this 

function is faithful in proofs of properties of head. We do this in proving the 

implication of Lemma B.l (Appendix B): 

Lemma 12.1 

normal y = True + normal (Add a y) = True 

Proof. The proof is by induction on y. The result obviously holds for y = Empty’, so 

consider the case of y = Add’ b z where we assume the result for z. We also assume 

the hypothesis of the implication, that is the normality of y. 

Add a (Add’ b z) =Add’ a (Add’ b z), a<b 

= Add’ b z, a=b 

=Add b (Add a z), a>b 

The results of the first two clauses are obviously normal. Since we assumed that y 

was normal, we have 

normal z = True 

so by our induction hypothesis, 

normal (Add a z) =True 

In order to show that 

(11) 

normal (Add b (Add a z)) =True 

we need (11) and to be able to conclude that 

b < head (Add a z) (12) 

Since we know that Add a z is normal, we can replace head by its faithful representa- 

tive, min, and so try to prove 

b < min (Add a z) (13) 

Now, since min is faithful, 

min (Add a z) = bi_min a (min z) 

We know that b<a, by assumption, and that b < min z, since we have assumed the 

normality of Add’ b Z. This allows us to conclude (13) and so (12), as required to 

complete the proof. 0 
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Every function will have a faithful representative, given by the composition 

f norm 

and so, in principle at least, we can apply these methods in any lawful situation. 

13. Views 

In this section we look at related work on views, particularly from the point of 

view of program verification. Views were described by Wadler, first in [lo] and then 

later in the Haskell draft standard, [S, Section 5.1.41. Views are intended to allow 

pattern matching and data abstraction to “cohabit”. This is achieved by introducing 

a free algebraic type, the viewing or view type, terms of which describe objects of 

another type, the viewed type. The two types are related by the functions toView 

and fromview which go to the view type from the viewed type and vice versa, and 

which are intended to relate the objects of the viewed type to the images by which 

they are accessed. Observe that in the earlier, but more expansive, [lo], these 

functions were called in and out. 

There are also other differences between the two expositions, in particular about 

the circumstances in which a view is legitimate. Specifically, we need to state the 

condition under which an expression in the view type can be said to denote a unique 

member of the viewed type. Wadler [IO] calls for toView and fromview to provide 

an isomorphism between (subsets of) the types, whereas this is relaxed but made 

more rigorous in the later definition [5]. (In our account of the definition we omit 

type variables-they only add to the notational overhead.) 

Suppose the view declaration takes the form 

view T=cl Tll. .Tlkl 1 

cn.. 

where 

fromview = 

toView = 

then expressions constructed using operations ci are to denote objects of type T. 

Associated with the definition is a free type 

View=cl’Tll..Tlkl 1 

cd.. 

and the functions fromview and toView can then be viewed as ordinary functions 

fromview :: View + T 

toView :: T + View 



Lawfulfirnctions and program urrification in Miranda 211 

An example is given by 

view (num, num) = Ratio num num 

where 

fromview (Ratio n d) = (n, d) 

toView (n, d) = error “zero denominator”, d=O 

= toView (-n, -d), d<O 

= Ratio (n div g) (d div g), otherwise 

where 

g=gcd n d 

and indeed this is a possible implementation of rationals as described in the Haskell 

report [5, Section 6.4.31). In this case, we have a type 

View = Ratio’ num num 

where 

fromview (Ratio’ n d) = (n, d) 

toView (n, d) = error “zero denominator”, d=O 

= toView (-n, -d), d<O 

= Ratio’ (n div g) (d div g), otherwise 

where 

g = gcd n d 

We can now state the condition for legitimacy of a view expression. Expressions 

of the form 

ci xl. .xin Ratio 34 8 

are intended to denote expressions of the type T (respectively (num,num)). The 

elements are defined to be 

fromview (ci’ xl xin) fromview (Ratio’ 34 8) 

if and only if the condition 

ci’ xl. .xin = toView (fromview (ci’ xl. .xin)) (14) 

is met. If (14) fails, then the expression is undejined. For many examples this 

condition is met-in particular for the majority of Wadler’s examples in [lo] the 

condition is obviously true. It is not always the case, however. For instance take 

the example of Ratio 34 8. 

toView (fromview (Ratio’ 34 8)) 

= toView (34, 8) 

= Ratio’ 17 4 
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So condition (14) fails here. A similar failure occurs if we define the obvious view 

analogue of ordered lists, thus: 

view [num] = Onil 1 

Ocons num [num] 

where 

toView [] = Onil 

toView (a:x) = insert a (toView x) 

where 

insert a Onil = Ocons a Onil 

insert a (Ocons b y) 

= Ocons a (Ocons b y), ash 

= Ocons b (insert a y), otherwise 

fromview Onil = [] 

fromview (Ocons a x) = a:x 

Checking the condition for 

Ocons 3 (Ocons 2 Onil) 

we find that 

toView (fromview (Ocons’ 3 (Ocons’ 2 Onil’))) 

= toView [3,2] 

= insert 3 (Ocons’ 2 Onil’) 

= Ocons’ 2 (Ocons’ 3 Onil’) 

and so all such unordered expressions using the constructor Ocons are formally 

undefined. This contrasts with the lawful treatment under which such an expression 

is taken to denote the ordered list with elements 2 and 3. This aspect of views has 

consequences both for implementation and for program verification. 

We usually interpret a definition of the form 

head (Ocons a x) = a 

as universally valid, or at least we do so if the constructor Ocons is lazy, as is the 

case in Miranda and Haskell. If this is a definition over the view type, then we can 

no longer see it as universally valid, for if so, we have 

3 = head (Ocons 3 (Ocons 1 Onil)) 

= head I 

= head (Ocons 2 (Ocons 1 Onil)) 

= 2 

since all unordered lists built using the constructor Ocons are undefined. This echoes 

the situation for laws where we saw that such an equation was no longer universally 

valid, only its analogue over the associated free type was. 

This situation also has something in common with a type of lists in which the 

constructors are strict. Again, in such a case we must verify the well-formedness of 

an argument before pattern matching against it. 
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13.1. Implementation 

Wadler discusses this briefly in the POPL paper, [lo], but we need to look in 

more detail at condition (14) also. Some values created using the constructors will 

be undefined, and the criterion for definedness uses an equality check. In terms of 

implementation we shall have to use the equality operation, at run-time, to verify 

particular expressions are defined. One consequence of this is that if the objects we 

are comparing are infinite or partial then the equality operation will not return a 

result. In turn this implies that we will be unable to give views of infinite or partial 

objects, if constraint (14) is to be checked at run time. 

There is an alternative to run time checking, and that is to use a sophisticated 

compiler or a theorem prover to verify the condition (14) statically. 

13.2. Verjfication 

We have already seen one effect of the introduction of views: we cannot treat 

defining equations simply as universally quantified equalities; we must check the 

well-formedness of expressions before applying equations. 

Wadler points to another difficulty in [lo, Section lo]: defining equations must 

meet a homomorphism condition before they may be used. This is crucial since 

otherwise the logic becomes inconsistent. This is in contrast with the mechanism of 

laws, as examined earlier in the paper. We showed there that even in the difficult 

situation of non-faithful functions we are able to perform program verification, and 

in the happier situation of faithfulness we are able to transfer results from the 

lawless to the lawful domian. 

The constraint mentioned by Wadler must presumably be verified before programs 

are executed. Again this will need support from a theorem proving system or a very 

“smart” compiler. 

14. Conclusion 

We have shown that the general laws mechanism is a very powerful one, and 

must be used with care. However, we have seen that the notion of faithfulness is a 

natural one, and in many situations we shall be able to use that criterion as a 

justification for the transfer of logical results from the lawless to the lawful type. 

Even when we look at a function which is not faithful, we find that our proofs 

can be aided by choosing faithful representatives of general functions-this notion 

was suggested by the proof which we saw in Section 12, in fact. 

The discipline suggested by the work we have discussed seems to be one that of 

“use faithful functions as much as possible”-these have the twin advantages of 

being independent of the laws (which is an aim of a software engineer keen to 

separate concerns as much as possible) and of carrying proof-theoretic information 

from the lawless type. 
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As Wadler mentions in [lo], we can think of laws as providing a view of an 

algebraic data type, whereas the general view mechanism allows a view of any type. 

On the other hand, as we saw in the previous section, views are unsuitable for 

maintaining data in a normal form, one of the intended uses of laws which we 

discussed in the introduction. The two features are therefore complementary and 

irredundant. 

As can be seen from the examples examined here and in [8, lo] both mechanisms 

have unforeseen features. Neither is a fundamental feature of a (lazy) functional 

programming language, yet we would argue that, especially in the case of laws, the 

techniques outlined here are ones which provide for their disciplined use. 

Appendix A. The finite definiteness of olists 

In this section we give the proof of 

Vx::olist’ ( findef (norm x) = True v norm x = i ) 

The proof proceeds by induction. The body of the universal statement is syntactically 

directedly complete [2], and so the universal statement will follow from the result 

for I, Onil’ and the induction step. The proof is obvious in the first two cases so 

we aim to show that 

( findef (norm (Ocons’ a x)) =True v 

norm (Ocons’ a x) = I ) 

on the basis of 

( findef (norm x) = True v norm x = I ) 

The cases that x is either -t or Onil’ are obvious, so we assume that x = Ocons’ b y 

for some b and y. 

norm (Ocons’ a x) 

= Ocons’ a (Ocons’ c z), -(a>c) 

= norm (Ocons’ c (Ocons’ a z), otherwise 

where 

Ocons’ c z = norm (Ocons’ b y) 

Now, if norm x = I then c will be _L and so the guard will fail, giving 

norm (Ocons’ a x) = I 

Similarly, if a is I, the guard will fail. Now, suppose that norm x # I and the guard 

is defined, then 

findef (norm x) = True 

with the consequence that 

findef z = True 



Lawfulfunctions and program verijication in Miranda 215 

This means that, in turn, 

findef (Ocons’ a z) = True 

If the guard is True then we have 

findef (Ocons’ a (Ocons’ c z)) = True 

which implies the result. On the other hand, if the guard is False then we need to 

conclude that 

findef (norm (Ocons’c (Ocons’a z)))=True 

For similar reasons to those above we have 

findef (Ocons’ c (Ocons’ a z))=True 

If we define the number of crossing points of a list x to be the number of pairs (i, j) 

with i<j and 

x!i > x!j 

then by an induction over the number of crossing points in lists of the same length 

as this list we can conclude the desired result. The reduction in the number of 

crossing points is due to the fact that the list is making progress to becoming ordered 

under the action of the normalising laws. 

This completes the proof. 

Appendix B. Lemmas from the cardinality theorem 

Lemma B.l. 

normal y = True =+ normal (Add a y) = True 

Proof. See proof of Lemma 12.1. 0 

Lemma B.2. 

normal x = True ,Y sta b x = True =S 

Add b x=Add’b x 

Proof. We consider two cases. If x = Empty’, then 

Add b Empty’ = Add’ b Empty’ 

by definition. Suppose that x = Add’ a y, then 

sta b x = True 
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implies that b<a, so 

Add b x = Add b (Add’ a y) 

= Add’ b (Add’ a y) 

= Add’ b x 

completing the proof. 0 

Lemma B.3. 

normal (Add’ b x) = True =? sta b x = True 

Proof. The proof is by induction on x. If x = Empty’, then the conclusion of the 

implication is true. Suppose instead that x takes the form Add’ a z and that the result 

is true for z. Assume that 

normal (Add’ b (Add’ a z)) = True 

This implies that 

normal (Add’ a z) = True (B.1) 

and that b<a. From the induction hypothesis and (B.l) we have 

sta a z = True 

The following lemma allows us to conclude that 

sta b z = True 

and combining this with b<a gives 

sta b x = sta b (Add’ a z) = True 

giving us the desired result. q 

Lemma B.4. 

b<c A sta c x = True 3 sta b x = True 

Proof. The proof is a simple induction over x, using the transitivity of the “less 

than” relation. q 

Lemma B.5. 

normal (Add’ b x) = True A b<a =3 

Add b (Add a x) = Add’ b (Add a x) 
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Proof. Lemma B.2 provides sufficient conditions for the consequent of the implica- 

tion to be true. We require that, under the assumption of the hypotheses of the 

implication, 

normal (Add a x) =True 

sta b (Add a x) = True 

Now, by the first hypothesis, we can deduce that 

normal x = True 

(B.2) 

(B.3) 

and so by Lemma B.1 we have (B.2). In order to deduce (B.3) we use that fact that 

sta* is a faithful function, together with the identity of sta and sta* to conclude that 

sta b (Add a x) = sta b (Add’ a x) 

= (b<a) & sta b x 

= sta b x 

since (b<a) = True. The first hypothesis implies by Lemma B.3 that sta b x = True and 

so we have (B.3), completing the proof. 0 

Lemma B.6. 

sta b y = True 9 member b y = False 

Proof. Both the hypothesis and conclusion are true in the case that x = Empty’. 

Assume the result for z-we aim to prove it for Add’ c z, on the assumption that 

sta b (Add’ c z) =True 

This means that 

sta b z 

and b<c. By induction the former gives us 

member b z = False 

and since b<c implies that (b=c) = False we have the rsult we wanted, by 

induction. 0 
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