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In this case report, we investigated the utility and practicality of passive intraoperative functional mapping of
expressive language cortex using high-resolution electrocorticography (ECoG). The patient presented here
experienced new-onset seizures caused by a medium-grade tumor in very close proximity to expressive lan-
guage regions. In preparation of tumor resection, the patient underwent multiple functional language mapping
procedures. We examined the relationship of results obtained with intraoperative high-resolution ECoG,
extraoperative ECoG utilizing a conventional subdural grid, extraoperative electrical cortical stimulation (ECS)
mapping, and functional magnetic resonance imaging (fMRI). Our results demonstrate that intraoperative
mapping using high-resolution ECoG is feasible and, within minutes, produces results that are qualitatively con-
cordant to those achieved by extraoperative mapping modalities. They also suggest that functional language
mapping of expressive language areas with ECoG may prove useful in many intraoperative conditions given its
time efficiency and safety. Finally, they demonstrate that integration of results frommultiple functionalmapping
techniques, both intraoperative and extraoperative, may serve to improve the confidence in or precision of
functional localization when pathology encroaches upon eloquent language cortex.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Precise localization of eloquent cortex facilitates optimal surgical
outcomes in patients with tumors, epileptogenic foci, or vascular abnor-
malities. Operative planning balances removal of pathologic tissue that
portends specific symptomatic morbidity with preservation of the
eloquent cortex necessary for maintaining an acceptable quality of life.
Historically, functional mapping has been conducted primarily with
electrical cortical stimulation (ECS) [1,2], but also with functional
magnetic resonance imaging (fMRI) [3], extraoperative (chronic) elec-
trocorticography (ECoG) [4–6], electroencephalography (EEG) [7,8],
magnetoencephalography (MEG) [9], or positron emission tomography
(PET) [10]. Each of these techniques carries inherent limitations that im-
pede widespread application in the approximately 111,000 patients
that undergo brain surgery for removal of a brain tumor or epileptogen-
ic focus each year [11].
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Electrical cortical stimulation currently stands as the ‘gold standard’
for functional mapping. The technique is procedurally simple and has a
relatively low cost. Its most notable limitation remains the extensive
amount of time required to conduct the procedure. This issue becomes
particularly apparentwhen ECS is performed under the time constraints
of an awake craniotomy in the operating room. In addition, active stim-
ulation of the brain with ECS can provoke after-discharges and seizures.
Iatrogenic seizures can increase patient morbidity as well as the
duration of mapping.

FunctionalMRI is anothermapping technique that has garnered avid
attention recently. Its primary advantage is its noninvasive nature and
excellent spatial resolution. However, it only indirectly evaluates neuro-
nal activity by measuring task-related BOLD changes [12,13]. Highly
vascularized malignant tumors can alter cerebrovascular hemodynam-
ics and BOLD patterns; hence, they may not accurately reflect eloquent
cortical function [14,15]. Furthermore, clinical application of fMRI for
real-time mapping is hindered by the extensive time and expertise
required for the requisite post hoc analyses.

Electrocorticography, another passive functional mapping modality,
is emerging and currently undergoing significant investigation. This
technique identifies changes in cortical activity in response to specific
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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language, motor, or cognitive tasks. Recording these changes in cortical
activity does not require application of electrical impulses to induce an
effect, thereby eliminating the risk of seizures. Electrocorticography
changes in the broadband gamma range (N60 Hz) are of particular
relevance in this context of functional mapping [16]. They represent
the average firing rate of neurons directly underneath the electrodes
[17–19] and are highly task-specific [20]. They have also been shown
to correlate well with the blood oxygen-level dependent (BOLD)
response detected by fMRI [21]. Recent advances in neural signal acqui-
sition [22,23] and processing [24] have provided the methodological
basis for mapping of cortical activity in real time [25]. Despite these ad-
vances, ECoG-based mapping predominantly occurs in the epilepsy
monitoringunit, remaining as an extraoperative endeavor.With few ex-
ceptions [26,27], the practicality and potential value of ECoG-based
mapping in the operating room remains largely unexplored, particularly
with investigation using high-resolution recordings. In this case report,
we test the feasibility of intraoperative mapping using real-time ECoG.

In summary, accurate and practical functional mapping in the oper-
ating room still faces challenges in contemporary practice. Mapping
based on ECoG promises rapidity, a high spatial specificity, and no in-
creased morbidity. Combining data obtained from ECS, ECoG, and fMRI
can provide complementary information that may be useful for surgical
planning of complex cases. In the present case, we mapped expressive
language function with ECoG using a high-density grid during an
awake craniotomy. We confirmed the location of frontal language
areas extraoperatively using fMRI, standard ECS mapping, and ECoG
mapping. We integrated and visualized the results, producing highly
detailed functional maps. These composite results suggested qualitative
concordance of eloquent expressive language cortex across the different
mapping modalities.

2. Case report

2.1. Initial presentation

The patientwas a 33-year-oldmale who presented after a motor ve-
hicle accident while experiencing a first time seizure. The patient had a
computerized tomography (CT) scan as part of his initial evaluation that
suggested a hypodensity in the left frontal lobe. Magnetic resonance
(MR) imaging revealed a nonenhancing left frontal mass (Fig. 1, left),
and MR spectroscopy characteristics supported a low-to-medium
grade tumor. Given the anatomic location of the tumor's proximity to
presumed Broca's area, the patient underwent fMRI anddiffusion tensor
Fig. 1. (Left) Preoperative axial T2-weighted FLAIRMR image on 1.5 T magnet demonstrating a
proximity of tumor to Broca's area, within 3–5 mm on postprocessed images.
imaging (DTI). The fMRI confirmed the close relationship of the tumor
to Broca's area (within 3–5 mm) with verb generation and object
naming tasks (p b 0.05, family-wise error correction) (Fig. 1, right).

The patient did not have any further seizures after the initiation of
levetiracetam, and he remained neurologically intact without any
focal deficits or aphasia. To comprehensively evaluate expressive lan-
guage cortex for an optimal postoperative outcome, the patient elected
to pursue a two-staged brain mapping procedure with the use of sub-
dural grids and ECS. Prior to surgery, the patient had neuropsychological
testing for baseline evaluation using the Wechsler Adult Intelligence
Scale WAIS-IV [28]. The patient gave informed consent for a protocol
thatwas reviewed and approved by the institutional review board of Al-
banyMedical College as well as the US ArmyMedical Research andMa-
teriel Command.

2.2. Stage 1 operation

The patient underwent implantation of an 8 × 8 cm silicon subdural
grid embedded with 64 platinum iridium electrodes of 4 mm diameter
(2.3 mm exposed) and interelectrode distance of 1 cm [PMT,
Chanhassen, MN] (Fig. 2, panels A and B). Contacts 1, 2, and 9 were
removed for better contour along the cortical surface. Contact 57 was
located most anteriorly, contact 64 most superiorly, and contact 8
most posteriorly (Fig. 3). A four-contact electrode strip was placed on
the skull to provide a ground for the clinical monitoring system. The pa-
tient tolerated the first stage well and was connected to a Nihon-
Kohden Neurofax video-EEG monitoring system [Tokyo, Japan] that
continuously recorded ECoG signals as well as accompanying clinical
behavior. To ensure integrity of clinical data collection, passive splitter
connectors simultaneously provided ECoG signals to eight optically iso-
lated and synchronized 16-channel g.USBamp amplifier/digitizer units
(g.tec, Graz, Austria) with signal sampling at 1200 Hz. Clinical review
of ECoG signals identified frequent left frontal spikes and spike and
wave discharges at contact 23.

2.3. Clinical mapping

On postoperative day 2, the patient underwent extraoperative func-
tional cortical mapping in the epilepsy monitoring unit (EMU) with
ECoG and ECS procedures. For ECoG mapping, the broadband gamma
signal at each contact location was measured and compared between
rest and task epochs to establish the statistical difference across these
tasks (see [29] for detailed methodology). The patient first rested
tumor in the anterior left frontal lobe. (Right) Preoperative fMRI on 3 T magnet indicating



Fig. 2. (A) Intraoperative photograph of left frontal lobe exposurewith standard 64-contact subdural grid. (B) Example of subdural grid used during the case, courtesy of PMT Corporation.
(C) Intraoperative photograph of high-density grid placed over eloquent cortex previously identified by the standard grid. (D) High-density 64-contact silicon grid used during the case.
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quietly for six minutes to establish a model of baseline ECoG activity.
The patient then performed several repetitive motor and language
tasks as instructed by visual cues: 1) solve Rubik's cube, 2) shrug shoul-
ders, 3) stick out tongue, 4) purse lips, 5) listen to a narrative, 6) gener-
ate verbs, and 7) imagine generating verbs. This ECoG paradigm
identified electrode contacts 11 and 12 (Fig. 3) as expressive language
nodes within a few minutes.

For the ECS procedure, we used a digital Grass S12X stimulator with
built-in stimulus isolation and constant current circuitry [Grass Tech-
nologies, Warwick, RI] to stimulate pairs of electrodes using a pulse
duration of 0.3 ms, variable frequencies between 20 and 50 Hz, current
ranging from 1 to 15 mA, and train durations of 5 s. Bipolar and
monopolar modalities were assessed with increasing current until
Fig. 3. Numbers represent electrode contacts of the standard subdural grid coverage. The
tumor margins are displayed as light blue. Electrical stimulation of contacts 11 and 12
(dark blue) caused speech arrest in Broca's area. Electrical stimulation of contacts 23
and 41 (red) caused an electrographic seizure; contacts 1, 2 and 9 (light gray) were
removed for better contour along the cortical surface.
after-discharges or a functional response was elicited, or the maximum
amount of currentwas reached at 15mA. Stimulation of contacts 11 and
12 with 10mA at 20 Hz rendered complete speech arrest, indicating el-
oquence. These nodes were confirmed on four separate occasions
throughout the procedure. Oral motor function was also identified. An
electrographic seizure was elicited with stimulation of contacts 23 and
41 during mapping; the patient was treated with 2 mg IV lorazepam,
1000 mg IV levetiracetam, and 500 mg fosphenytoin. Further mapping
was delayed for approximately 90min due to the stimulus-induced sei-
zure and subsequent postictal period.

2.4. Stage 2 operation

Five days after the initial subdural grid implantation, the patient
returned to the operating room for the second stage. Once the previous
craniotomy flap was reopened and the cortical surface was exposed
with good hemostasis, the standard subdural grid was replaced with a
high-density 64-contact silicon grid (PMT Corp., Chanhassen, MN),
measuring 2.5 × 2.5 cm embedded with platinum iridium electrodes
of 2 mmdiameter (1mm exposed) and with an interelectrode distance
of 3 mm (Fig. 2, panels C and D). To further refine the boundary of ex-
pressive language function, this high-density grid covered only the lan-
guage cortex previously identified by extraoperative ECoG and ECS
mapping. The patient was reversed from anesthesia for awake passive
mapping. Within minutes, intraoperative ECoG mapping using verb
generation and word repetition identified the most significant ECoG
changes at locations corresponding to contacts 11 and 12 of the original
standard subdural grid. These locations were outlined for preservation.
The patient tolerated the procedure very well and was induced back
under anesthesia for the remainder of the surgery.

2.5. Postoperative course

The patient experienced an excellent recovery and had very mild
issues of transient confusion. Permanent pathology revealed focal ana-
plasia WHO III in the setting of diffuse fibrillary astrocytoma WHO II.
The patient had adjuvant chemoradiation therapy. Postoperative
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neuropsychological testing (at 1 year) demonstrated a 28% decline in
verbal fluency and a slight decrement in recent memory/new learning
(although still within high average range). Surveillance imaging over
28 months has yet to demonstrate recurrence.

2.6. Coregistration of mapping techniques

The main results presented in this case report are the mapping re-
sults from fMRI, ECS, and extra- and intraoperative ECoG. They are sum-
marized in Fig. 4. For fMRI data acquisition, preoperative scans were
acquired on a Philips Ingenia 3 T scanner with an echo planar imaging
(EPI) sequence (80 scans, acquisition voxel size 3 mm isotropic, repeti-
tion time (TR) 3 s, echo time (TE) 30 ms, flip angle 90°, field of view
(FOV) 237 mm). Functional MRI data were preprocessed and analyzed
using statistical parametric mapping software (SPM8, http://www.fil.
ion.ucl.ac.uk/spm). Images were realigned and coregistered with an an-
atomical scan using normalized mutual information [30]. Statistical
analyses were performed on a single-subject basis, and therefore, no
smoothing was applied. A general linear model was estimated with
one regressor for verb generation (a 15 s box car for verb generation
blocks convolved with a standard hemodynamic response function);
data were corrected for low frequency drifts by a 128 s high pass filter
and corrected for serial correlations with a first-order autoregressive
model. Functional MRI results were rendered on the surface of the
cortex (Fig. 4, left) in similar manner as before [21,31], plotting any
activation up to 8 mm below the surface. Functional MRI activity was
plotted with a threshold of t(150) N 5.51, pFWEcorrected b 0.05.

We created a three-dimensional patient-specific cortical surface
brain model by submitting the preoperative high resolution MRI scans
to Freesurfer (http://surfer.nmr.mgh.harvard.edu). We identified the
stereotactic coordinates of the standard subdural grid using SPM8
Fig. 4. (Top left) Functional MRI showing increased BOLD activity (shown in yellow and oran
motor/premotor cortex and prefrontal cortex. ECS (white circles) caused speech arrest in B
electrode contacts of the standard extraoperative subdural grid. Results from extraoperative
Broca's area, precentral gyrus, supplementary motor/premotor cortex and postcentral gyr
diameter of each circle is proportional to the activity under the corresponding electrode conta
extraoperative ECoG-based and ECS mapping.
software (http://www.fil.ion.ucl.ac.uk/spm/) and custom MATLAB
scripts (The MathWorks Inc., Natick, MA), which coregistered the MRI
scans with the postoperative CT scans. The high-density subdural grid
contacts were coregistered with those of the standard subdural grid
using scalp fiducial markers, an intraoperative neuronavigation system
(BrainLab AG, Feldkirchen, Germany), and novel custom software [32].
The electrode locations were then projected onto a three-dimensional
brainmodel and customNeuralAct [33] software (Fig. 4, right) to render
activation maps of corresponding ECoG activity.

3. Discussion

This case report represents the first application of high-resolution
ECoG-based mapping in the operating room and demonstrates one of
the most comprehensive examples of multimodal functional mapping
to date. We mapped expressive language function in a patient using
four different modalities: ECS, extraoperative ECoG, intraoperative
ECoG, and fMRI. Recent technological advances enabled us to combine
the results into an informative display that facilitated comparison
across modalities. This comparison suggested qualitatively concordant
functional language maps. In particular, ECS and extraoperative ECoG
delineated identical critical language nodes using a standardized grid
coordinate system. The same locations were confirmed with intraoper-
ative high-resolution ECoG. Thus, our results highlight the value of
passive ECoG-based mapping in the extraoperative as well as the intra-
operative environment.

Electrical cortical stimulation currently represents the “gold stan-
dard” for functional cortical mapping even in the absence of standardi-
zation and validation by randomized controlled trials. Given the recent
technological advances, ECoG-based mapping offers the potential for
similar precision but with a greater safety profile, better patient
ge) in Broca's area, as well as auditory/Wernicke's area, precentral gyrus, supplementary
roca's area, adjacent to increased BOLD activity. (Top right) Small black dots represent
ECoG-based functional mapping (shown in green) demonstrated increased activity in

us. (Bottom) Results from intraoperative ECoG-based mapping are shown in red. The
ct. The largest circles identify locations that are qualitatively concordant with those from
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tolerability, and faster data acquisition time. Several studies have com-
pared themapping results of ECoGwith those of ECS, reporting sensitiv-
ities ranging from 0.43–1.0 and specificities of 0.72–0.94 for
sensorimotormapping [4,5,16,29,34,35]. However, evidence for concor-
dance of ECoG with ECS for language mapping is relatively sparse. In
their 2005 study of 13 patients, Sinai et al. reported a sensitivity of
38% and specificity of 78% for language mapping [35]. Miller et al. [36]
applied extraoperative ECoG in 7 patients to elucidate cortical areas
for expressive and receptive language. They reported a sensitivity of
89% and specificity of 66% for a noun-reading task and a sensitivity of
74% and specificity of 48% for a verb generation task when compared
with ECS. A case report of a 13-year-old patient with intractable epilep-
sy yielded sensitivity of 75% and 90%whenusing the ‘next-neighbor’hy-
pothesis for ECoG compared with ECS mapping for language function
[37]. Case reports in the intraoperative environment [26,27] have pro-
vided qualitative concordance between ECoG and ECS data, suggesting
that ECoG can facilitate more efficient ECS interrogation. Our case rein-
forces the practical advantage of ECoG for language mapping.

Comparing the concordance of ECS and ECoG proves difficult given
the fundamental differences in the approach of lesion-based mapping
versus physiologic-based mapping. Electrical cortical stimulation
“actively” disrupts cortical networks critical for a particular function
and only identifies those subsets of task-related cortical networks
whose lesion produces the most severe functional deficits, whereas
ECoG “passively” highlights all cortical networks involvedwith a partic-
ular task [38]. Another complicating factor arises from the comparison
of a single ECoG(+) site that exhibits a signal change in broadband
gamma to an ECS(+) site that is derived from pairwise electrical stimu-
lation. Ultimately, the most important aspect is the relative clinical util-
ity of each method. Establishing clinical utility requires standardized
preoperative and postoperative assessments in a large number of
patients. For ECoG, such larger assessments do not yet exist.

Electrical cortical stimulation and ECoG each have important limita-
tions for clinical application. Both modalities currently require awake
craniotomies or staged procedures and depend entirely on patient com-
fort and compliance. Staged procedures carry significant financial bur-
den as well as stress associated with a prolonged hospitalization in an
unfamiliar environment. The risk of infection increases with implanted
materials and duration of implantation. Patients assume all the surgical
risks of a second operation. The physical mapping with ECS is time and
labor intensive for the clinician and the patient. The appropriate stimu-
lation energy must be determined and then applied to each single grid
contact in an organized method. Electrical stimulation can cause pain
from activation of dural nociceptive afferents and general cephalalgia
[38]. Electrical cortical stimulation can produce after-discharges that
may summate into seizures with subsequent postictal periods that can
further delay mapping. Finally, ECS may produce inhibitory responses
that cannot readily be observed and may have variable propagation of
stimulation current due to individual anatomy and procedural differ-
ences [29,39]. In our case, the patient did have a seizure that prolonged
the mapping time by 1.5 h, increasing total mapping duration to 4.5 h.
Passively recorded ECoG incurs less risk of cephalalgia, reduces
the risk for iatrogenic seizures, and has dramatically shortened
mapping time since it can evaluate cortical activity from all electrodes
simultaneously.

As with ECS and ECoG, the concordance between ECS and fMRI
varies, with reported sensitivity and specificity measurements for lan-
guage mapping varying between 59%–100% and 53%–97%, respectively
[40–45]. Our case report demonstrated strong concordance between
fMRI, ECoG, and ECS for the language sites identified on the pars
opercularis but not aswell for the language sites on thepars triangularis.
Multiple issues can influence this mismatch on the pars triangularis.
First, we used a conservative fMRI threshold, and only the most robust
sites reached this threshold in the analysis (see Supplementary Fig. 1
that demonstrates BOLD activation in the pars triangularis when a
lower threshold is used). Second, blood flow artifacts can obscure the
fMRI signal, making it more difficult to measure in certain regions com-
paredwith others [14,15]. Lastly, previous fMRI studies often used a bat-
tery of language tasks to localize language areas [46], whereas we only
evaluated verb generation and word repetition. A more comprehensive
battery across modalities may provide better-matched results.

To our knowledge, this is the first instance of using a high-density
subdural grid in the intraoperative environment for language mapping.
With its superior spatial resolution, we were able to create a highly re-
fined boundary between the tumor and expressive language cortex.
These results are encouraging, but important questions are not yet re-
solved. How does this improved spatial resolution translate into im-
proved patient outcomes? What is the optimal electrode diameter size
and interelectrode distance for best spatial resolution that will provide
nonredundant recordings [47–49]? At what point will the spatial
resolution of high-density subdural grids exceed the operative resolu-
tion of neurosurgery with available techniques?

Even with mapping of Broca's area and the specific language nodes,
our patient still suffered a 28% decline in verbal fluency at one year. Can
we attribute this decline in verbal fluency as a postoperative deficit
(as seen in 3–13% of patients with brain tumor who undergo surgery
[50–52]) or to that of radiation necrosis potentiated by chemotherapy
(that afflicts 2.5–5% of patients [53])? Our patient had undergone
formal neuropsychiatric evaluation. Functional limitations or clinical
observations (as used in some other studies) would likely have missed
these subtle changes.

Functional language mapping during an awake craniotomy remains
a challenge. Here, we demonstrate that functional mapping with high-
resolution electrocorticography can readily be performed in the intra-
operative environment and that its results appear qualitatively concor-
dant with ECS. At this juncture, there is no universal standard of care for
functional language mapping. Taking into account the unique strengths
and limitations of eachmodality, no one technique is clearly superior to
the others. The rate of investigation into variousmodalities for function-
al brain mapping is at its zenith, with the impetus to improve clinical
outcomes for patientswith epilepsy, tumors, or vascularmalformations.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.ebcr.2016.03.003.
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