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COMPILE-TIME DERIVATION OF VARIABLE 
DEPENDENCY USING ABSTRACT INTERPRETATION 

K. MUTHUKUMAR AND M. HERMENEGILDO* 

D Traditional schemes for abstract interpretation-based global analysis of 
logic programs generally focus on obtaining procedure-argument mode 
and type information. Variable-sharing information is often given only the 
attention needed to preserve the correctness of the analysis. However, 
such sharing information can be very useful. In particular, it can be used 
for predicting run-time goal independence, which can eliminate costly 
run-time checks in AND-parallel execution. In this paper, a new algorithm 
for doing abstract interpretation in logic programs is described which 
concentrates on inferring the dependencies of the terms bound to program 
variables with increased precision and at all points in the execution of the 
program, rather than just at a procedure level. Algorithms are presented 
for computing abstract entry and success substitutions which extensively 
keep track of variable-aliasing and term-dependence information. In addi- 
tion, a new, abstract domain-independent fixpoint algorithm is presented 
and described in detail. The algorithms are illustrated with examples. 
Finally, results from an implementation of the abstract interpreter are 
presented. a 

1. INTRODUCTION 

The technique of abstract interpretation for flow analysis of programs in impera- 
tive languages was first presented in a sound mathematical setting by Cousot and 
Cousot [5] in their landmark paper. Later, it was shown by Bruynooghe [ll, Jones 
and Sondergaard [17], and Mellish [21] that this technique can be extended to flow 
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analysis of programs in logic programming languages. Specific algorithms for such 
global analysis in logic programs have been given by a number of researchers [e.g. 
[8, 18, 23, 26, 27, 2, 24, 19, 20, 11, 41). These schemes, mostly geared towards 
optimizing the sequential execution of logic programs, generally focus on comput- 
ing information about the arguments of predicates used in the program, such as (1) 
the mode of an argument, i.e., whether a particular argument of a predicate is 
instantiated on input or on output or both, and (2) the type of an argument, i.e., the 
set of terms that an argument is bound to when the predicate is called or when it 
succeeds. Variable sharing (or “aliasing”), i.e., the fact that unification can bind 
variables to other variables or to terms which in turn share variables, is “dealt 
with” in these methods in order to preserve the correctness of the approach, but it 
is not generally considered as an output of the analysis and is often computed in a 
very conservative way [6]. 

However, the variable-sharing information itself can often be of the utmost 
importance for a compiler. For example, such information can be used for 
compile-time optimization of backtracking [31. Knowledge of variable-sharing infor- 
mation also makes it possible to predict run-time goal independence, which is 
particularly relevant for a compiler which targets execution on a system which 
supports independent AND parallelism (IAP) (see, for example, [13, 15, 91 and their 
references for more details on this type of parallelism): in IAP subgoals in the body 
of a clause are executed in parallel provided they are independent, i.e., their 
run-time instantiations do not share any variables. As shown in [15, 131, this 
condition can be ensured by run-time checks on the groundness and independence 
of certain program variables.’ However, these checks can be expensive, increasing 
overhead and reducing the amount of speedup achievable through parallelism. 
Thus, it is of great advantage to eliminate as many checks as possible by gathering 
highly accurate information at compile time regarding the groundness and inde- 
pendence of the terms to which programs variables will be bound at run time. 
Furthermore, it is useful to have this information for all points in the program, 
rather than just at a procedure level. The inference of such information is the main 
subject of this paper.* Our main contributions are as follows: 

Starting with an approach for representing abstract substitutions (in the form of 
sharing information) suggested to us by Jacobs and Langen [161, we present 

‘Program variables are variables that are in the text of the given program. 
‘Due to the similarities between the search tree explored by a program executed in IAP and that of 

sequential execution [13], conventional abstract-interpretation techniques can be applied (with only 
minor modifications) to programs which are to be evaluated in IAP (Debray presents in[7] and analysis 
framework for other types of parallelism where the properties of IAP regarding the similarity with 
sequential execution don’t hold). In 1271 we reported some results obtained from an abstract interpreter 
for IAP constructed more or less along the lines of conventional systems, except for the techniques used 
to improve its efficiency. This interpreter is most apt at generating groundness information, and it was 
shown in [27] to be reasonably effective at reducing run-time checks. The approach presented in this 
paper is targeted at improving those results through better tracking of terms which are independent but 
not ground. 

‘Even though the representation that we use for abstract substitutions is essentially the same as in 
Jacobs and Langen [16], there are fundamental differences between our approach and theirs. Most 
importantly, our algorithm for abstract interpretation uses a top-down-directed bottom-up approach, 
while theirs uses a pure bottom-up approach [8, 19, 201. Consequently, we use a novel fixpoint 
computation algorithm which takes care of additional complexities brought about by the top-down- 
directed approach, as opposed to the conventional bottom-up tixpoint computation. 
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new abstract-unification algorithms which compute abstract entry substitu- 
tions and abstract success substitutions while extensively keeping track of 
variable-aliasing and term-dependence information. These algorithms can be 
used in isolation (if only variable-sharing information is to be the output of 
the analysis) or in combination with conventional abstract domains as a 
method for accurately keeping track of variable aliasing. 

We present and give a complete description of a new algorithm for performing 
top-down-driven, bottom-up fixpoint computation which avoids recalculation 
(by performing tixpoint computation over subsets of the program, rather than 
reanalyzing the whole program at each step) and uses approximations as 
seeds for convergence improvement. Its output includes abstract substitution 
information for all points in the program. While the essential ideas behind 
computation of fixpoints in the context of logic programs are understood, the 
formulation presented herein takes care of practical efficiency and correct- 
ness issues as well as many details which, to our knowledge, and particularly 
in the case of a top-down-driven algorithm, have not been described else- 
where. 

The algorithms are illustrated with examples. We assume that the reader is 
familiar with logic programming (and PROLOG to some extent) and the basic 
concepts of abstract interpretation of logic programs. However, the following 
section provides a brief overview of the process in order to introduce the notation 
and place in context the algorithms to be presented later. The rest of the paper is 
organized as follows: Section 3 introduces the concept of abstract substitution used 
in the paper. Sections 4 and 5 deal with abstract unification, respectively explaining 
how the abstract entry substitution for a clause and the abstract success substitu- 
tion for a subgoal are computed. Section 7 presents the fixpoint algorithm. Section 
8 illustrates the complete abstract interpretation algorithm through examples and 
presents results obtained from an implementation of our algorithm aimed at the 
detection of groundness and independence. Finally, Section 9 summarizes our 
conclusions and discusses suggestions for future work. 

2. ABSTRACT INTERPRETATION OF LOGIC PROGRAMS 

As mentioned previously, abstract interpretation is a useful technique for perform- 
ing a global analysis of a program in order to compute, at compile time, character- 
istics of the terms to which the variables in that program will be bound at run time 
for a given class of queries. In principle, such an analysis could be done by an 
interpretation of the program which computed the set of all possible substitutions 
(collecting semantics) at each step. However, these sets of substitutions can in 
general be infinite, and thus such an approach can lead to nonterminating compu- 
tations. Abstract interpretation offers an alternative in which the program is 
interpreted using abstract substitutions instead of actual substitutions. An abstract 
substitution is a finite representation of a (possibly infinite) set of actual substitu- 
tions in the concrete domain. The set of all possible terms that a variable can be 
bound to in abstract substitutions represents an “abstract domain”, which is usually 
a complete lattice or cpo of finite height (such finiteness required, in principle, for 
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termination of fixpoint computation), whose ordering relation is herein represented 
by “ L “. Abstract substitutions and sets of concrete substitutions are related via a 
pair of functions referred to as the abstraction ( (Y) and concretization (y) functions. 
In addition, each primitive operation u of the language (unification being a notable 
example) is abstracted to an operation u’ over the abstract domain. Soundness of 
the analysis requires that each concrete operation u be related to its corresponding 
abstract operation U’ as follows: for every x in the concrete computational domain, 
u(x) c r(u’(a(x)N. 

The input to the abstract interpreter is a set of clauses (the program) and a set 
of query forms. In its minimal form (least burden on the programmer) such query 
forms can be simply the names of the predicates which can appear in user queries 
(i.e., the program’s entry points). In order to increase the precision of the analysis, 
query forms can also include a description of the set of abstract (or concrete) 
substitutions allowable for each entry point. The goal of the abstract interpreter is 
then to compute in abstract form the set of substitutions which can occur at all 
points of all the clauses that would be used while answering all possible queries 
which are concretizations of the given query forms. It is convenient to give 
different names to abstract substitutions depending on the point in a clause to 
which they correspond. Consider, for example, the clause h :-p,, . . . , p,. Let hi and 
Ai+, be the abstract substitutions to the left and right of the subgoal pi, 1 I i I II, 
in this clause. See Figure l(b). 

Definition 1. hi and hi+, are, respectively, the abstract call substitution and the 
abstract success substitution for the subgoal p,. For this same clause, A, is the 
abstract entry substitution (also represented as Pentry), and A, + , is the abstract exit 
substitution (also represented as Pexit). 

Control of the interpretation process can itself proceed in several ways, a 
particularly useful and efficient one being to essentially follow a top-down strategy 
starting from the query forms.4 Several frameworks for doing abstract interpreta- 

~,,I1 P ~,“,,,,, 

A A 
Pl entry hl P1exit . . . . . . . Pm emry h, Pmexit $ ~1 12 ...... % pn %+I 

(a> @I 

FIGURE 1. Illustration of the abstract-interpretation process. 

4More precisely, this strategy can be seen as a fop-down-&&~ bottom up computation. As will be 
shown later, some degree of fixpoint, bottom-up computation is required for correctness in the presence 
of recursive predicates. A purely bottom-up analysis scheme is also possible [8, 19, 201. The advantage of 
the top-down-driven strategy is that it restricts the abstract computation to that required for the query 
forms given rather than that for all possible query forms. Note that query forms are routinely present in 
actual programs in the form of module entry-point declarations, so no extra burden need be placed on 
the user. Additional information from the user can, of course, focus the abstract computation even 
further and increase its precision. 
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tion in logic programs follow along these lines. One such framework is described in 
detail for example in [l]. In a similar way to the concrete top-down execution, the 
abstract interpretation process can then be represented as an abstract AND-OR tree, 
in which AND nodes and OR nodes alternate. A clause head h is an AND node whose 
children are the literals in its body p,, . . . , pn [Figure l(b)]. Similarly, if one of these 
literals p can be unified with clauses whose heads are h,, . . . , h,, then p is an OR 
node whose children are the AND nodes h,, . . . , h, [Figure l(a)]. During construc- 
tion of the tree, computation of the abstract substitutions at each point is done as 
follows: 

Computing success substitution from call substitution. Given a call substitution 
A,,,, for a subgoal p, let h,, . . . , h, be the heads of clauses which unify with p 
[see Figure l(a)]. Compute the entry substitutions /3 lentry,. . . , Pmentry for 
these clauses. Compute their exit substitutions p lexit, . . . , Pmexit as explained 
below. Compute the success substitutions AlSUCCeSS,. . . , Amsuccess correspond- 
ing to these clauses. The success substitution ASUCCeSS is then the least upper 
bound CLUB) of AlSUCCeSS,. . . , Amsuccess. Of course the LUB computation is 
dependent on the abstract domain and the definition of the c relation. 

Computing exit substitution from entry substitution. Given a clause h :- p, , . . . , p,, 
whose body is nonempty and an entry substitution A,, then A, is the call 
substitution for p,. Its success substitution A, is computed as above. Simi- 
larly, A,, . . . ,A,, + , are computed. Finally, A,, + 1 is obtained, which is the exit 
substitution for this clause. See Figure l(b). For a unit clause (i.e. one whose 
body is empty>, its exit substitution is the same as its entry substitution. 

Given this basic framework, it is clear that a particular analysis strategy needs to: 

define an abstract domain and substitution framework, and the g relation, 

describe how to compute the entry substitution for a clause C given a subgoal p 
(which unifies with the head of C> and its call substitution, 

describe how to compute the success substitution for a subgoal p given its call 
substitution and the exit substitution for a clause C whose head unifies with 

P. 

Such information represents the “core” of a particular analysis strategy. Sections 3, 
4, and 5 respectively address the corresponding definitions and algorithms for the 
approach presented in this paper. 

In addition to the three points above, there is, however, one more issue that 
needs to be addressed. The overall abstract interpretation scheme described works 
in a relatively straightforward way if the program has no recursion. Consider, on 
the other hand, a recursive predicate p. If there are two OR nodes for p in the 
abstract AND-OR tree such that 

they are identical (i.e., they have the same atoms), 

one is an ancestor of the other, and 

the call substitutions are the same for both, 
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then the abstract AND-OR tree is infinite and an abstract interpreter using the 
simple control strategy described above will not terminate. In order to ensure 
termination, some sort of fit-point computation is required. In order to support such 
tixpoint computation, memo tables [lo] are used, for example, in [S], and stream 
predicates are used in [26]. In this paper we propose a novel scheme for fixpoint 
computation within the context of abstract interpretation. This is described in 
Section 7. 

3. ABSTRACTION FRAMEWORK 

In this section, we describe the representation of abstract substitutions used in our 
abstract interpreter. As mentioned before, in the concrete interpretation the 
collecting semantics for a top-down execution of logic programs is usually given in 
terms of the sets of substitutions associated with each program point [l]. The 
traditional approach [l, 8, 181 to abstracting such sets of substitutions is to define 
an abstract domain and then to describe a method for constructing an abstract 
substitution corresponding to a set of substitutions. 

For example, the abstract domain used in [l] consists of three elements ground, 
free, and any. These elements respectively correspond to the set of all ground 
terms, the set of all unbound (free) variables, and the set of all terms. An abstract 
substitution is then defined as a mapping from program variables (of a clause) to 
elements of the abstract domain. For example, if X and Y are the program 
variables in a clause, then an abstract substitution at a point in that clause could be 
{X/ground, Y/free}. Th is abstract substitution actually represents the set of all 
substitutions in which X is bound to a ground term and Y is bound to a free 
variable. 

The approach used for defining abstract substitutions in this paper is entirely 
different. We are not per se interested in the set of terms that a program variable 
is bound to at a point in a clause. Rather, we are interested in the sharing of 
variables among the sets of terms that program variables are bound to.5 For 
example, let X and Y be the program variables in a clause. The abstract 
substitution in our abstract interpreter should tell us whether any variables are 
shared by the sets of terms that X and Y are bound to. 

We define the abstract substitution for a clause to be a set of sets of program 
variabZes in that clause, following an approach initially suggested in [ 161. Informally, 
a set of program variables appears in the abstract substitution if the terms to which 
these variables are bound share a variable. For the example clause of the previous 
paragraph, the value of an abstract substitution may be {{X],{X,Y)}. This abstract 
substitution corresponds to a set of substitutions in which X and Y are bound to 
terms tX and t, such that (1) at least one variable occurs in both t, and t, (this 
corrresponds to the element {X, Y]) and (2) at least one variable occurs only in t, 
(this corresponds to the element IX}). 

In a sense, the term abstract substitution may be a misnomer for such a data 
structure. The reason for such an objection would be that this data structure only 

5Note that this approach to abstracting substitutions is complementq to the traditional approach, 
i.e., it is possible to combine the two approaches and use abstract substitutions which provide 
information about both sharing between program variables and the terms that they are bound to. 
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abstracts a set of substitutions; it does not (explicitly) tell us about the set of terms 
a program variable is bound to in a set of substitutions (which the conventional 
abstract substitutions do, as discussed above). Nevertheless, we use the term 
abstract substitution for the data structure introduced above, since it does abstract 
the information contained in a set of substitutions. 

Before formally describing the representation for abstract substitutions, we 
review some basic definitions about substitutions. A substitution for the variables 
of a clause is a mapping from the set of program variables in that clause (Pvur) to 
terms that can be formed from the universe of all variables (Uvur> and the 
constants and functors in the given program and query. The domain of a substitu- 
tion 0 is written as dam(8). We consider only idempotent substitutions. The 
instantiation of a term t under a substitution 8 is denoted as ttl, and vur(t6) 
denotes the set of variables in t0. 

Let f3 be a given substitution for a clause C. A program variable X, which is in 
C, is ground under this substitution if uur(Xf3) = 0. Program variables X and Y, 
which are in C, are independent if uur(X8) f~ uur(YB) = 0 [13]. We say that 
variable V occurs in program variable X under the substitution 8 if VE uur(X8). 
Clearly, a program variable X is ground under a substitution 8 if there is no 
variable V which occurs in X under 8, and program variables X and Y are 
independent if there is no variable I/ which occurs in both of them under 8. 

Below, we formally define the abstract substitution ~46) which corresponds to a 
concrete substitution 0, and later we extend it to sets of substitutions. The basic 
idea behind this definition is as follows: a set S of program variables appears in 
JZ?( 0) iff there is a variable V which occurs in each member of S under 8. Thus, a 
program variable is ground iff it does not appear in any set d(e), and two program 
variables are independent iff they do not appear together in any set in ~(6). 

Definition 2. Subst is the set of all substitutions which map variables in Pvur to 
terms constructed from variables in Uvur and constants and functors in the 
given program and query. 

Definition 3. Asubst is the set of all abstract substitutions for a clause, i.e., 
Asubst = &dPvur)), where &S) denotes the powerset of S. 

Definition 4. The function Occ takes two arguments, 6 (a substitution) and U (a 
variable in Uvur), and produces the set of all program variables X E Pvur such 
that U occurs in var(Xe), i.e., 

occ(e,u) ={xIx~dom(e) A U~vur(Xe)}. 

Definition 5 (Abstraction of a substitution). 

S? : Subst + Asubst , 

d(e) ={occ(e,u)Iu~~Uvur}. 

Example. Let 8 = (W/u, X/f(A,, A,), Y/g(A,), Z/A,). Then Occ(8, A,) = {Xl, 
Occ(8, A,) = {X, Y}, Occ(8, A3) = {Z}, and Occ( 8,U)= 0 for all other U E Uvur. 
Hence, tie) = (0, {Xl, {X, Yl, W. 
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The abstraction function ti is extended to sets of substitutions as follows: 

Definition 6 (Abstraction of a set of substitutions). 

cy : Q( Subst) * Asubst , 

a(0) = u d(e). 
0E@ 

Essentially, a! constructs the union of the sharing information found in all 
substitutions in 0. The corresponding concretization function is: 

DeJinition 7 (Concretization). 

y : Asubst + @( Subst) , 

y(S) ={t#~Subst A&‘(O) GS}. 

If a clause has N program variables, there can be at most 22N different abstract 
substitutions for it. A partial order can be defined on these abstract substitutions: 
A, L A, iff y( A,) G y(h,). It can be easily shown that A, L A, iff A, G A,. Since the 
set of all abstract substitutions for a clause is finite and is closed under union, it 
follows that the least upper bound of two abstract substitutions is equal to their 
union, and the greatest lower bound is equal to their intersection. 

We can make the following observations from the above definitions: 

Since the lattice of abstract substitutions for a clause is finite and hence has a 
finite depth, we are assured that lixpoint computation (discussed in Section 7) 
terminates [ 11. 

For a given clause, the top element in the lattice is the powerset of all the 
program variables in that clause. 

The bottom element in the lattice for all clauses is 0. The meaning of this 
abstract substitution can be explained as follows: suppose a clause has a 
subgoal sg which cannot be satisfied under its abstract call substitution A, 
i.e., sg fails. The abstract success substitution for sg will then be 0. 

The abstract substitution which makes all program variables in a clause ground 
is {01. 

0 is an element of every nonempty abstract substitution A. This is a conse- 
quence of the fact that every concrete substitution 8 has a finite range. 

Since the abstract interpreter manipulates only abstract substitutions and since 
these abstract substitutions do not have complete information about the term each 
program variable is bound to, approximations are introduced in our computations 
of abstract substitutions. We require that these be safe approximations. 

Definition 8 (Safe approximation). Suppose the concrete set of substitutions that 
occurs at a point in a clause is 0 and the abstract interpreter computes the 
abstract substitution at this point as A. Then A is a safe approximation to the 
actual abstract substitution at this point if, whenever variables X and Y are 
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dependent according to at least one substitution in 0, there is a set S E A such 
that XE S and YES, i.e., the abstract substitution should capture all the 
sharing information. Similarly, if a variable X is ground according to A, it should 
be ground according to all substitutions in 0. 

Thus a computed abstract substitution which is a safe approximation to the 
actual one is allowed to be conservatively imprecise: it can indicate that two 
variables are dependent when actually they are independent according to the 
concrete set of substitutions. Similarly, a variable can be nonground according to 
such an abstract substitution even if it is ground according to the concrete set of 
substitutions. Therefore, the sharing information in such an abstract substitution is 
characterized as potential sharing. All the abstract substitutions that are mentioned 
in subsequent sections of this paper are conservative abstract substitutions, i.e., 
they are safe approximations to the actual abstract substitutions. 

3.1. Other Definitions 

In this subsection, we present some definitions and results that are used in Sections 
4 and 5. 

Given a set of program variables S and a subgoal predb,, . . . , u,), 
pos(pred(u,, . . . , IL,,), S) gives the set of all argument positions of this subgoal in 
which at least one element of S occurs. 

Dejinition 9. 

pos(pred(cq,..., u,), S) = (ilS II var( 2.q) # 0). 

Given a subgoal pred(u,, . . . , u,> and an abstract substitution A, the function 
STpredCu,,..., u,J, A) computes the dependencies among the argument positions of 
this subgoal due to A. This is expressed as a subset of the powerset of (1,. . . , n} 
(similar to representing an abstract substitution as a set of sets of program 
variables). 

Definition 10. 

g(pred(u,,..., un), A) = {pos( pred( u,, . . . , u-n), S)lS E A]. 

Example. Let n =2, u1 =f(X,Y>, u2 =g(Y,Z), and A={0,{X),{Y},{X,Z)}. 
Then 

pos(pred(f(X,Y),g(Y,Z)),0) =0, 

pos(pred(f(X,Y),g(Y,Z)),{X}) = {I}, 

pos(pred(f(X,Y),g(Y,Z)),{Y)) = {1,2}, 

pos(pred(f(X,Y),g(Y,Z)),{X,Z}) = {I,2}. 

Therefore, ~(pred(f(X,Y),g(Y,Z)), A) = {0,{1),{1,2)). 

Definition 12 (Closure under union). For a set of sets SS, the closure SS* of SS is 
the smallest superset of SS that satisfies S, E SS* A S2 E SS* * S, U S, E 5’S*. 
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Proposition 1. Let (T and p be two concrete substitutions, whose domains are Pvar 
and Uvar respectively. Let A be an abstract substitution such that &‘(a) E A. Then 

&la O l-4 dornclr)) c A*, where 1~ 0 I_LI do,,,(,,) indicates the restriction of u 0 p to the 
domain of cr. 

PROOF. We note that 

Occ(la o I-&m(U), X) = u Occ(a,Y). 
XE uar(Y)L) 

Since _~&a)={Occ(a,U)lU~ Uvar), we have ~&la ~pld~~(~))~(ti~))* GA*. 
0 

Corollary 1. Let Acal, and ASUCCeSS be the abstract call and success substitutions for a 
subgoal sg, respectively corresponding to acall (the set of all its call substitutions) 

and @S”ixSSS (the set of all its success substitutions). Then A c A&. S"C%SS - 

PROOF. For each I&,, E Oca,,, there exists a OSucceSS E OSUCCeSS and a substitution p 
(this is the substitution obtained by “solving” the subgoal sg) such that $UCCeSS = 

I&,,, 0 PL~(B,,,,). Therefore, 

A SUCCeSS = a ( @S”CCeSS 1 
= U 4 4”cceSS) 

%mxss E @S”CCesb 

Corollary 2. Let Acal, and ASUCCeSS be as in Corollary 1. Then 9(sg, ASUCCeSS) G 

(9a(sg, A,,,,))*. 

PROOF. From Corollary 1 we get A c(S(3,~ A,,,,(S = U Ji)j. We observe S"CCeSS - 
that pos(sg, U iSi) = U ipos(sg, Si). Therefore, 

PC sg 2 Less 1 = (w(sg4IS E Less} 

c {Pos(sg7 $.J si)/3s, E “call] 
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Definition 22 (Projection). Let p be an abstract substitution for a subgoal sg, and 
S,, be the set of program variables in this subgoal. The projection of p on sg is 
defined as the abstract substitution (SlS = S’ n Ssg, S’ E ~1. 

Corollary 3. Let the subgoal sg (with a projected abstract call substitution A) be unified 
with the head hd of a clause C. The abstract entry substitution for C, Pentry, satisfies 
the condition 9a(hd, PentrY) 5 (9(sg, A))*. 

PROOF. Let hunify(sg, hd) be the abstract substitution for sg after its unification with 

hd. After unification, the dependencies among the argument positions are the same 
for both sg and hd, since they have been instantiated to the same term. Therefore, 

p(hd, &try) =9&y *unify(sg,hd) 1. By arguments similar to the proofs of Corollaries 
1 and 2, it can be shown that 9D(sg, hunLfy(sg,hdJ L (9(sg, A))*. q 

Unless otherwise noted, all substitutions referred to in the rest of this paper are 
abstract substitutions. 

4. COMPUTING THE ABSTRACT ENTRY SUBSTITUTION 

In this section, we describe an algorithm to compute the (abstract) entry substitu- 
tion for a clause C given a subgoal sg (which unifies with the head hd of this 
clause) and sg’s (abstract) call substitution. 

If the program variables in hd belong to a set Shd, then a consercatiue entry 
substitution for this clause would be ,&Shd). But this is too pessimistic an estimate, 
since it says that every program variable in hd is potentially dependent on every 
other program variable. To get a more accurate estimate, we determine which 
program variables in S,, are ground and try to reduce the sharing information in 
the entry substitution. An algorithm for performing this task is given in Section 4.1. 
Section 4.2 illustrates this algorithm with an example. This algorithm can be 
summarized as follows: 

Pet$orm abstract unification. Do a term-by-term unification for sg and hd, and 
determine the potential sharing information between the program variables 
in sg and hd. This is done in steps 1 through 3. 

Propagate groundness information. A program variable in Shd is ground if it is 
unified with a ground term in sg. This term could be ground either because 
the program variables in it are ground in sg’s call substitution, because it 
does not contain any program variables, because some of its program vari- 
ables are ground due to unification with terms in hd, or because of a 
combination of the above. This is done in steps 4 through 6. 

Apply independence information in sg’s call substitution. Take the remaining 
program variables (which are potentially nonground) in S,,. Form dependen- 
cies among them based on the results of abstract unification and groundness 
analysis. Eliminate some of these dependencies, based on the information in 
sg’s call substitution. This is done in steps 7 through 10. 
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4.1. Algorithm 

Let the set of program variables which occur in sg be Sss = (X,, X,, . . . , X,1. Let 
sg =pred(s,, s2,. . . , sn), and the head hd (which is umfiable with sg> be hd = 
predct,, t,, . . ., t,). Let the set of the program variables in hd be S,, = {Y,, Y2,. . . , Y,}, 
and the set of program variables which do not occur in hd but occur in the body of 
the clause of hd be {YP+i,..., Y,). We assume6 that S,, n {Y,, . . . ,Y,) = 0. Let Acal, 
be the call substitution of the subgoal sg. Below we describe the algorithm for 
computing the entry substitution Pentry for the clause C = hd :- body. 

1. Projection. Compute A by projecting Acal, onto the set Ssg, i.e., 

A + {SlS = (S’ n Ssg), S’ E A,,,,}. 

A contains all the potential sharing information among program variables 
in sg. 

2. Normalize unij2cation equations. For each pair of terms si, ti, 1 pi in, 
normalize the equation si = ti so that it is replaced by a set of equations 
Z = Term,, Z E S,, U S,,. Form the set ?/ as follows: 

Yzc + {(Z, Set,) ISet, = var( Term,), Z = Term, is a normalized equation}. 

3. Grouping. For each Z such that (Z, Setlz), . . . , (Z, Setkz) are elements of 
%!‘, replace these elements with (Z, {Set lz, . . . , Setk,}). The presence of this 
element in ?J means that, due to the unification of sg and hd, the program 
variable Z is bound to k different terms, respectively containing the sets of 
program variables Set 1, , . . . , Setk, . 

4. Initialize the set of ground program variables. Let G denote the set of 
program variables in sg and hd that are ground. Initialize G as follows: for 
all (Z, SS,) E % such that 

0 E SS, (i.e., Z is bound to a ground term due to the current unification), 
or Z belongs to the set S,, and is ground according to A, add Z to G. We 
also maintain a queue L of ground program variables, whose groundness 
has not been propagated to other program variables. Initially L contains 
the same elements as G in some order. 

5. Groundness propagation. Repeat until the queue L is empty: 

(a> Dequeue Z from L. 
(b) Let Gl + (WIWE G, (Z, SS> E M, S E SS, WE S). Update G + G U 

Gl. Also, enqueue the elements in Gl to the queue L and remove 
(Z, SS) from ‘?J (this step ensures that the “groundness” of Z is 
transmitted to all the program variables that occur in the terms that Z 
is bound to). 

(c) For all W, S, SS such that (W, SS> E 2Y, S E SS, and Z E S, remove Z 
from S. If S becomes an empty set and if W is not in the set G, 

6This assumption is valid owing to renaming of variables in clauses. 
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enqueue W in the queue L and add it to the set G (this step ensures 
that occurrences of Z are removed from the RHS of the unification 
equations). 

6. Update A: A + {SlS E A, S f~ G = 0). This is an update of the call substi- 
tution A to reflect the fact that some variables in S,, have become ground 
due to unification of sg with hd. 

7. Potential-dependency graph formation. Build an undirected graph G,, 
which will reflect potential sharing between instantiations of program 
variables. Let G,, = (V, E), where V= (S,, u S,,) - G and an edge be- 
tween two vertices indicates a potential sharing between program variables 
represented by the two vertices. E = El U E2, where El and E2 are 
computed as follows: 

El +- {(Xi, Xj>lXi E S, Xi E S, S E A, i #j} (in this step, we carry over the 
sharing information between program variables in A to the graph GsT). 
E2 + {(W, Z)l(W, SS) E %!, Z E S, S E SS) (in this step, we carry over the 
sharing information due to unification to the graph G,,). 

8. Graph partitioning. Let S,, - G be partitioned into mutually disjoint sets 
HP,,..., HP, such that yi and 5 belong to the same partition if and only if 
there is a path between them in the graph GsT. 

9. Form a first approximation to Pentry: 

P+ ; @(HP,). 
i=l 

It is clear that the entry substitution Pent,.,, for the clause C is a subset of 

Pa 

10. Prune p down to form Pentry. p may contain some sharing information 
among the arguments of the subgoal predicate that is not compatible with 
A. In this step, we remove such “spurious” sharing information from p. 
Consider ~%sg, A). This gives the sharing information among the argu- 
ments of sg due to the abstract substitution A. By unifying sg with the 
head hd of the clause C, the new sharing among the arguments of this 
subgoal can only be a subset of (9(sg, A))*. This is proved in Corollary 3 
(Section 3). We take advantage of this fact in “pruning” down p. Let 
Phd + {SlS E p, pos(hd, S) E (9(sg, A))*}. The entry substitution for the 
clause C is Pentry = ( P/J u ccr,, 11,. . * , IY,H. 

Proposition 2. Given a subgoal sg whose abstract call substitution is Acal, and a clause 
C whose head hd unifies with sg, let Pentry be the abstract entry substitution for C as 
computed by the above algotithm. Then Pentry is a safe approximation in the 
following sense: In the concrete interpretation, let R,,,,, be the set of entry 
substitutions for clause C computed from sg’s set of call substitutions y( Acal,). Then 
n entry c Y( &try)* 

PROOF (Outline). The main proof burden is to show that the dependencies among 
the program variables in hd induced by the dependencies in Acal, and by the 
unification of sg with hd are safely computed. This is precisely done when the 
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potential-dependency graph is formed. Firstly, the dependencies due to unification 
are computed in steps 2 and 3. Secondly, the program variables that are bound to 
ground terms due to unification and Acal, are identified in a straightforward 
manner in steps 4, 5, and 6. Now the potential-dependency graph, which shows 
potential dependencies among its possibly nonground variables, is formed. Two 
variables are potentially dependent iff there is a path between them, i.e., they are 
dependent according to Acal, or they are dependent due to unification or both. 
Consider a partition P in this graph. The powerset of P describes all possible 
dependencies among the variables of P. Therefore, in step 9, we form a first 
approximation to Pentry by taking the union of the powersets of all partitions 
(restricted to variables in S,,) of the potential dependency graph. However, we can 
refine this value of Pentry further by removing some spurious dependencies in it by 
using Corollary 1 of Proposition 1. This is done in step 10. The final value of Pentry 
as computed by this algorithm is thus a safe approximation. 0 

4.2. An Example 

We illustrate the above algorithm with the aid of an example: 

The subgoal sg: pred(X,,f(X,,X,),X,,g(X,),f(X,,h(X,)),X,) 
The head hd (of clausec): pred(p(Y,), Y,,q(Y,, I’,), Y4,fMY5),Y6), Y6) 
The calling substitution Acal,: 10, m,1, cq, &I, G,, x,, x,1, IX,, X,)1 

Here S,,=(X,,X,,X,,X,,X,) and S,, = (Y,,Y,,Y,,Y,,Y,,YJ. Let (Y,,Y,J be 
the set of variables in the body of the clause C that do not occur in its head hd. In 
the following, we illustrate how Pentry, the entry substitution for the clause C, is 
computed given the above information: 

1. Projection. A = (0, (X,1, (X,),(X,, X,1, IX,, X,)1. 
2. Normalize unijication equations. 

g= (~~~~~~~~~~(~~~~~~~~~~~~~~,~I~~~Y,~~~ 

(r,,IX,}),(X,,{r,}),(Y,,IX,}),(Y,,{X,J)J. 

3. Grouping. In this step we simplify % by collecting together tuples which 
have the same LHS: 

g= ((X,,IrY~>}),(Y2,{{X2,X4}}),(X3,I(Y3,Y6}}), 

(r,,{{X3l}),(X4,I{y5})),(y67{{X4},(X5}})1. 

4. Initially, G = (X,) and the queue L contains only one element, X,. 
5. Groundnesspropagation. The queue L contains X,, Y,, Y, at various points 

during this step. After this step, G = (X,, X,, Ys, Y,} and 

g= {(X,,I{Y,}l),(Y*,{{X,l}),(X,,{{Y,)}),(Y,,I{X,}J)J. 

6. Update A. A = (0, ix,), LX,}, {Xl, XJI. 
7. Potential-dependency graph formation. The graph G,, = W’, E), where V = 

IX,, X2, X,, Y,, Y,, Y,, Y4) and E = {(XI, X2), (XI, Y,), 
(X,,Y,),(X,,Y,),(X,,y,)). 

8. Graph partitioning. The set S,, - G is partitioned into two sets, (Y,, YJ 
and (Y,, Y,). 
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9. Taking the union of the powersets of the above partitions, we get 

P= {0,{Y,},{Y,},{Y,,Y,},{Y,J7(Y,},{Y,,Y,}J. 
IO. Prune p down to form Pentry. s%g, A) = I0,11), 1I,21, (3,41), and we have 

pos(hd, (Y,lI = 111, pos(hd, {Y*l) = (21, po&zd, {Y,, Y*l) = 11, 2), 
podhd, {YJ) = (31, pos(hd, (Y41) = 141, and pos(hd, {I’,, 6)) = (3,4I. It is 
clear that {Y,},(Y,},(Y,) can be removed from /3. To this pruned-down /3 
we add IY,) and IY,) to get Pentry = (0, (Y,J, (Y,, Y,J, 
w,, YJ, W,L W*H. 

5. COMPUTING THE ABSTRACT SUCCESS SUBSTITUTION 

In the previous section, we described an algorithm for computing the entry 
substitution p,,,, for a clause C = hd:- body, given a subgoal sg (which is 
unifiable with hdj and sg’s call substitution Acal,. In this section we describe an 
algorithm to compute the success substitution Asuccess for sg, given the exit 
substitution Pexit for the clause C, i.e., the substitution at the “rightmost” point of 
the clause C. This algorithm makes use of the abstract unification information 
computed in the previous algorithm. Also, the sets of variables S,, and S,, that are 
used here will be the same as in Section 4.1. 

If peXi, = 0 (i.e., the exit substitution is I , indicating that clause C didn’t 
succeed), then obviously ASUCCeSS = 0. Else, we execute the algorithm in the follow- 
ing section. Broadly, the various steps in this algorithm can be explained as follows: 

First we project the exit substitution onto the set of program variables in hd 
(step 1). We then check if any of these program variables is ground according 
to the exit substitution but was not ground according to the entry substitu- 
tion. These variables became ground during the execution of the body of the 
clause C. We propagate the groundness of these variables to the appropriate 
variables in sg (steps 2 and 3). 

We then compute the potential dependencies among the program variables in sg 
by forming a dependency graph as before and taking the union of the 
appropriate powersets of program variables in sg (steps 4 through 6). 

Some of these dependencies may be spurious, i.e., (1) they may not agree with 
the call substitution of sg or (2) they may not agree with the dependencies 
among the arguments of sg induced by the exit substitution of the clause C. 
These spurious dependencies are removed (step 7). 

What we have now is the projection of the success substitution of sg on its 
program variables. This is extended to all the program variables in the clause 
of sg (step 8). 

5. I. Algorithm 

1. Projection. Compute /3’ by projecting Pexit onto the set S,, (the set of 
variables in the head hd), i.e., 

P’ @ {SIS = (S’ n S,,), S’ E Pe,i,)* 
p’ is effectively all the information from peXi, that is used in this algorithm. 
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2. Groundnesspropagation. Start with the values of G, %‘, and A at the end of 
step 6 of the previous algorithm. Let G2 + (212 E Shd, Z P G, VS(S E p’ 
=j Z @ S)}, i.e., G2 contains new ground program variables in hd that were 
not ground according to p. Update G + G U G2. Also, enqueue the ele- 
ments of G2 to the queue L. This queue is used in the same manner as in 
the algorithm in Section 4. If L is empty, then go to step 4. Else, execute 
the groundness-propagation step (step 5) of the previous algorithm. 

3. Update A. Execute step 6 of the previous algorithm. 

4. Potential-dependency graph formation. Execute step 7 of the previous algo- 
rithm. Let E3 + {(Y,,q)lyi ES, q E S, S E p’). E3 contains the new shar- 
ing information obtained from p’. Update E + E u E3. 

5. Graph partitioning. Let S,, - G be partitioned into mutually disjoint sets 
SP 1,. . . , SP, such that Xi and Xi belong to the same partition if and only if 
there is a path between them in the graph G,,. 

6. Form a first approximation to the projection of ASUCCeSS on sg: 

A’ * b p(SPJ. 
i=l 

It is clear that ASUCCeSS n S,, is a subset of A’. 

7. Prune A’ down to get the projection of ASUCCeSS on sg. A’ may contain some 
sharing information among the arguments of the subgoal predicate that is 
not compatible with A and with p’. In this step, we remove such “spurious” 
sharing information from A’. 

Consider 9(hd, Pexit). This gives the sharing information among the argu- 
ments of hd (and hence of sg) due to the abstract exit substitution pexit for 
the clause C. It is clear that the sharing information among the arguments 
of sg induced by ASUCCeSS n S,, (and hence ASUCCCSS) has to be the same as 
well. Therefore, any element in A’ that leads to an argument sharing that is 
not in 9a(hd, Pcxit) must be removed. 
Also, as discussed in Section 3 (Corollaries 1 and 21, the successful execu- 
tion of the subgoal sg can only produce a success substitution which is a 
subset of A*. Therefore, any element of A’ that is not in A* must be 
removed. 

These steps are summarized as follows: 
A’ + {SlS E (A’ n A*), pos( sg, S) E9( hd, Pexit)}. 

8. Compute ASUCCeSS from A,,,, and ASUCCeSS n S,,. Partition Acall into two sub- 
sets Al,,,, and A2,,,, as follows: Al,,,, contains only those elements S such 
that S n S,, = 0; A2,,,, = Acal, - Al,,,,. Then 

A S”CCeSS = (SIS E (A2ca,,)* A (SnS,,) E A’} u Al,,,,. 
We state a proposition similar to the previous one. It essentially says that ASUCCeSS 

is a safe approximation to the actual success substitution for the subgoal S,,. 

Proposition 3. Given a subgoal sg whose abstract call substitution is A_,,, a clause C 
whose head hd unifies with sg, and a safe abstract exit substitution Pexit (which is 
compatible with Pen try as computed by the algorithm of Section 4, i.e. Pexit c p,*,,,> 

for C, let ASUCfeSS be the abstract success substitution for sg computed using C and 



DERIVATION OF VARIABLE DEPENDENCY 331 

the above algorithm. Then ASUCCeSS is a safe approximation in the following sense: In 
the concrete interpretation, let SISUCCeSS be the set of success substitutions (computed 
using the clause C) corresponding to the set of call substitutions y( A,,,,) and to exit 
substitutions y( ~3,,~,). Then R = Y(AS”CW_SJ S”CCeSS - 

PROOF (Outline). The argument for the correctness of this proposition is very 
similar to the last one. p ‘, which contains all the relevant sharing information (due 
to Pexit) among the program variables in hd, is correctly computed in step 1. The 
groundness and sharing information in /3’ is then conservatively transmitted to the 
program variables in sg in steps 2 to 4. The potential-dependency graph computed 
by the previous algorithm is enhanced by the new sharing and groundness informa- 
tion (if any) in p ’ in step 5. In step 6, a conservative estimate of the projection of 
A SUCCeSS on sg is computed. Some of the sharing information thus computed may be 
spurious. It may not agree with (1) the sharing information in Acal, and (2) the 
argument sharing in hd due to p’. Such spurious sharing information is removed 
in step 7. Finally, ASUCCeSS is conservatively computed in step 8. q 

5.2. An Example 

We illustrate the above algorithm by a continuation of the previous example. The 
subgoal sg, the head hd (of clause C), and the call substitution A,,,, (for sg) are as 
before. Let @exit = 10, IY,, Y,), {Y,, YJ). 

1. 
2. 

3. 
4. 

5. 

6. 
7. 

8. 

Projection. p’ = (0,{Y,},(Y,,Y,}}. 
Groundness propagation. From step 6 of the previous example we get 
G = IX,, X,9 Y,, Y,), +?J = 1(X,, {{Y,))), (Y*, {1X,))), (X,, 
({Y,))), (Y,, {IX,)))), and A = {0, IX,), {X,1, {X,, XJ). After the execution of 
this step, we get G = {X,, X,, X,, Y,, Y,, Y,) and % = 
I(X,,~(Y,~~),(X,,~IY,~)>(r,,~~X,~))l. 
Update A. A = {0, IX,), IX,)). 
Potential-dependency graph formation. G,, = (V, E), where V = 
(X,,X,,Y,,Y,,YJ and E={(X,,Y,),(X,,Y,),(X,,Y,),(Y,,Y,)). 
Graph partitioning. The set S,, - G has two elements (X, and X,) and two 
partitions (IX,) and IX,)). 
Thus, we get A’ = (0, IX,), (X3)) 
Prune A’ down to get ASUCCeSS f~ S,,. There are two nonempty set elements in 
A’, which also belong to the set A. Therefore they are also in the set A*. 
Moreover, pos(sg, IX,)) = {l) and pos(sg, IX,)> = {3,4). These belong to the 
set 9’D;(hd, Pexit) = 1{1),{3,4)). Thus, no element is removed from A’. 
Compute ASUCCeSS from Acall and ASUCCeSS n S. Al,,,, = {0,IXJ) and A2,,,, = 
{IX,), 1X,), 1X,, XJ, IX,, X,, X,)). From this, we compute ASUCCeSS = 
(0, (X,1, {X,1, {X,1). 

6. OPTIMIZATION OF THE COMPUTATION OF SUCCESS 
SUBSTITUTIONS IN SPECIAL CASES 

As mentioned in Section 2, the algorithms described in Sections 4 and 5 can 
together be used to compute the success substitution of a subgoal sg given its call 
substitution and the head hd of a clause which unifies with sg. However, it is 
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known that this clause is a fact (i.e., it doesn’t have a body), we can eliminate some 
of the steps in computing sg’s success substitution from its call substitution. 
Consequently, the optimized algorithm consists of the following steps: 

steps 1 through 7 of the entry substitution algorithm (Section 41, followed by 

steps 5 through 8 of the success substitution algorithm (Section 5). 

7. A TOP-DOWN-DRIVEN FIXPOINT COMPUTATION ALGORITHM 
FOR ABSTRACT INTERPRETATION 

In this section, we describe an efficient, top-down-driven fixpoint computation 
algorithm for abstract interpretation. The goal of this algorithm is to build the 
abstract AND-OR tree for the given program and goal, thus computing the abstract 
substitutions at all points of this program. 

As mentioned in Section 2, in building the abstract AND-OR tree for a given 
program and a goal, the abstract interpreter has to repeatedly execute the basic 
step of computing the success substitution of a subgoal whose call substitution is 
given. Given a subgoal p, its call substitution Acal,, and clauses C,, . . . , C, whose 
heads unify with p, a naive approach to executing this basic step would be to build 
the subtree for p in a top-down fashion: 

Project Acal, onto the variables in p to obtain A, the projected call substitution 
for p. 

For each clause Ci, compute its entry substitution using the algorithm in Section 
4. Compute its exit substitution by recursively computing the success substitu- 
tions for each of. its subgoals in a left-to-right fashion. Compute Al, the 
projected success substitution for p from clause Ci, using the algorithm in 
Section 5. 

Compute A’, the projected success substitution for p, by taking the least upper 
bound CLUB) of Ai, 1 I i 5 m. Extend A’ to ASUCCeSS, the success substitution 
for p. 

As also mentioned in Section 2, this approach may lead to problems if p or one 
of its descendants in its subtree is a recursive predicate. A situation as shown in 
Figure 2(a) below may develop if p is recursive, for example. In this case, a subtree 
for p has a descendant node which has the same atom (p) and the same projected 
call substitution (A). Obviously, this will lead to an infinite loop and A’ will never 
be computed. 

The goal of the fixpoint algorithm is to facilitate the computation of A’ in such 
cases without going into an infinite loop. The basic idea behind this algorithm is as 
follows: 

Compute the approximate value of A’ using the nonrecursive clauses C,, . . . , C, 
for p, and record this value in a memo table [lo]. Details of this memo table 
are described in Section 7.1. 

Construct the subtree for p, using the approximate value of A’ from the memo 
table if necessary. Note that this computation will not enter into an infinite 
loop, since approximate values of projected success substitutions from the 
memo table are used for recursive predicates. 
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Update the value of A’ using p’s subtree. This value is “more accurate” than 
the previous one. Update p’s subtree to reflect this change, and compute the 
new value of A’ again. Repeat this step until the value of A’ doesn’t change, 
i.e., it has reached jixpoint. 

7.1. Details of the Memo Table 

The memo table has an entry for each subgoal with a distinct atom and a distinct 
(projected) call substitution (modulo renaming of the variables) that occurs in the 
abstract AND-OR tree.7 In the context of the fixpoint algorithm described in this 
paper, the main use of the memo table is to store-possibly incomplete-results 
(i.e. values of the projections of success substitutions) obtained from an earlier 
round of iteration. Each entry in this table has four fields: 

(1) 
(2) 
(31 
(41 

The atom for the subgoal.8 
The projection of its call substitution on its variables (A). 
The projection of its success substitution on its variables (A’). 
Characterization of the information in the third field i.e., whether it is 
complete or approximate or jixpoint. These labels are explained in detail in 
Section 7.3. For a nonrecursive predicate, this entry is always complete, but 
for a recursive predicate, it can take on any of the above three values. 

The desired output of the algorithm, the abstract AND-OR tree for the given 
program and query, is implicitly contained in the memo table at the termination of 
the algorithm. Therefore, the memo table is the output of the algorithm as 
presented in Section 7.3. Also, in an actual implementation of this algorithm, each 
entry in the memo table has an additional field indicating the clause in which the 
subgoal corresponding to this entry occurs and also its position within the clause. 
On completion of the algorithm, this information gives direct access to the abstract 
substitutions at all points in the given program. For reasons of space and clarity, 
the memo table in the algorithm presented in Section 7.3 does not have this 
information. 

7.2. Overview of the Algorithm 

This section presents the “core” of our tixpoint computation algorithm. We give a 
detailed description of this algorithm in Section 7.3. Section 7.4 gives an outline of 
the proof of its correctness. 

‘Normally, the memo table is empty at the start of Iixpoint computation. However, if the given 
program invokes modules which have been precompiled, the results of abstract interpretation for these 
modules can be preloaded into the memo table. This saves the work of performing abstract interpreta- 
tion for these modules again. In addition, it can be assumed that conceptually the memo table is 
preloaded with the entries corresponding to the built-ins, which are marked as complete. In practice, 
however, because of the peculiarities of some nonlogical built-ins and because the built-ins are a very 
important source of information, they are treated specially. Note as well that the memo table is also 
used in the algorithm for storing dependency information. This temporary information will not be 
preient, however, at the end of the analysis. 

This field actually contains information about the unique ID for the subgoal in the abstract AND-OR 

tree. 
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It assumes that the predicates in the given program have already been classified 
as recursive or nonrecursiue.’ As mentioned before, the fundamental step that is 
executed in this algorithm over and over again is the computation of the success 
substitution of p given its call substitution, where p is an atom that occurs as a 
node in the abstract AND-OR tree for the given program and goal. 

If the predicate for p is nonrecursive, then it is checked if the memo table has 
an entry corresponding to (1) the atom for this subgoal (module renaming of 
variables) and (2) A. 

If there is such an entry, the value of A’ is obtained from this entry and ASUCCeSS 
is computed by extending A’ to all the variables in the clause for the subgoal. 

If there is no such entry, let C,, . . . , C,,, be the clauses whose heads unify with p. 
The entry and exit substitutions for these clauses and subsequently, A;, . . . , AL 
are computed. A: is the projection of the success substitution on its variables 
for p computed from the exit substitution of the clause Ci. A’ is computed by 
taking the least upper bound of A[, 1 I i I m. A new entry in the memo table 
is created with the values p, A, A’, and complete, for the four fields. ASUCCeSS is 
computed by extending A’ to all the variables in the clause for the subgoal. 

If the predicate for p is recursive, then it is checked if the memo table has an entry 
corresponding to p and A. 

If there is such an entry with the last field’s value being complete, then ASUCCeSS is 
computed as before by extending A’ to all the variables in the clause for the 
subgoal. If the last field’s value is not complete, then we are in the middle of 
performing lixpoint computation for p. The action to be taken in this case is 
described in detail below.” 

If there is no entry for p and A, let C,, . . . , C, be nonrecursive clauses for p. 

Then ‘;Txpoinl) the approximate value of A’ from these clauses, is computed, 
and a new entry in the memo table is created with the values p, A, A;ixpoint, 
and fixpoint, for the four fields. Let C,, ,, . . . , C, be the recursive clauses for 
p. Then A:+ ,, the projection of p’s success substitution due to the clause 
C r+ i, is computed. Let the least upper bound of A;ixpoinr and Ai+ 1 be At,,. 
If this is not the same as A;iXpoinl, then the memo table is updated with 

‘;Txpoin* ‘= ‘LIB* This step is repeated for r + 2,. . . , m. If the value of Ahxpoinl 
did not change for r + l,..., m, then lixpoint computation can be stopped. 
The projection of the success substitution, A;Txpoint, that is in the third field 
for this entry is accurate and so can be labeled complete. On the other hand, 
if the value of Akxpoinr did change during this step, the fixpoint computation 
is started again with the clause C,, i. This step is repeated until Aixpoinl 
reaches fixpoint. 

The following are the main advantages of our algorithm: 

Rather than performing hxpoint computation for the entire abstract AND-OR 

tree in a naive fashion, our algorithm localizes the lixpoint computation to 

‘The algorithm for classifying predicates as recursive or nonrecursive is described in Ullman [25]. 
“See the description of the function lambda_to_lambda_ptime in Section 7.3. 
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recursive subgoals. Elsewhere [22], we have described how this leads to a 
more efficient computation of the abstract AND-OR tree. 

Given a recursive predicate p and its projected call substitution A, we start the 
tixpoint computation by first computing the approximate value of A’ from the 
nonrecursive clauses for p. This will lead to a faster fixpoint computation 
than if we had started with A’ = I . 

The input and output mode information from built-in clauses like is/2 is used to 
increase the precision of information that can be obtained from the abstract 
interpreter. 

Of all the clauses which define the predicate of a subgoal p, only those whose 
heads unify (in the concrete domain) with p are used in the computation of 
the success substitution ASUCCeSS of p, given its call substitution A,,,,. 

7.3. Algorithm for Fixpoint Computation 

In this section we present the algorithm for fixpoint computation. The substitutions 
mentioned in this algorithm are all abstract substitutions unless otherwise stated. 
Because the algorithm is independent of the underlying abstract domain, certain 
domain-dependent functions used for unification and other abstract substitution 
manipulation are left undefined. These functions are described at the points of 
their occurrence in the algorithm. For the abstract domain described in Section 3, 
these functions have been described in Sections 4 and 5. 

The top-level function, compute-abstract-and-or-tree, takes as its input argu- 
ments the Program, the Query, and its call substitution and returns the Memo table 
that was computed by the fixpoint computation algorithm. The abstract AND-OR 

tree for the Program can be easily derived from this Memo table. This function uses 
the tuple projection function 7~~ which returns the second argument of an n-tuple. 

Definition I3 (compute-abstract-and-or-tree). 

compute-abstract-and-or-treed P, Q, hca,,) = 
m,(call-to-success( P, Q, Acall, { 1, { I)). 

The function call-to-success computes the success substitution of a goal given 
its call substitution. Its input arguments are the Program, the Subgoal, its call 
substitution, the input Memo table, and in-ids. It returns a 3-tuple (success substitu- 
tion, output Memo table, out-ids). Here in-ids and out-ids are sets of node IDS. 
More precisely, they are sets of node IDS for which incomplete (i.e. fixpoint) 
information from the memo table has been used to compute their success substitu- 
tions. The difference between out-ids and in-ids gives the set of node IDS in the 
subtree of the Subgoal which used “incomplete” information. 

This function uses two abstract domain specific functions, project and extend. 
Project takes as input a Subgoal and its call substitution and computes its projected 
call substitution. Extend takes as input a Subgoal, its call substitution, and its 
projected success substitution and returns its success substitution. 
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Definition 14 (call-to-success). 

call-to-success(P, S, Acall, Mi,, Ids,“) = 
(A SUCCCSS 3 MO”, 9 %uJ 
where ASUCCeSS = extend(S, A_,,, A’) 
and (A’, MO,,, Ids,,,) = lambda-to-lambda-prime (P, S, project@, Acal,), 
Mi” > IdSi, )* 

The function lambda_to_lambda_prime computes the projected success substitu- 
tion A’ of a subgoal p given its projected call substitution A. Below, we discuss the 
five cases it considers: 

(1) 

(2) 

(3) 

(4) 

(5) 

If p is a nonrecursive subgoal that has no existing entry in the memo table, 
then A’ is computed by the procedure nr-lambda-to_lambda_ptime. 
If p is a recursive subgoal that has no existing entry in the memo table, then 
fixpoint computation has to be started for this subgoal. A new entry 
corresponding to p and A is created in the memo table with A’ initialized to 
an appropriate value to start the fixpoint computation (e.g. 1). Then the 
function @point-compute computes A’ by performing fixpoint computation 
on p’s subtree. Note that for simplicity the value used in the following 
description of the lambda-to-lambda-prime function is I , and the clauses 
are then visited in an unspecified order. In an actual implementation, 
however, the nonrecursive clauses are visited first, thus computing a better 
first approximation to A’. Only then is fixpoint computation started. This 
speeds up convergence. 
If the memo table has an entry for p and A and this entry has the label 
@point, then the current node for p is the descendant of another node for p 
with the same A, i.e., we are in the process of computing the fixpoint for A’ 
for that node. See Figure 2(a). The memo table entry for A’ is an approxima- 
tion to the correct value for both the p nodes. The function id(p) returns 
the unique ID of the subgoal p. 
If the memo table already has a complete value for A’, out-ids is obviously 
the same as in-ids, since there are no “incomplete” nodes in the subtree for 

P. 
If the memo table has an entry for p and A and this entry has the label 
approximate, then the situation is as shown in Figure 2(b), i.e., there are two 

FIGURE 2. Some situations that arise during fixpoint computation. 
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nodes in the tree, one of which is the ancestor and the other is the 
descendant for the current node for p. Both these nodes are for the same 
recursive predicate q. The fixpoint computation for p has already been 
completed, but the hxpoint computation for q is not yet over. Since the 
lixpoint computation for p made use of an approximate value of success 
substitution for q, the resultant A’ is not accurate. That is why this entry has 
the label approximate. Fixpoint computation for p is started again after this 
label is changed to @point in the memo table. Of course, we now start with 
a better approximation for A’. 

Dejinition 1.5 (lambda-to-lambda-prime). 

lambda-to-lambda-prime( P, S, A, Mi,, Idsi,) = 
/ 
if (S, A, _, _) @ M,, A S is nonrecursive 

then (A’, M,,, U {(S, A, A’, complete)}, IdSi,), 

where ( A’, MO,,) = nr-lambda-to-lambda-prime( P, S, A, Mi”, P), 

(S, A, -, _) @ Mi, A S is recursive 

then ftipoint_compute( P, S, A, Mi, U {(S, A, I , fipoint)} , IdSi,), 

(S,A,A’,fucpoint) EMi” 

then(A’,Mi,,Zdsi,U{id(S)})), 

(S, A, A’, complete) E Mi, 

then ( A’, Mi,, Idsi,), 

if 

if 
< 

if 

if 

\ 

(S,A,A’,approx) EM,, 

then @point-compute( P, S, A, M,, U {(S, A, A’, @point)} 

-{(S,h,A’,approx)},ldsi,). 

The function nr-lambda-to-lambda-prime computes the projected success sub- 
stitution for a nonrecursive Subgoal given its projected call substitution. 

Dejinition 16 (m-lambda-to-lambda-prime). 

nr-lambda-to-lambda-ptime( P, S, A, Mi,) Cls> = 
‘if 3C E Cls . head(C) unifies with S 

then (lub( A’, Ah), M,,,), 

where (A&,M,,,,-) = 

( clause-lambda-to-lambda-prime ( P, S, C, A, M, 0) 

and(A’,M) = 

nr-lambda-to-lambda-prime (P, S, A, Mi, , Cls - {C) ), 

else ( _L , Min). 

The function clause-lambda-to-lambda-prime computes the projected success 
substitution A;l for the subgoal S using the clause C whose head unifies with 
S. It uses the abstract-domain-specific functions call-to-entry and 
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exit-to-success. The former computes the entry substitution for C given the A 
for S. The latter computes AL for S given the exit substitution for C. 

Definition 17 (clause-lambda-to-lambda-prime). 

clause-lambda-to-lambda-prime(P, S, C, A, Mi”, Idsi”) = 

(A;, M,,t> Ids,,,) 
where A;l = exit-tosuccess( Pexit, S, C, A) 

and (Pexit, MoutY Ids,,,) = en+to-e&( Pentry, Mi,, Idsin, P, body(C)) 

and Pentry = call-to-ently( A, S, C). 

Definition 18 (en+to-exit). 

v-to-exit( Pentry, Mi,, Idsi,, P, Body) = 
if Body = true 

then ( Pentry y Wn 7 Idsin) 7 

if Body = ( Atom, As) 

then ently-to_exit( Pint, Mint, Idsint, P, AS) 

where ( Pin,, Mint, Idsint) = call-to-success( P, Atom, Pent,,, , Mi,, IdSi”), 

if Body = Atom 

then call-to-success( P, Atom, Pentry, Mi”, IdSi,). 

The function &point_compute computes the A’ of a subgoal S by performing 
fixpoint computation on its subtree. It does so by applying the tixpoint operator t 
to the function ret-l-to-lp, which traverses the subtree of S once, as described 
below. ret-Z-to-lp T o repeatedly applies the function ret-l-to-lp until fixpoint is 
reached for A’. 

Dejinition 19 (@point-compute). 

fkpoint_compute(P, S, A, Mi,, Ids,,) = 
(A’, M” - (6 A, -, -)I U KS, A, A’, LabelN,(Idsi, U Idssubtree - {id(S)))), 

where CM”, Label) = update-abs-ao-treed M’, S, Ids,,btree) 
and (A’, M’, Idssubtree )=rec-l-to-lp t w(P,S, A,(A~“it, Mi”,0>, P) 

where (S, A, hlinit, @point) E Mi,. 

The application of the fixpoint operator t to the function ret-l_to-lp is made 
explicit by means of the following definition. 

Definition 20 (ret-l-to+ t ). 

ret-l-to-lp tO(P, S, A,(A’, M, Ids), P) = (A’, M, Ids), 

ret-I-to-lp T(n + lXP, S, A, (A’, M, Ids), P> 
= rec_l_to_lp(P, S, A, ret-l-to-lp t n(P, S, A,( A', M, Ids), P>, P>, 

ret-l-to-lpt o(P,S,A,(A’,M,Ids),P)=(U..,A~, Un<,,,Mn,U,,<,Ids,), 
where (AA, M,, Ids,) = ret-l-to-lp 7 n(P, S, A,(A’, M, Ids), P>. 
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As mentioned before, the function ret-l-to-lp traverses the subtree once, 
computing the projected success substitution A from the projected call substitution 
A’ for the recursive case. 

Definition 21 (ret-I-to-lp). 

rec_l_to_lp(P, S, &(A:,,, M,,, Zdsi,),Cls) = 

1 

if 3 C E Cls . head(C) unifies with S 

then ret-l-to-lp( P, S, A,) 

cl_rec_l_to_lp (P, S, A, ( h’in, Mi,, Idsi,), C), CLS - {C}) 

else ( Ari, , Mi, ) Idsi,). 

The function cl-ret-l-to-lp computes the projected success substitution A from 
the projected call substitution A’ one clause at a time for the recursive case. It uses 
the abstract domain specific function lub, which returns the least upper bound of 
two abstract substitutions. 

Definition 22 (cl-ret-l-to-lp). 

cl-ret-I-to-lp(P, S, A,(A;“, Mi,, Zds,),C) = 

(Abut, M,,, - KS, A, AI,,Jix point>} U KS, A, Abut, fixpoint)), Ids,,,) 
where AL,, = Zub( A;, , A;) 
and (A;, Mout, Ids,,,) 
= clause-lambda-to-lambda-prime(P, S, C, A, Mi,, Ids,,). 

Once tixpoint computation is completed for the subtree of a recursive subgoal S, 
the set of node IDS whose approximate success substitutions were used for this 
fixpoint computation, Idssub_, is examined. If this contains only the node ID for S, 
then the A’ computed for S is labeled complete. In this case, it is possible that some 
other node IDS were “dependent” on this node ID. The dependency information 
for these nodes is suitably updated by the function update-depend-set. If Idssub_ 
contains node IDS other than id(S), then the A’ obtained by the fixpoint computa- 
tion is labeled approx. The dependency information is suitably updated in the 
memo table by the function update-abs-ao-tree. 

Definition 23 (updateabs-ao_tree). 

update-abs-ao-tree( Mi, , S, MY,,,,~~~~) = 
if ( &,i,tree - {id(S)}) = 0 

then (update-depend-set (Mi, , id( S)), complete) 

else ( Mi, - {dependset( id( S) , -)} 

u { dependset (id( S) , ( Zdssubtree - ( id( S)} ))} , approx) . 
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Definition 24 (update-depend-set). 

update-depend_set( Min , Id) = 

3Zd ’ , Set. (depend-set ( Id ‘, Set ) E Mi, A Id E Set ) 

then update-depend-set( M - { depend-set( Id’, Set)) 

U{depend-set(Zd’,Set- {Zd})},Zd) 

where M = 

I 

if Set-{Zd] =0 

then Mi, - {(S’, A, A’, approx)) U {(S’, A, A’, complete)] 

where S’ = id-‘( Id’) 

else Mi, 

Min. 

7.4. Outline of the Proof of Correctness of the Algotithm 

Proposition 4. Given the following: 

an abstract domain that satisfies the conditions: 

(1) that the number of distinct (modulo renaming of variables) abstract substitu- 
tions for a clause is finite, 

(2) that they form a lattice with respect to a partial order induced by the 
concretization function, 

correct, terminating procedures to compute the following : 

(1) abstract entry substitution Pentry for a clause C given the abstract call 
substitution Acal, of a subgoal sg which unifies with the head hd of C, 

(2) abstract success substitution for a subgoal sg given its abstract call substitu- 
tion and the abstract exit substitution of a clause C whose head hd unifies 
with sg, 

(3) the LUB of two abstract substitutions (of the same clause), 

the jixpoint computation algorithm described above correctly computes the abstract 
AND-OR tree (i.e., the abstract substitutions at all points) for a given program and goal. 
Also, it terminates for all inputs. 

PROOF (Sketch). The correctness of this algorithm follows from: 

the fact that it computes the abstract projected success substitution A’ of a 
subgoal sg as the LUB of the abstract projected success substitutions Al 
computed from the clauses Ci, where Ci, i = 1,. . . , n, are all clauses whose 
heads unify with sg; 

the fact that if an atom sg with the same projected call substitution A (module 
renaming of variables) appears in different nodes of the tree, it has the same 
value for the projected success substitution A’ at these nodes. 
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Termination: When the given program has no recursive predicates, it is clear that 
this algorithm terminates, since it builds the abstract AND-OR tree in a top-down 
fashion and that tree cannot have two nodes with the same atom and projected call 
substitution (modulo renaming of variables), with one node being the descendant 
of the other. 

When the given program has recursive predicates, the termination of this 
algorithm may be seen as follows: 

The subtree of a node with a recursive predicate p is finite. Since p can only 
have a finite number of distinct call substitutions, the subtree can only have a 
finite number of occurrences of nodes who have a variant of p and which 
themselves have subtrees. All other nodes with p as their predicates use the 
approximate value of the projected success substitution from the memo table 
[since they have an ancestor with the same atom and projected call substitu- 
tion (module renaming of variables)] and hence do not have any descendant 
nodes. 

Given that the subtree of a node with a recursive predicate p is finite, it is easy 
to see that the complete construction of this subtree takes only a finite 
number of steps. Broadly speaking, the construction of this tree proceeds as 
follows: First the approximate value of the projected success substitution is 
computed as the LUB of the projected success substitutions computed from 
p’s nonrecursive clauses. Then the subtree is dynamically traversed in a 
depth-first manner and we return to the root of the subtree. At this time, the 
value of the projected success substitution is updated as the LUB of the old 
value and the value computed from p’s recursive clauses. If there is a change 
in this vlaue, then the dynamic depth-first traversal is continued again. Note 
that this “looping” through the depth-first traversal can take place only a 
finite number of times, since the LUB operation is obviously monotonic and 
the abstract substitutions for a clause form a finite lattice, and so the fixpoint 
will be reached in a finite number of steps. If there is no change in the value 
of the projected success 
complete, and so we have 
node. q 

8. IMPLEMENTATION RESULTS 

substitution for this node, then -its subtree is 
reached the end of tixpoint computation for this 

In this section, we present the results of running an implementation of an abstract 
interpreter which uses the fixpoint algorithm discussed in Section 7.3. The goal of 
this abstract interpreter is to infer the groundness and independence of program 
variables so that run-time groundness and independence checks can be eliminated 
for an independent AND-parallel execution of a given logic program. It takes as 
input a logic program which also contains a description of the query (or set of 
queries) and its (their) abstract substitution, provided by the procedure qmode/2.” 

“If the user does not provide a query form, a general one (using a most general abstract 
substitution) is generated for all entry points which appear in the module declaration for the file. 
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It generates a memo table containing the abstract substitutions at all points of the 
clauses which have been used for building the abstract AND-OR tree for the given 
query or queries. 

This implementation of the abstract interpreter is part of a parallelizing com- 
piler that has proven successful in obtaining speedups for a variety of logic 
programs [12, 141. Normally, the results of the abstract interpreter are passed to 
the parallelizing compiler. However, there is an option in this system which enables 
it to output only the results of the abstract interpreter. Basically, the output is an 
annotated version of the given logic program, which contains as comments the 
abstract cull substitutions of subgoals in all nonunit clauses. Lists are used in the 
place of sets for abstract substitutions. The results of using such an option on an 
example program (quicksort using difference lists) are presented in Table 1. The 
first column gives a subgoal (along with the clause in which it occurs), and the 
second column gives its abstract call substitution. 

For reasons of space, we do not show the abstract AND-OR tree for this program. 
However, we observe from Table 1 that, in the body of the second clause for 
qsort, after the execution of partition (B,A,E,F) ,programvariables A,B,E,F 

are ground and C,D,G,H are mutually independent. Therefore, in an IAP imple- 
mentation of this program, the subgoals qsort (F, G, D 1 and qsort ( E, C , [A I HI ) 
can be executed in parallel without any groundness or independence checks. It is 
interesting to note that the same results would have been obtained even if the 
query form had been the more general “ : - qmode (qsort (A, B) , [ [Al LB1 I) .“. 
Also, the use of the abstract interpreter (whose code is not greatly optimized) 
added 45% to the compilation time, which is considered a reasonable overhead. In 
fact, this overhead is not worse than that of previous, less precise abstract 
interpreters [27]. 

TABLE 1. Results of abstract interpretation for the quicksort program 

Clause/subgoal 

:- qmode(qsort(A.B),[[Bll). 

Abstract call substitution 

qsort (A,B) :- 
qsort(A,B, [I). 

qsort([l.A.A). 

% [IBII 

qsort( [AIBl ,C,D) :- 
partition(B,A,E,F), 

qsort (F,G.D) , 
qsort (E,C, [AlHI ), 

G=H. 

partitionc [].A, [I, [I). 

% [[Cl, [Dl, [El, [Fl r [Gl , [HI I 
% [[Cl, [Dl. [Gl, [HI1 
% [[Cl. [D.Gl, [HII 

% [[C.Hl,[D,GlI 

partitiont [AIBl .C,D. [AlEI) :- 
A > C, % ILDI. [El1 
!. 
partition(B,C,D,E). % [[Dl, [El1 

partitiont [AIBl ,C. [AIDI ,E) :- 
A=&. % [[El.[Dll 
partition(B,C,D,E). % [[El.[Dll 
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Next, we consider the simpler (form the point of view of analysis) version of 
quicksort which uses an explicit call to append instead of difference lists. We 
present the results of abstract interpretation of this program in the form of an 
abstract AND-OR tree, since it is much simpler than the abstract AND-OR tree of the 
previous program and it is more illustrative than a table. The part ition/ 4 

predicate used here is the same as the one used in the previous program, and the 
append/ 3 predicate is the standard one: 

:- qmode(qsort(Xs,Ys),[[Ysll). %% query and its call 

substitution 

qsort([l, [I). 

qsort([X]IW],Y) :- 

partition(X,W,P,Q) , 

qsort(P,R), 

ssort(Q,S), 

append(R,[XISl,Y). 

The abstract AND-OR tree for this program and query is shown in Figure 3. The 
root of the tree contains the OR node qsort (A, B) with its call substitution to its 
left and its success substitution to its right. There are three AND nodes: 
qsort([XIWl,Y), partition(Xl,[YlIZll ,[YlIPll,Ql), and parti- 

tion(x2, [~2lZ2] ,~2, [Y2lQ2l).The rest are all OR nodes.Foreach OR node, 

IIBII 4SWAB) I01 

1 (IPI IQI (~1 ISI wll partiIion(X.W.P.Q) IIRJ.ISJ.(YJJ qson(P.R) (ISI. qson(Q.s) IIYII appeOd(R.IXfs1.Y) 10 

IIPIMQIIJ Xl >YI t~i.wll panilion(XI.ZI.PI.Ql) (01 

101 I01 lIPIJ.IQIlI I01 - - - 

FIGURE 3. Abstract AND-OR tree for the quicksort program. 
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the call substitution is shown on its left and the success substitution is shown on its 
right. If there are two adjacent siblings M and N (with M to the left of N), the 
success substitution for M is the call substitution for N. The projections of the call 
and success substitutions for a predicate are underlined and are respectively below 
the call and success substitutions for the predicate. 

It can be seen from this tree that the terms bound to P and Q are ground and 
the terms bound to R and s are independent when the subgoal qsort (P, R) , 
which occurs in the body of the recursive clause for qsort, is called. Therefore, in 
an IAP implementation for this program, the subgoals qsort (P, R) and 
qsort (Q, S) can be run in parallel without any groundness or independence 
checks. 

9. CONCLUSIONS AND FUTURE WORK 

Motivated by the needs of applications such as compilation for independent AND 

parallelism (IAP), we have presented an abstract interpreter that is specifically 
geared towards detecting groundness and independence of terms with a high 
degree of precision, using a novel abstract domain. We have presented efficient 
algorithms for computing entry substitutions for clauses and success substitutions 
for subgoals. These are the essential steps in any algorithm for an abstract 
interpreter. We have also presented a top-down-directed, bottom-up tixpoint com- 
putation algorithm that is independent of the abstract domain used in the inter- 
preter. The techniques presented in this paper are of direct use in the compilation 
of logic programs for execution in systems which support IAP, in keeping accurate 
track of variable aliasing in other types of analysis, and, in general, in any 
compilation program which can make use of information regarding variable shar- 
ing, groundness, and independence. 

We have also presented herein some results from the implementation of an 
abstract interpreter which uses the algorithms discussed in this paper. This imple- 
mentation is part of a parallelizing compiler for logic programs using independent 
AND parallelism and a run-time system which have together proved successful in 
obtaining speedups for a variety of logic programs [12]. Although a more detailed 
study of the performance of the interpreter is a subject for further research, our 
experiments analyzing various benchmarks have revealed that it is more accurate 
than previous interpreters [27], and it already plays an essential part in achieving 
the favorable speedup results. 

At the same time we have identified ways in which the usefulness of the analysis 
could be increased. In particular, and in the context of IAP,12 it would be quite 
advantageous to enhance the existing abstract domain to include information about 
the “freeness” of variables. To this end we have developed an abstract domain 
capable of representing freeness and dependence and developed novel abstract 
unification algorithms for it. The results from using this enhanced domain will be 
reported elsewhere. 

“And even more so in the context of nonstrict independent AND parallelism (NSIAF’), a type of IAP 
in which goals are allowed to run in parallel even if they share variables, provided that they don’t affect 
each other’s search spaces [14]. 
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Finally, based on our design decisions for the algorithm and our experiments 
with the actual implementation of the abstract interpreter, we would also like to 
suggest a number of other avenues for further research. The structure of the 
abstract interpretation algorithm as described herein is such that an implementa- 
tion of it requires double interpretation, i.e., the given program is interpreted in the 
abstract domain by the abstract interpreter, which in turn is interpreted (run) by 
the underlying system. There is a certain degree of inefficiency in doing this, and 
previous experiments with different abstract interpreters [27, 83 suggest that 
eliminating one of the interpretation steps can be advantageous. This can be done 
by performing a partial evaluation of the abstract interpreter into the program 
being analyzed, a step which should be done automatically. It would be interesting 
to compare the performance of the abstract interpretation algorithm presented 
using single and double interpretation. 

The abstract domain used in this paper can be enhanced to include principal 
functors of terms. This can improve the accuracy of the results computed by the 
abstract interpreter. For example, consider the following program: 

P(X,Y) :- q(X) ,r(X) ,s(Y). 

q(f(W)). 

q(g(a)) . 

clauses for r(X) and s(Y). 

Suppose that, at entry to p’s clause, it is known that x is instantiated to a term 
whose principal functor is g. In the simple abstract domain, this information 
cannot be used in an abstract substitution. If the entry substitution for p (x, Y) 

contains {x,Y}, then we can only infer that the call substitution for the subgoal 
r (x) also contains IX, Y), i.e. we cannot infer that x is grounded and thus 
independent of Y. l3 But in the enhanced domain, since information is available 
regarding the principal functor for the instantiation of each program variable, we 
know that the principal functor of x is g at entry, and so x is ground after the 
execution of q ( X) . This translates to a more accurate abstract substitution inferred 
at this program point. l4 Clearly this also means increased work for the abstractin- 
terpreter. Furthermore, it is not necessary to limit the analysis to first-level 
structures, and an arbitrary depth bound can be used [27]. It would be interesting 
to study the tradeoff between greater accuracy and increased compilation time 
during the abstract-interpretation phase brought about by the introduction of 
different levels of structure depth in the abstract domain. 

I3 For example, in an IAP implementation of this program, the lack of this information would make a 
run-time independence check needed for the terms bound to X and Y in order to run the subgoals r (x) 
and,? (Y) in parallel. 

Consequently, in an IAP implementation of this program, the subgoals + (x) and s (Y) could then 
be executed in parallel without a run-time independence check, thereby reducing the overhead for 
parallelism and obtaining a better speedup. 
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