
J. LOGIC PROGRAMMING 1992:13:315-347 315

COMPILE-TIME DERIVATION OF VARIABLE
DEPENDENCY USING ABSTRACT INTERPRETATION

K. MUTHUKUMAR AND M. HERMENEGILDO*

D Traditional schemes for abstract interpretation-based global analysis of
logic programs generally focus on obtaining procedure-argument mode
and type information. Variable-sharing information is often given only the
attention needed to preserve the correctness of the analysis. However,
such sharing information can be very useful. In particular, it can be used
for predicting run-time goal independence, which can eliminate costly
run-time checks in AND-parallel execution. In this paper, a new algorithm
for doing abstract interpretation in logic programs is described which
concentrates on inferring the dependencies of the terms bound to program
variables with increased precision and at all points in the execution of the
program, rather than just at a procedure level. Algorithms are presented
for computing abstract entry and success substitutions which extensively
keep track of variable-aliasing and term-dependence information. In addi-
tion, a new, abstract domain-independent fixpoint algorithm is presented
and described in detail. The algorithms are illustrated with examples.
Finally, results from an implementation of the abstract interpreter are
presented. a

1. INTRODUCTION

The technique of abstract interpretation for flow analysis of programs in impera-
tive languages was first presented in a sound mathematical setting by Cousot and
Cousot [5] in their landmark paper. Later, it was shown by Bruynooghe [ll, Jones
and Sondergaard [17], and Mellish [21] that this technique can be extended to flow

*The research reported in this paper was performed at MCC, the University of Texas at Austin, and
the University of Madrid (UPM). This work was funded in part by MCC and also in part by ESPRIT
project 2471 “PEPMA”.

Address correspondence to K. Muthukumar, IBM Santa Teresa Laboratory, 555 Bailey Avenue, San
Jose, CA 95141. E-mail: muthu@cs .utexas .edu.

Received June 1989; accepted February 1990.

THE JOURNAL OF LOGIC PROGRAMMING

OElsevier Science Publishing Co., Inc., 1992

655 Avenue of the Americas, New York, NY 10010 0743-1066/92/$5.00

316 K. MUTHUKUMAR AND M. HERMENEGILDO

analysis of programs in logic programming languages. Specific algorithms for such
global analysis in logic programs have been given by a number of researchers [e.g.
[8, 18, 23, 26, 27, 2, 24, 19, 20, 11, 41). These schemes, mostly geared towards
optimizing the sequential execution of logic programs, generally focus on comput-
ing information about the arguments of predicates used in the program, such as (1)
the mode of an argument, i.e., whether a particular argument of a predicate is
instantiated on input or on output or both, and (2) the type of an argument, i.e., the
set of terms that an argument is bound to when the predicate is called or when it
succeeds. Variable sharing (or “aliasing”), i.e., the fact that unification can bind
variables to other variables or to terms which in turn share variables, is “dealt
with” in these methods in order to preserve the correctness of the approach, but it
is not generally considered as an output of the analysis and is often computed in a
very conservative way [6].

However, the variable-sharing information itself can often be of the utmost
importance for a compiler. For example, such information can be used for
compile-time optimization of backtracking [31. Knowledge of variable-sharing infor-
mation also makes it possible to predict run-time goal independence, which is
particularly relevant for a compiler which targets execution on a system which
supports independent AND parallelism (IAP) (see, for example, [13, 15, 91 and their
references for more details on this type of parallelism): in IAP subgoals in the body
of a clause are executed in parallel provided they are independent, i.e., their
run-time instantiations do not share any variables. As shown in [15, 131, this
condition can be ensured by run-time checks on the groundness and independence
of certain program variables.’ However, these checks can be expensive, increasing
overhead and reducing the amount of speedup achievable through parallelism.
Thus, it is of great advantage to eliminate as many checks as possible by gathering
highly accurate information at compile time regarding the groundness and inde-
pendence of the terms to which programs variables will be bound at run time.
Furthermore, it is useful to have this information for all points in the program,
rather than just at a procedure level. The inference of such information is the main
subject of this paper.* Our main contributions are as follows:

Starting with an approach for representing abstract substitutions (in the form of
sharing information) suggested to us by Jacobs and Langen [161, we present

‘Program variables are variables that are in the text of the given program.
‘Due to the similarities between the search tree explored by a program executed in IAP and that of

sequential execution [13], conventional abstract-interpretation techniques can be applied (with only
minor modifications) to programs which are to be evaluated in IAP (Debray presents in[7] and analysis
framework for other types of parallelism where the properties of IAP regarding the similarity with
sequential execution don’t hold). In 1271 we reported some results obtained from an abstract interpreter
for IAP constructed more or less along the lines of conventional systems, except for the techniques used
to improve its efficiency. This interpreter is most apt at generating groundness information, and it was
shown in [27] to be reasonably effective at reducing run-time checks. The approach presented in this
paper is targeted at improving those results through better tracking of terms which are independent but
not ground.

‘Even though the representation that we use for abstract substitutions is essentially the same as in
Jacobs and Langen [16], there are fundamental differences between our approach and theirs. Most
importantly, our algorithm for abstract interpretation uses a top-down-directed bottom-up approach,
while theirs uses a pure bottom-up approach [8, 19, 201. Consequently, we use a novel fixpoint
computation algorithm which takes care of additional complexities brought about by the top-down-
directed approach, as opposed to the conventional bottom-up tixpoint computation.

DERIVATION OF VARIABLE DEPENDENCY 317

new abstract-unification algorithms which compute abstract entry substitu-
tions and abstract success substitutions while extensively keeping track of
variable-aliasing and term-dependence information. These algorithms can be
used in isolation (if only variable-sharing information is to be the output of
the analysis) or in combination with conventional abstract domains as a
method for accurately keeping track of variable aliasing.

We present and give a complete description of a new algorithm for performing
top-down-driven, bottom-up fixpoint computation which avoids recalculation
(by performing tixpoint computation over subsets of the program, rather than
reanalyzing the whole program at each step) and uses approximations as
seeds for convergence improvement. Its output includes abstract substitution
information for all points in the program. While the essential ideas behind
computation of fixpoints in the context of logic programs are understood, the
formulation presented herein takes care of practical efficiency and correct-
ness issues as well as many details which, to our knowledge, and particularly
in the case of a top-down-driven algorithm, have not been described else-
where.

The algorithms are illustrated with examples. We assume that the reader is
familiar with logic programming (and PROLOG to some extent) and the basic
concepts of abstract interpretation of logic programs. However, the following
section provides a brief overview of the process in order to introduce the notation
and place in context the algorithms to be presented later. The rest of the paper is
organized as follows: Section 3 introduces the concept of abstract substitution used
in the paper. Sections 4 and 5 deal with abstract unification, respectively explaining
how the abstract entry substitution for a clause and the abstract success substitu-
tion for a subgoal are computed. Section 7 presents the fixpoint algorithm. Section
8 illustrates the complete abstract interpretation algorithm through examples and
presents results obtained from an implementation of our algorithm aimed at the
detection of groundness and independence. Finally, Section 9 summarizes our
conclusions and discusses suggestions for future work.

2. ABSTRACT INTERPRETATION OF LOGIC PROGRAMS

As mentioned previously, abstract interpretation is a useful technique for perform-
ing a global analysis of a program in order to compute, at compile time, character-
istics of the terms to which the variables in that program will be bound at run time
for a given class of queries. In principle, such an analysis could be done by an
interpretation of the program which computed the set of all possible substitutions
(collecting semantics) at each step. However, these sets of substitutions can in
general be infinite, and thus such an approach can lead to nonterminating compu-
tations. Abstract interpretation offers an alternative in which the program is
interpreted using abstract substitutions instead of actual substitutions. An abstract
substitution is a finite representation of a (possibly infinite) set of actual substitu-
tions in the concrete domain. The set of all possible terms that a variable can be
bound to in abstract substitutions represents an “abstract domain”, which is usually
a complete lattice or cpo of finite height (such finiteness required, in principle, for

318 K. MUTHUKUMAR AND M. HERMENEGILDO

termination of fixpoint computation), whose ordering relation is herein represented
by “ L “. Abstract substitutions and sets of concrete substitutions are related via a
pair of functions referred to as the abstraction ((Y) and concretization (y) functions.
In addition, each primitive operation u of the language (unification being a notable
example) is abstracted to an operation u’ over the abstract domain. Soundness of
the analysis requires that each concrete operation u be related to its corresponding
abstract operation U’ as follows: for every x in the concrete computational domain,
u(x) c r(u’(a(x)N.

The input to the abstract interpreter is a set of clauses (the program) and a set
of query forms. In its minimal form (least burden on the programmer) such query
forms can be simply the names of the predicates which can appear in user queries
(i.e., the program’s entry points). In order to increase the precision of the analysis,
query forms can also include a description of the set of abstract (or concrete)
substitutions allowable for each entry point. The goal of the abstract interpreter is
then to compute in abstract form the set of substitutions which can occur at all
points of all the clauses that would be used while answering all possible queries
which are concretizations of the given query forms. It is convenient to give
different names to abstract substitutions depending on the point in a clause to
which they correspond. Consider, for example, the clause h :-p,, . . . , p,. Let hi and
Ai+, be the abstract substitutions to the left and right of the subgoal pi, 1 I i I II,
in this clause. See Figure l(b).

Definition 1. hi and hi+, are, respectively, the abstract call substitution and the
abstract success substitution for the subgoal p,. For this same clause, A, is the
abstract entry substitution (also represented as Pentry), and A, + , is the abstract exit
substitution (also represented as Pexit).

Control of the interpretation process can itself proceed in several ways, a
particularly useful and efficient one being to essentially follow a top-down strategy
starting from the query forms.4 Several frameworks for doing abstract interpreta-

~,,I1 P ~,“,,,,,

A A
Pl entry hl P1exit Pm emry h, Pmexit $ ~1 12 % pn %+I

(a> @I

FIGURE 1. Illustration of the abstract-interpretation process.

4More precisely, this strategy can be seen as a fop-down-&&~ bottom up computation. As will be
shown later, some degree of fixpoint, bottom-up computation is required for correctness in the presence
of recursive predicates. A purely bottom-up analysis scheme is also possible [8, 19, 201. The advantage of
the top-down-driven strategy is that it restricts the abstract computation to that required for the query
forms given rather than that for all possible query forms. Note that query forms are routinely present in
actual programs in the form of module entry-point declarations, so no extra burden need be placed on
the user. Additional information from the user can, of course, focus the abstract computation even
further and increase its precision.

DERIVATIONOFVARIABLEDEPENDENCY 319

tion in logic programs follow along these lines. One such framework is described in
detail for example in [l]. In a similar way to the concrete top-down execution, the
abstract interpretation process can then be represented as an abstract AND-OR tree,
in which AND nodes and OR nodes alternate. A clause head h is an AND node whose
children are the literals in its body p,, . . . , pn [Figure l(b)]. Similarly, if one of these
literals p can be unified with clauses whose heads are h,, . . . , h,, then p is an OR
node whose children are the AND nodes h,, . . . , h, [Figure l(a)]. During construc-
tion of the tree, computation of the abstract substitutions at each point is done as
follows:

Computing success substitution from call substitution. Given a call substitution
A,,,, for a subgoal p, let h,, . . . , h, be the heads of clauses which unify with p
[see Figure l(a)]. Compute the entry substitutions /3 lentry,. . . , Pmentry for
these clauses. Compute their exit substitutions p lexit, . . . , Pmexit as explained
below. Compute the success substitutions AlSUCCeSS,. . . , Amsuccess correspond-
ing to these clauses. The success substitution ASUCCeSS is then the least upper
bound CLUB) of AlSUCCeSS,. . . , Amsuccess. Of course the LUB computation is
dependent on the abstract domain and the definition of the c relation.

Computing exit substitution from entry substitution. Given a clause h :- p, , . . . , p,,
whose body is nonempty and an entry substitution A,, then A, is the call
substitution for p,. Its success substitution A, is computed as above. Simi-
larly, A,, . . . ,A,, + , are computed. Finally, A,, + 1 is obtained, which is the exit
substitution for this clause. See Figure l(b). For a unit clause (i.e. one whose
body is empty>, its exit substitution is the same as its entry substitution.

Given this basic framework, it is clear that a particular analysis strategy needs to:

define an abstract domain and substitution framework, and the g relation,

describe how to compute the entry substitution for a clause C given a subgoal p
(which unifies with the head of C> and its call substitution,

describe how to compute the success substitution for a subgoal p given its call
substitution and the exit substitution for a clause C whose head unifies with

P.

Such information represents the “core” of a particular analysis strategy. Sections 3,
4, and 5 respectively address the corresponding definitions and algorithms for the
approach presented in this paper.

In addition to the three points above, there is, however, one more issue that
needs to be addressed. The overall abstract interpretation scheme described works
in a relatively straightforward way if the program has no recursion. Consider, on
the other hand, a recursive predicate p. If there are two OR nodes for p in the
abstract AND-OR tree such that

they are identical (i.e., they have the same atoms),

one is an ancestor of the other, and

the call substitutions are the same for both,

320 K. MUTHUKUMAR AND M. HERMENEGILDO

then the abstract AND-OR tree is infinite and an abstract interpreter using the
simple control strategy described above will not terminate. In order to ensure
termination, some sort of fit-point computation is required. In order to support such
tixpoint computation, memo tables [lo] are used, for example, in [S], and stream
predicates are used in [26]. In this paper we propose a novel scheme for fixpoint
computation within the context of abstract interpretation. This is described in
Section 7.

3. ABSTRACTION FRAMEWORK

In this section, we describe the representation of abstract substitutions used in our
abstract interpreter. As mentioned before, in the concrete interpretation the
collecting semantics for a top-down execution of logic programs is usually given in
terms of the sets of substitutions associated with each program point [l]. The
traditional approach [l, 8, 181 to abstracting such sets of substitutions is to define
an abstract domain and then to describe a method for constructing an abstract
substitution corresponding to a set of substitutions.

For example, the abstract domain used in [l] consists of three elements ground,
free, and any. These elements respectively correspond to the set of all ground
terms, the set of all unbound (free) variables, and the set of all terms. An abstract
substitution is then defined as a mapping from program variables (of a clause) to
elements of the abstract domain. For example, if X and Y are the program
variables in a clause, then an abstract substitution at a point in that clause could be
{X/ground, Y/free}. Th is abstract substitution actually represents the set of all
substitutions in which X is bound to a ground term and Y is bound to a free
variable.

The approach used for defining abstract substitutions in this paper is entirely
different. We are not per se interested in the set of terms that a program variable
is bound to at a point in a clause. Rather, we are interested in the sharing of
variables among the sets of terms that program variables are bound to.5 For
example, let X and Y be the program variables in a clause. The abstract
substitution in our abstract interpreter should tell us whether any variables are
shared by the sets of terms that X and Y are bound to.

We define the abstract substitution for a clause to be a set of sets of program
variabZes in that clause, following an approach initially suggested in [161. Informally,
a set of program variables appears in the abstract substitution if the terms to which
these variables are bound share a variable. For the example clause of the previous
paragraph, the value of an abstract substitution may be {{X],{X,Y)}. This abstract
substitution corresponds to a set of substitutions in which X and Y are bound to
terms tX and t, such that (1) at least one variable occurs in both t, and t, (this
corrresponds to the element {X, Y]) and (2) at least one variable occurs only in t,
(this corresponds to the element IX}).

In a sense, the term abstract substitution may be a misnomer for such a data
structure. The reason for such an objection would be that this data structure only

5Note that this approach to abstracting substitutions is complementq to the traditional approach,
i.e., it is possible to combine the two approaches and use abstract substitutions which provide
information about both sharing between program variables and the terms that they are bound to.

DERIVATION OF VARIABLE DEPENDENCY 321

abstracts a set of substitutions; it does not (explicitly) tell us about the set of terms
a program variable is bound to in a set of substitutions (which the conventional
abstract substitutions do, as discussed above). Nevertheless, we use the term
abstract substitution for the data structure introduced above, since it does abstract
the information contained in a set of substitutions.

Before formally describing the representation for abstract substitutions, we
review some basic definitions about substitutions. A substitution for the variables
of a clause is a mapping from the set of program variables in that clause (Pvur) to
terms that can be formed from the universe of all variables (Uvur> and the
constants and functors in the given program and query. The domain of a substitu-
tion 0 is written as dam(8). We consider only idempotent substitutions. The
instantiation of a term t under a substitution 8 is denoted as ttl, and vur(t6)
denotes the set of variables in t0.

Let f3 be a given substitution for a clause C. A program variable X, which is in
C, is ground under this substitution if uur(Xf3) = 0. Program variables X and Y,
which are in C, are independent if uur(X8) f~ uur(YB) = 0 [13]. We say that
variable V occurs in program variable X under the substitution 8 if VE uur(X8).
Clearly, a program variable X is ground under a substitution 8 if there is no
variable V which occurs in X under 8, and program variables X and Y are
independent if there is no variable I/ which occurs in both of them under 8.

Below, we formally define the abstract substitution ~46) which corresponds to a
concrete substitution 0, and later we extend it to sets of substitutions. The basic
idea behind this definition is as follows: a set S of program variables appears in
JZ?(0) iff there is a variable V which occurs in each member of S under 8. Thus, a
program variable is ground iff it does not appear in any set d(e), and two program
variables are independent iff they do not appear together in any set in ~(6).

Definition 2. Subst is the set of all substitutions which map variables in Pvur to
terms constructed from variables in Uvur and constants and functors in the
given program and query.

Definition 3. Asubst is the set of all abstract substitutions for a clause, i.e.,
Asubst = &dPvur)), where &S) denotes the powerset of S.

Definition 4. The function Occ takes two arguments, 6 (a substitution) and U (a
variable in Uvur), and produces the set of all program variables X E Pvur such
that U occurs in var(Xe), i.e.,

occ(e,u) ={xIx~dom(e) A U~vur(Xe)}.

Definition 5 (Abstraction of a substitution).

S? : Subst + Asubst ,

d(e) ={occ(e,u)Iu~~Uvur}.

Example. Let 8 = (W/u, X/f(A,, A,), Y/g(A,), Z/A,). Then Occ(8, A,) = {Xl,
Occ(8, A,) = {X, Y}, Occ(8, A3) = {Z}, and Occ(8,U)= 0 for all other U E Uvur.
Hence, tie) = (0, {Xl, {X, Yl, W.

322 K. MUTHUKUMAR AND M. HERMENEGILDO

The abstraction function ti is extended to sets of substitutions as follows:

Definition 6 (Abstraction of a set of substitutions).

cy : Q(Subst) * Asubst ,

a(0) = u d(e).
0E@

Essentially, a! constructs the union of the sharing information found in all
substitutions in 0. The corresponding concretization function is:

DeJinition 7 (Concretization).

y : Asubst + @(Subst) ,

y(S) ={t#~Subst A&‘(O) GS}.

If a clause has N program variables, there can be at most 22N different abstract
substitutions for it. A partial order can be defined on these abstract substitutions:
A, L A, iff y(A,) G y(h,). It can be easily shown that A, L A, iff A, G A,. Since the
set of all abstract substitutions for a clause is finite and is closed under union, it
follows that the least upper bound of two abstract substitutions is equal to their
union, and the greatest lower bound is equal to their intersection.

We can make the following observations from the above definitions:

Since the lattice of abstract substitutions for a clause is finite and hence has a
finite depth, we are assured that lixpoint computation (discussed in Section 7)
terminates [11.

For a given clause, the top element in the lattice is the powerset of all the
program variables in that clause.

The bottom element in the lattice for all clauses is 0. The meaning of this
abstract substitution can be explained as follows: suppose a clause has a
subgoal sg which cannot be satisfied under its abstract call substitution A,
i.e., sg fails. The abstract success substitution for sg will then be 0.

The abstract substitution which makes all program variables in a clause ground
is {01.

0 is an element of every nonempty abstract substitution A. This is a conse-
quence of the fact that every concrete substitution 8 has a finite range.

Since the abstract interpreter manipulates only abstract substitutions and since
these abstract substitutions do not have complete information about the term each
program variable is bound to, approximations are introduced in our computations
of abstract substitutions. We require that these be safe approximations.

Definition 8 (Safe approximation). Suppose the concrete set of substitutions that
occurs at a point in a clause is 0 and the abstract interpreter computes the
abstract substitution at this point as A. Then A is a safe approximation to the
actual abstract substitution at this point if, whenever variables X and Y are

DERIVATION OF VARIABLE DEPENDENCY 323

dependent according to at least one substitution in 0, there is a set S E A such
that XE S and YES, i.e., the abstract substitution should capture all the
sharing information. Similarly, if a variable X is ground according to A, it should
be ground according to all substitutions in 0.

Thus a computed abstract substitution which is a safe approximation to the
actual one is allowed to be conservatively imprecise: it can indicate that two
variables are dependent when actually they are independent according to the
concrete set of substitutions. Similarly, a variable can be nonground according to
such an abstract substitution even if it is ground according to the concrete set of
substitutions. Therefore, the sharing information in such an abstract substitution is
characterized as potential sharing. All the abstract substitutions that are mentioned
in subsequent sections of this paper are conservative abstract substitutions, i.e.,
they are safe approximations to the actual abstract substitutions.

3.1. Other Definitions

In this subsection, we present some definitions and results that are used in Sections
4 and 5.

Given a set of program variables S and a subgoal predb,, . . . , u,),
pos(pred(u,, . . . , IL,,), S) gives the set of all argument positions of this subgoal in
which at least one element of S occurs.

Dejinition 9.

pos(pred(cq,..., u,), S) = (ilS II var(2.q) # 0).

Given a subgoal pred(u,, . . . , u,> and an abstract substitution A, the function
STpredCu,,..., u,J, A) computes the dependencies among the argument positions of
this subgoal due to A. This is expressed as a subset of the powerset of (1,. . . , n}
(similar to representing an abstract substitution as a set of sets of program
variables).

Definition 10.

g(pred(u,,..., un), A) = {pos(pred(u,, . . . , u-n), S)lS E A].

Example. Let n =2, u1 =f(X,Y>, u2 =g(Y,Z), and A={0,{X),{Y},{X,Z)}.
Then

pos(pred(f(X,Y),g(Y,Z)),0) =0,

pos(pred(f(X,Y),g(Y,Z)),{X}) = {I},

pos(pred(f(X,Y),g(Y,Z)),{Y)) = {1,2},

pos(pred(f(X,Y),g(Y,Z)),{X,Z}) = {I,2}.

Therefore, ~(pred(f(X,Y),g(Y,Z)), A) = {0,{1),{1,2)).

Definition 12 (Closure under union). For a set of sets SS, the closure SS* of SS is
the smallest superset of SS that satisfies S, E SS* A S2 E SS* * S, U S, E 5’S*.

324 K.MUTHUKUMARANDM.HERMENEGILDO

Proposition 1. Let (T and p be two concrete substitutions, whose domains are Pvar
and Uvar respectively. Let A be an abstract substitution such that &‘(a) E A. Then

&la O l-4 dornclr)) c A*, where 1~ 0 I_LI do,,,(,,) indicates the restriction of u 0 p to the
domain of cr.

PROOF. We note that

Occ(la o I-&m(U), X) = u Occ(a,Y).
XE uar(Y)L)

Since _~&a)={Occ(a,U)lU~ Uvar), we have ~&la ~pld~~(~))~(ti~))* GA*.
0

Corollary 1. Let Acal, and ASUCCeSS be the abstract call and success substitutions for a
subgoal sg, respectively corresponding to acall (the set of all its call substitutions)

and @S”ixSSS (the set of all its success substitutions). Then A c A&. S"C%SS -

PROOF. For each I&,, E Oca,,, there exists a OSucceSS E OSUCCeSS and a substitution p
(this is the substitution obtained by “solving” the subgoal sg) such that $UCCeSS =

I&,,, 0 PL~(B,,,,). Therefore,

A SUCCeSS = a (@S”CCeSS 1
= U 4 4”cceSS)

%mxss E @S”CCesb

Corollary 2. Let Acal, and ASUCCeSS be as in Corollary 1. Then 9(sg, ASUCCeSS) G

(9a(sg, A,,,,))*.

PROOF. From Corollary 1 we get A c(S(3,~ A,,,,(S = U Ji)j. We observe S"CCeSS -
that pos(sg, U iSi) = U ipos(sg, Si). Therefore,

PC sg 2 Less 1 = (w(sg4IS E Less}

c {Pos(sg7 $.J si)/3s, E “call]

DERIVATION OF VARIABLE DEPENDENCY 325

Definition 22 (Projection). Let p be an abstract substitution for a subgoal sg, and
S,, be the set of program variables in this subgoal. The projection of p on sg is
defined as the abstract substitution (SlS = S’ n Ssg, S’ E ~1.

Corollary 3. Let the subgoal sg (with a projected abstract call substitution A) be unified
with the head hd of a clause C. The abstract entry substitution for C, Pentry, satisfies
the condition 9a(hd, PentrY) 5 (9(sg, A))*.

PROOF. Let hunify(sg, hd) be the abstract substitution for sg after its unification with

hd. After unification, the dependencies among the argument positions are the same
for both sg and hd, since they have been instantiated to the same term. Therefore,

p(hd, &try) =9&y *unify(sg,hd) 1. By arguments similar to the proofs of Corollaries
1 and 2, it can be shown that 9D(sg, hunLfy(sg,hdJ L (9(sg, A))*. q

Unless otherwise noted, all substitutions referred to in the rest of this paper are
abstract substitutions.

4. COMPUTING THE ABSTRACT ENTRY SUBSTITUTION

In this section, we describe an algorithm to compute the (abstract) entry substitu-
tion for a clause C given a subgoal sg (which unifies with the head hd of this
clause) and sg’s (abstract) call substitution.

If the program variables in hd belong to a set Shd, then a consercatiue entry
substitution for this clause would be ,&Shd). But this is too pessimistic an estimate,
since it says that every program variable in hd is potentially dependent on every
other program variable. To get a more accurate estimate, we determine which
program variables in S,, are ground and try to reduce the sharing information in
the entry substitution. An algorithm for performing this task is given in Section 4.1.
Section 4.2 illustrates this algorithm with an example. This algorithm can be
summarized as follows:

Pet$orm abstract unification. Do a term-by-term unification for sg and hd, and
determine the potential sharing information between the program variables
in sg and hd. This is done in steps 1 through 3.

Propagate groundness information. A program variable in Shd is ground if it is
unified with a ground term in sg. This term could be ground either because
the program variables in it are ground in sg’s call substitution, because it
does not contain any program variables, because some of its program vari-
ables are ground due to unification with terms in hd, or because of a
combination of the above. This is done in steps 4 through 6.

Apply independence information in sg’s call substitution. Take the remaining
program variables (which are potentially nonground) in S,,. Form dependen-
cies among them based on the results of abstract unification and groundness
analysis. Eliminate some of these dependencies, based on the information in
sg’s call substitution. This is done in steps 7 through 10.

326 K. MUTHUKUMAR AND M. HERMENEGILDO

4.1. Algorithm

Let the set of program variables which occur in sg be Sss = (X,, X,, . . . , X,1. Let
sg =pred(s,, s2,. . . , sn), and the head hd (which is umfiable with sg> be hd =
predct,, t,, . . ., t,). Let the set of the program variables in hd be S,, = {Y,, Y2,. . . , Y,},
and the set of program variables which do not occur in hd but occur in the body of
the clause of hd be {YP+i,..., Y,). We assume6 that S,, n {Y,, . . . ,Y,) = 0. Let Acal,
be the call substitution of the subgoal sg. Below we describe the algorithm for
computing the entry substitution Pentry for the clause C = hd :- body.

1. Projection. Compute A by projecting Acal, onto the set Ssg, i.e.,

A + {SlS = (S’ n Ssg), S’ E A,,,,}.

A contains all the potential sharing information among program variables
in sg.

2. Normalize unij2cation equations. For each pair of terms si, ti, 1 pi in,
normalize the equation si = ti so that it is replaced by a set of equations
Z = Term,, Z E S,, U S,,. Form the set ?/ as follows:

Yzc + {(Z, Set,) ISet, = var(Term,), Z = Term, is a normalized equation}.

3. Grouping. For each Z such that (Z, Setlz), . . . , (Z, Setkz) are elements of
%!‘, replace these elements with (Z, {Set lz, . . . , Setk,}). The presence of this
element in ?J means that, due to the unification of sg and hd, the program
variable Z is bound to k different terms, respectively containing the sets of
program variables Set 1, , . . . , Setk, .

4. Initialize the set of ground program variables. Let G denote the set of
program variables in sg and hd that are ground. Initialize G as follows: for
all (Z, SS,) E % such that

0 E SS, (i.e., Z is bound to a ground term due to the current unification),
or Z belongs to the set S,, and is ground according to A, add Z to G. We
also maintain a queue L of ground program variables, whose groundness
has not been propagated to other program variables. Initially L contains
the same elements as G in some order.

5. Groundness propagation. Repeat until the queue L is empty:

(a> Dequeue Z from L.
(b) Let Gl + (WIWE G, (Z, SS> E M, S E SS, WE S). Update G + G U

Gl. Also, enqueue the elements in Gl to the queue L and remove
(Z, SS) from ‘?J (this step ensures that the “groundness” of Z is
transmitted to all the program variables that occur in the terms that Z
is bound to).

(c) For all W, S, SS such that (W, SS> E 2Y, S E SS, and Z E S, remove Z
from S. If S becomes an empty set and if W is not in the set G,

6This assumption is valid owing to renaming of variables in clauses.

DERIVATION OF VARIABLE DEPENDENCY 327

enqueue W in the queue L and add it to the set G (this step ensures
that occurrences of Z are removed from the RHS of the unification
equations).

6. Update A: A + {SlS E A, S f~ G = 0). This is an update of the call substi-
tution A to reflect the fact that some variables in S,, have become ground
due to unification of sg with hd.

7. Potential-dependency graph formation. Build an undirected graph G,,
which will reflect potential sharing between instantiations of program
variables. Let G,, = (V, E), where V= (S,, u S,,) - G and an edge be-
tween two vertices indicates a potential sharing between program variables
represented by the two vertices. E = El U E2, where El and E2 are
computed as follows:

El +- {(Xi, Xj>lXi E S, Xi E S, S E A, i #j} (in this step, we carry over the
sharing information between program variables in A to the graph GsT).
E2 + {(W, Z)l(W, SS) E %!, Z E S, S E SS) (in this step, we carry over the
sharing information due to unification to the graph G,,).

8. Graph partitioning. Let S,, - G be partitioned into mutually disjoint sets
HP,,..., HP, such that yi and 5 belong to the same partition if and only if
there is a path between them in the graph GsT.

9. Form a first approximation to Pentry:

P+ ; @(HP,).
i=l

It is clear that the entry substitution Pent,.,, for the clause C is a subset of

Pa

10. Prune p down to form Pentry. p may contain some sharing information
among the arguments of the subgoal predicate that is not compatible with
A. In this step, we remove such “spurious” sharing information from p.
Consider ~%sg, A). This gives the sharing information among the argu-
ments of sg due to the abstract substitution A. By unifying sg with the
head hd of the clause C, the new sharing among the arguments of this
subgoal can only be a subset of (9(sg, A))*. This is proved in Corollary 3
(Section 3). We take advantage of this fact in “pruning” down p. Let
Phd + {SlS E p, pos(hd, S) E (9(sg, A))*}. The entry substitution for the
clause C is Pentry = (P/J u ccr,, 11,. . * , IY,H.

Proposition 2. Given a subgoal sg whose abstract call substitution is Acal, and a clause
C whose head hd unifies with sg, let Pentry be the abstract entry substitution for C as
computed by the above algotithm. Then Pentry is a safe approximation in the
following sense: In the concrete interpretation, let R,,,,, be the set of entry
substitutions for clause C computed from sg’s set of call substitutions y(Acal,). Then
n entry c Y(&try)*

PROOF (Outline). The main proof burden is to show that the dependencies among
the program variables in hd induced by the dependencies in Acal, and by the
unification of sg with hd are safely computed. This is precisely done when the

328 K. MUTHUKUMAR AND M. HERMENEGILDO

potential-dependency graph is formed. Firstly, the dependencies due to unification
are computed in steps 2 and 3. Secondly, the program variables that are bound to
ground terms due to unification and Acal, are identified in a straightforward
manner in steps 4, 5, and 6. Now the potential-dependency graph, which shows
potential dependencies among its possibly nonground variables, is formed. Two
variables are potentially dependent iff there is a path between them, i.e., they are
dependent according to Acal, or they are dependent due to unification or both.
Consider a partition P in this graph. The powerset of P describes all possible
dependencies among the variables of P. Therefore, in step 9, we form a first
approximation to Pentry by taking the union of the powersets of all partitions
(restricted to variables in S,,) of the potential dependency graph. However, we can
refine this value of Pentry further by removing some spurious dependencies in it by
using Corollary 1 of Proposition 1. This is done in step 10. The final value of Pentry
as computed by this algorithm is thus a safe approximation. 0

4.2. An Example

We illustrate the above algorithm with the aid of an example:

The subgoal sg: pred(X,,f(X,,X,),X,,g(X,),f(X,,h(X,)),X,)
The head hd (of clausec): pred(p(Y,), Y,,q(Y,, I’,), Y4,fMY5),Y6), Y6)
The calling substitution Acal,: 10, m,1, cq, &I, G,, x,, x,1, IX,, X,)1

Here S,,=(X,,X,,X,,X,,X,) and S,, = (Y,,Y,,Y,,Y,,Y,,YJ. Let (Y,,Y,J be
the set of variables in the body of the clause C that do not occur in its head hd. In
the following, we illustrate how Pentry, the entry substitution for the clause C, is
computed given the above information:

1. Projection. A = (0, (X,1, (X,),(X,, X,1, IX,, X,)1.
2. Normalize unijication equations.

g= (~~~~~~~~~~(~~~~~~~~~~~~~~,~I~~~Y,~~~

(r,,IX,}),(X,,{r,}),(Y,,IX,}),(Y,,{X,J)J.

3. Grouping. In this step we simplify % by collecting together tuples which
have the same LHS:

g= ((X,,IrY~>}),(Y2,{{X2,X4}}),(X3,I(Y3,Y6}}),

(r,,{{X3l}),(X4,I{y5})),(y67{{X4},(X5}})1.

4. Initially, G = (X,) and the queue L contains only one element, X,.
5. Groundnesspropagation. The queue L contains X,, Y,, Y, at various points

during this step. After this step, G = (X,, X,, Ys, Y,} and

g= {(X,,I{Y,}l),(Y*,{{X,l}),(X,,{{Y,)}),(Y,,I{X,}J)J.

6. Update A. A = (0, ix,), LX,}, {Xl, XJI.
7. Potential-dependency graph formation. The graph G,, = W’, E), where V =

IX,, X2, X,, Y,, Y,, Y,, Y4) and E = {(XI, X2), (XI, Y,),
(X,,Y,),(X,,Y,),(X,,y,)).

8. Graph partitioning. The set S,, - G is partitioned into two sets, (Y,, YJ
and (Y,, Y,).

DERIVATION OF VARIABLE DEPENDENCY 329

9. Taking the union of the powersets of the above partitions, we get

P= {0,{Y,},{Y,},{Y,,Y,},{Y,J7(Y,},{Y,,Y,}J.
IO. Prune p down to form Pentry. s%g, A) = I0,11), 1I,21, (3,41), and we have

pos(hd, (Y,lI = 111, pos(hd, {Y*l) = (21, po&zd, {Y,, Y*l) = 11, 2),
podhd, {YJ) = (31, pos(hd, (Y41) = 141, and pos(hd, {I’,, 6)) = (3,4I. It is
clear that {Y,},(Y,},(Y,) can be removed from /3. To this pruned-down /3
we add IY,) and IY,) to get Pentry = (0, (Y,J, (Y,, Y,J,
w,, YJ, W,L W*H.

5. COMPUTING THE ABSTRACT SUCCESS SUBSTITUTION

In the previous section, we described an algorithm for computing the entry
substitution p,,,, for a clause C = hd:- body, given a subgoal sg (which is
unifiable with hdj and sg’s call substitution Acal,. In this section we describe an
algorithm to compute the success substitution Asuccess for sg, given the exit
substitution Pexit for the clause C, i.e., the substitution at the “rightmost” point of
the clause C. This algorithm makes use of the abstract unification information
computed in the previous algorithm. Also, the sets of variables S,, and S,, that are
used here will be the same as in Section 4.1.

If peXi, = 0 (i.e., the exit substitution is I , indicating that clause C didn’t
succeed), then obviously ASUCCeSS = 0. Else, we execute the algorithm in the follow-
ing section. Broadly, the various steps in this algorithm can be explained as follows:

First we project the exit substitution onto the set of program variables in hd
(step 1). We then check if any of these program variables is ground according
to the exit substitution but was not ground according to the entry substitu-
tion. These variables became ground during the execution of the body of the
clause C. We propagate the groundness of these variables to the appropriate
variables in sg (steps 2 and 3).

We then compute the potential dependencies among the program variables in sg
by forming a dependency graph as before and taking the union of the
appropriate powersets of program variables in sg (steps 4 through 6).

Some of these dependencies may be spurious, i.e., (1) they may not agree with
the call substitution of sg or (2) they may not agree with the dependencies
among the arguments of sg induced by the exit substitution of the clause C.
These spurious dependencies are removed (step 7).

What we have now is the projection of the success substitution of sg on its
program variables. This is extended to all the program variables in the clause
of sg (step 8).

5. I. Algorithm

1. Projection. Compute /3’ by projecting Pexit onto the set S,, (the set of
variables in the head hd), i.e.,

P’ @ {SIS = (S’ n S,,), S’ E Pe,i,)*
p’ is effectively all the information from peXi, that is used in this algorithm.

330 K. MUTHUKUMAR AND M. HERMENEGILDO

2. Groundnesspropagation. Start with the values of G, %‘, and A at the end of
step 6 of the previous algorithm. Let G2 + (212 E Shd, Z P G, VS(S E p’
=j Z @ S)}, i.e., G2 contains new ground program variables in hd that were
not ground according to p. Update G + G U G2. Also, enqueue the ele-
ments of G2 to the queue L. This queue is used in the same manner as in
the algorithm in Section 4. If L is empty, then go to step 4. Else, execute
the groundness-propagation step (step 5) of the previous algorithm.

3. Update A. Execute step 6 of the previous algorithm.

4. Potential-dependency graph formation. Execute step 7 of the previous algo-
rithm. Let E3 + {(Y,,q)lyi ES, q E S, S E p’). E3 contains the new shar-
ing information obtained from p’. Update E + E u E3.

5. Graph partitioning. Let S,, - G be partitioned into mutually disjoint sets
SP 1,. . . , SP, such that Xi and Xi belong to the same partition if and only if
there is a path between them in the graph G,,.

6. Form a first approximation to the projection of ASUCCeSS on sg:

A’ * b p(SPJ.
i=l

It is clear that ASUCCeSS n S,, is a subset of A’.

7. Prune A’ down to get the projection of ASUCCeSS on sg. A’ may contain some
sharing information among the arguments of the subgoal predicate that is
not compatible with A and with p’. In this step, we remove such “spurious”
sharing information from A’.

Consider 9(hd, Pexit). This gives the sharing information among the argu-
ments of hd (and hence of sg) due to the abstract exit substitution pexit for
the clause C. It is clear that the sharing information among the arguments
of sg induced by ASUCCeSS n S,, (and hence ASUCCCSS) has to be the same as
well. Therefore, any element in A’ that leads to an argument sharing that is
not in 9a(hd, Pcxit) must be removed.
Also, as discussed in Section 3 (Corollaries 1 and 21, the successful execu-
tion of the subgoal sg can only produce a success substitution which is a
subset of A*. Therefore, any element of A’ that is not in A* must be
removed.

These steps are summarized as follows:
A’ + {SlS E (A’ n A*), pos(sg, S) E9(hd, Pexit)}.

8. Compute ASUCCeSS from A,,,, and ASUCCeSS n S,,. Partition Acall into two sub-
sets Al,,,, and A2,,,, as follows: Al,,,, contains only those elements S such
that S n S,, = 0; A2,,,, = Acal, - Al,,,,. Then

A S”CCeSS = (SIS E (A2ca,,)* A (SnS,,) E A’} u Al,,,,.
We state a proposition similar to the previous one. It essentially says that ASUCCeSS

is a safe approximation to the actual success substitution for the subgoal S,,.

Proposition 3. Given a subgoal sg whose abstract call substitution is A_,,, a clause C
whose head hd unifies with sg, and a safe abstract exit substitution Pexit (which is
compatible with Pen try as computed by the algorithm of Section 4, i.e. Pexit c p,*,,,>

for C, let ASUCfeSS be the abstract success substitution for sg computed using C and

DERIVATION OF VARIABLE DEPENDENCY 331

the above algorithm. Then ASUCCeSS is a safe approximation in the following sense: In
the concrete interpretation, let SISUCCeSS be the set of success substitutions (computed
using the clause C) corresponding to the set of call substitutions y(A,,,,) and to exit
substitutions y(~3,,~,). Then R = Y(AS”CW_SJ S”CCeSS -

PROOF (Outline). The argument for the correctness of this proposition is very
similar to the last one. p ‘, which contains all the relevant sharing information (due
to Pexit) among the program variables in hd, is correctly computed in step 1. The
groundness and sharing information in /3’ is then conservatively transmitted to the
program variables in sg in steps 2 to 4. The potential-dependency graph computed
by the previous algorithm is enhanced by the new sharing and groundness informa-
tion (if any) in p ’ in step 5. In step 6, a conservative estimate of the projection of
A SUCCeSS on sg is computed. Some of the sharing information thus computed may be
spurious. It may not agree with (1) the sharing information in Acal, and (2) the
argument sharing in hd due to p’. Such spurious sharing information is removed
in step 7. Finally, ASUCCeSS is conservatively computed in step 8. q

5.2. An Example

We illustrate the above algorithm by a continuation of the previous example. The
subgoal sg, the head hd (of clause C), and the call substitution A,,,, (for sg) are as
before. Let @exit = 10, IY,, Y,), {Y,, YJ).

1.
2.

3.
4.

5.

6.
7.

8.

Projection. p’ = (0,{Y,},(Y,,Y,}}.
Groundness propagation. From step 6 of the previous example we get
G = IX,, X,9 Y,, Y,), +?J = 1(X,, {{Y,))), (Y*, {1X,))), (X,,
({Y,))), (Y,, {IX,)))), and A = {0, IX,), {X,1, {X,, XJ). After the execution of
this step, we get G = {X,, X,, X,, Y,, Y,, Y,) and % =
I(X,,~(Y,~~),(X,,~IY,~)>(r,,~~X,~))l.
Update A. A = {0, IX,), IX,)).
Potential-dependency graph formation. G,, = (V, E), where V =
(X,,X,,Y,,Y,,YJ and E={(X,,Y,),(X,,Y,),(X,,Y,),(Y,,Y,)).
Graph partitioning. The set S,, - G has two elements (X, and X,) and two
partitions (IX,) and IX,)).
Thus, we get A’ = (0, IX,), (X3))
Prune A’ down to get ASUCCeSS f~ S,,. There are two nonempty set elements in
A’, which also belong to the set A. Therefore they are also in the set A*.
Moreover, pos(sg, IX,)) = {l) and pos(sg, IX,)> = {3,4). These belong to the
set 9’D;(hd, Pexit) = 1{1),{3,4)). Thus, no element is removed from A’.
Compute ASUCCeSS from Acall and ASUCCeSS n S. Al,,,, = {0,IXJ) and A2,,,, =
{IX,), 1X,), 1X,, XJ, IX,, X,, X,)). From this, we compute ASUCCeSS =
(0, (X,1, {X,1, {X,1).

6. OPTIMIZATION OF THE COMPUTATION OF SUCCESS
SUBSTITUTIONS IN SPECIAL CASES

As mentioned in Section 2, the algorithms described in Sections 4 and 5 can
together be used to compute the success substitution of a subgoal sg given its call
substitution and the head hd of a clause which unifies with sg. However, it is

332 K. MUTHUKUMAR AND M. HERMENEGILDO

known that this clause is a fact (i.e., it doesn’t have a body), we can eliminate some
of the steps in computing sg’s success substitution from its call substitution.
Consequently, the optimized algorithm consists of the following steps:

steps 1 through 7 of the entry substitution algorithm (Section 41, followed by

steps 5 through 8 of the success substitution algorithm (Section 5).

7. A TOP-DOWN-DRIVEN FIXPOINT COMPUTATION ALGORITHM
FOR ABSTRACT INTERPRETATION

In this section, we describe an efficient, top-down-driven fixpoint computation
algorithm for abstract interpretation. The goal of this algorithm is to build the
abstract AND-OR tree for the given program and goal, thus computing the abstract
substitutions at all points of this program.

As mentioned in Section 2, in building the abstract AND-OR tree for a given
program and a goal, the abstract interpreter has to repeatedly execute the basic
step of computing the success substitution of a subgoal whose call substitution is
given. Given a subgoal p, its call substitution Acal,, and clauses C,, . . . , C, whose
heads unify with p, a naive approach to executing this basic step would be to build
the subtree for p in a top-down fashion:

Project Acal, onto the variables in p to obtain A, the projected call substitution
for p.

For each clause Ci, compute its entry substitution using the algorithm in Section
4. Compute its exit substitution by recursively computing the success substitu-
tions for each of. its subgoals in a left-to-right fashion. Compute Al, the
projected success substitution for p from clause Ci, using the algorithm in
Section 5.

Compute A’, the projected success substitution for p, by taking the least upper
bound CLUB) of Ai, 1 I i 5 m. Extend A’ to ASUCCeSS, the success substitution
for p.

As also mentioned in Section 2, this approach may lead to problems if p or one
of its descendants in its subtree is a recursive predicate. A situation as shown in
Figure 2(a) below may develop if p is recursive, for example. In this case, a subtree
for p has a descendant node which has the same atom (p) and the same projected
call substitution (A). Obviously, this will lead to an infinite loop and A’ will never
be computed.

The goal of the fixpoint algorithm is to facilitate the computation of A’ in such
cases without going into an infinite loop. The basic idea behind this algorithm is as
follows:

Compute the approximate value of A’ using the nonrecursive clauses C,, . . . , C,
for p, and record this value in a memo table [lo]. Details of this memo table
are described in Section 7.1.

Construct the subtree for p, using the approximate value of A’ from the memo
table if necessary. Note that this computation will not enter into an infinite
loop, since approximate values of projected success substitutions from the
memo table are used for recursive predicates.

DERIVATION OF VARIABLE DEPENDENCY 333

Update the value of A’ using p’s subtree. This value is “more accurate” than
the previous one. Update p’s subtree to reflect this change, and compute the
new value of A’ again. Repeat this step until the value of A’ doesn’t change,
i.e., it has reached jixpoint.

7.1. Details of the Memo Table

The memo table has an entry for each subgoal with a distinct atom and a distinct
(projected) call substitution (modulo renaming of the variables) that occurs in the
abstract AND-OR tree.7 In the context of the fixpoint algorithm described in this
paper, the main use of the memo table is to store-possibly incomplete-results
(i.e. values of the projections of success substitutions) obtained from an earlier
round of iteration. Each entry in this table has four fields:

(1)
(2)
(31
(41

The atom for the subgoal.8
The projection of its call substitution on its variables (A).
The projection of its success substitution on its variables (A’).
Characterization of the information in the third field i.e., whether it is
complete or approximate or jixpoint. These labels are explained in detail in
Section 7.3. For a nonrecursive predicate, this entry is always complete, but
for a recursive predicate, it can take on any of the above three values.

The desired output of the algorithm, the abstract AND-OR tree for the given
program and query, is implicitly contained in the memo table at the termination of
the algorithm. Therefore, the memo table is the output of the algorithm as
presented in Section 7.3. Also, in an actual implementation of this algorithm, each
entry in the memo table has an additional field indicating the clause in which the
subgoal corresponding to this entry occurs and also its position within the clause.
On completion of the algorithm, this information gives direct access to the abstract
substitutions at all points in the given program. For reasons of space and clarity,
the memo table in the algorithm presented in Section 7.3 does not have this
information.

7.2. Overview of the Algorithm

This section presents the “core” of our tixpoint computation algorithm. We give a
detailed description of this algorithm in Section 7.3. Section 7.4 gives an outline of
the proof of its correctness.

‘Normally, the memo table is empty at the start of Iixpoint computation. However, if the given
program invokes modules which have been precompiled, the results of abstract interpretation for these
modules can be preloaded into the memo table. This saves the work of performing abstract interpreta-
tion for these modules again. In addition, it can be assumed that conceptually the memo table is
preloaded with the entries corresponding to the built-ins, which are marked as complete. In practice,
however, because of the peculiarities of some nonlogical built-ins and because the built-ins are a very
important source of information, they are treated specially. Note as well that the memo table is also
used in the algorithm for storing dependency information. This temporary information will not be
preient, however, at the end of the analysis.

This field actually contains information about the unique ID for the subgoal in the abstract AND-OR

tree.

334 K. MUTHUKUMAR AND M. HERMENEGILDO

It assumes that the predicates in the given program have already been classified
as recursive or nonrecursiue.’ As mentioned before, the fundamental step that is
executed in this algorithm over and over again is the computation of the success
substitution of p given its call substitution, where p is an atom that occurs as a
node in the abstract AND-OR tree for the given program and goal.

If the predicate for p is nonrecursive, then it is checked if the memo table has
an entry corresponding to (1) the atom for this subgoal (module renaming of
variables) and (2) A.

If there is such an entry, the value of A’ is obtained from this entry and ASUCCeSS
is computed by extending A’ to all the variables in the clause for the subgoal.

If there is no such entry, let C,, . . . , C,,, be the clauses whose heads unify with p.
The entry and exit substitutions for these clauses and subsequently, A;, . . . , AL
are computed. A: is the projection of the success substitution on its variables
for p computed from the exit substitution of the clause Ci. A’ is computed by
taking the least upper bound of A[, 1 I i I m. A new entry in the memo table
is created with the values p, A, A’, and complete, for the four fields. ASUCCeSS is
computed by extending A’ to all the variables in the clause for the subgoal.

If the predicate for p is recursive, then it is checked if the memo table has an entry
corresponding to p and A.

If there is such an entry with the last field’s value being complete, then ASUCCeSS is
computed as before by extending A’ to all the variables in the clause for the
subgoal. If the last field’s value is not complete, then we are in the middle of
performing lixpoint computation for p. The action to be taken in this case is
described in detail below.”

If there is no entry for p and A, let C,, . . . , C, be nonrecursive clauses for p.

Then ‘;Txpoinl) the approximate value of A’ from these clauses, is computed,
and a new entry in the memo table is created with the values p, A, A;ixpoint,
and fixpoint, for the four fields. Let C,, ,, . . . , C, be the recursive clauses for
p. Then A:+ ,, the projection of p’s success substitution due to the clause
C r+ i, is computed. Let the least upper bound of A;ixpoinr and Ai+ 1 be At,,.
If this is not the same as A;iXpoinl, then the memo table is updated with

‘;Txpoin* ‘= ‘LIB* This step is repeated for r + 2,. . . , m. If the value of Ahxpoinl
did not change for r + l,..., m, then lixpoint computation can be stopped.
The projection of the success substitution, A;Txpoint, that is in the third field
for this entry is accurate and so can be labeled complete. On the other hand,
if the value of Akxpoinr did change during this step, the fixpoint computation
is started again with the clause C,, i. This step is repeated until Aixpoinl
reaches fixpoint.

The following are the main advantages of our algorithm:

Rather than performing hxpoint computation for the entire abstract AND-OR

tree in a naive fashion, our algorithm localizes the lixpoint computation to

‘The algorithm for classifying predicates as recursive or nonrecursive is described in Ullman [25].
“See the description of the function lambda_to_lambda_ptime in Section 7.3.

DERIVATIONOFVARIAESLEDEPENDENCY 335

recursive subgoals. Elsewhere [22], we have described how this leads to a
more efficient computation of the abstract AND-OR tree.

Given a recursive predicate p and its projected call substitution A, we start the
tixpoint computation by first computing the approximate value of A’ from the
nonrecursive clauses for p. This will lead to a faster fixpoint computation
than if we had started with A’ = I .

The input and output mode information from built-in clauses like is/2 is used to
increase the precision of information that can be obtained from the abstract
interpreter.

Of all the clauses which define the predicate of a subgoal p, only those whose
heads unify (in the concrete domain) with p are used in the computation of
the success substitution ASUCCeSS of p, given its call substitution A,,,,.

7.3. Algorithm for Fixpoint Computation

In this section we present the algorithm for fixpoint computation. The substitutions
mentioned in this algorithm are all abstract substitutions unless otherwise stated.
Because the algorithm is independent of the underlying abstract domain, certain
domain-dependent functions used for unification and other abstract substitution
manipulation are left undefined. These functions are described at the points of
their occurrence in the algorithm. For the abstract domain described in Section 3,
these functions have been described in Sections 4 and 5.

The top-level function, compute-abstract-and-or-tree, takes as its input argu-
ments the Program, the Query, and its call substitution and returns the Memo table
that was computed by the fixpoint computation algorithm. The abstract AND-OR

tree for the Program can be easily derived from this Memo table. This function uses
the tuple projection function 7~~ which returns the second argument of an n-tuple.

Definition I3 (compute-abstract-and-or-tree).

compute-abstract-and-or-treed P, Q, hca,,) =
m,(call-to-success(P, Q, Acall, { 1, { I)).

The function call-to-success computes the success substitution of a goal given
its call substitution. Its input arguments are the Program, the Subgoal, its call
substitution, the input Memo table, and in-ids. It returns a 3-tuple (success substitu-
tion, output Memo table, out-ids). Here in-ids and out-ids are sets of node IDS.
More precisely, they are sets of node IDS for which incomplete (i.e. fixpoint)
information from the memo table has been used to compute their success substitu-
tions. The difference between out-ids and in-ids gives the set of node IDS in the
subtree of the Subgoal which used “incomplete” information.

This function uses two abstract domain specific functions, project and extend.
Project takes as input a Subgoal and its call substitution and computes its projected
call substitution. Extend takes as input a Subgoal, its call substitution, and its
projected success substitution and returns its success substitution.

336 K. MUTHUKUMAR AND M. HERMENEGILDO

Definition 14 (call-to-success).

call-to-success(P, S, Acall, Mi,, Ids,“) =
(A SUCCCSS 3 MO”, 9 %uJ
where ASUCCeSS = extend(S, A_,,, A’)
and (A’, MO,,, Ids,,,) = lambda-to-lambda-prime (P, S, project@, Acal,),
Mi” > IdSi,)*

The function lambda_to_lambda_prime computes the projected success substitu-
tion A’ of a subgoal p given its projected call substitution A. Below, we discuss the
five cases it considers:

(1)

(2)

(3)

(4)

(5)

If p is a nonrecursive subgoal that has no existing entry in the memo table,
then A’ is computed by the procedure nr-lambda-to_lambda_ptime.
If p is a recursive subgoal that has no existing entry in the memo table, then
fixpoint computation has to be started for this subgoal. A new entry
corresponding to p and A is created in the memo table with A’ initialized to
an appropriate value to start the fixpoint computation (e.g. 1). Then the
function @point-compute computes A’ by performing fixpoint computation
on p’s subtree. Note that for simplicity the value used in the following
description of the lambda-to-lambda-prime function is I , and the clauses
are then visited in an unspecified order. In an actual implementation,
however, the nonrecursive clauses are visited first, thus computing a better
first approximation to A’. Only then is fixpoint computation started. This
speeds up convergence.
If the memo table has an entry for p and A and this entry has the label
@point, then the current node for p is the descendant of another node for p
with the same A, i.e., we are in the process of computing the fixpoint for A’
for that node. See Figure 2(a). The memo table entry for A’ is an approxima-
tion to the correct value for both the p nodes. The function id(p) returns
the unique ID of the subgoal p.
If the memo table already has a complete value for A’, out-ids is obviously
the same as in-ids, since there are no “incomplete” nodes in the subtree for

P.
If the memo table has an entry for p and A and this entry has the label
approximate, then the situation is as shown in Figure 2(b), i.e., there are two

FIGURE 2. Some situations that arise during fixpoint computation.

DERIVATION OF VARIABLE DEPENDENCY 337

nodes in the tree, one of which is the ancestor and the other is the
descendant for the current node for p. Both these nodes are for the same
recursive predicate q. The fixpoint computation for p has already been
completed, but the hxpoint computation for q is not yet over. Since the
lixpoint computation for p made use of an approximate value of success
substitution for q, the resultant A’ is not accurate. That is why this entry has
the label approximate. Fixpoint computation for p is started again after this
label is changed to @point in the memo table. Of course, we now start with
a better approximation for A’.

Dejinition 1.5 (lambda-to-lambda-prime).

lambda-to-lambda-prime(P, S, A, Mi,, Idsi,) =
/
if (S, A, _, _) @ M,, A S is nonrecursive

then (A’, M,,, U {(S, A, A’, complete)}, IdSi,),

where (A’, MO,,) = nr-lambda-to-lambda-prime(P, S, A, Mi”, P),

(S, A, -, _) @ Mi, A S is recursive

then ftipoint_compute(P, S, A, Mi, U {(S, A, I , fipoint)} , IdSi,),

(S,A,A’,fucpoint) EMi”

then(A’,Mi,,Zdsi,U{id(S)})),

(S, A, A’, complete) E Mi,

then (A’, Mi,, Idsi,),

if

if
<

if

if

\

(S,A,A’,approx) EM,,

then @point-compute(P, S, A, M,, U {(S, A, A’, @point)}

-{(S,h,A’,approx)},ldsi,).

The function nr-lambda-to-lambda-prime computes the projected success sub-
stitution for a nonrecursive Subgoal given its projected call substitution.

Dejinition 16 (m-lambda-to-lambda-prime).

nr-lambda-to-lambda-ptime(P, S, A, Mi,) Cls> =
‘if 3C E Cls . head(C) unifies with S

then (lub(A’, Ah), M,,,),

where (A&,M,,,,-) =

(clause-lambda-to-lambda-prime (P, S, C, A, M, 0)

and(A’,M) =

nr-lambda-to-lambda-prime (P, S, A, Mi, , Cls - {C)),

else (_L , Min).

The function clause-lambda-to-lambda-prime computes the projected success
substitution A;l for the subgoal S using the clause C whose head unifies with
S. It uses the abstract-domain-specific functions call-to-entry and

338 K. MUTHUKUMAR AND M. HERMENJSGILDO

exit-to-success. The former computes the entry substitution for C given the A
for S. The latter computes AL for S given the exit substitution for C.

Definition 17 (clause-lambda-to-lambda-prime).

clause-lambda-to-lambda-prime(P, S, C, A, Mi”, Idsi”) =

(A;, M,,t> Ids,,,)
where A;l = exit-tosuccess(Pexit, S, C, A)

and (Pexit, MoutY Ids,,,) = en+to-e&(Pentry, Mi,, Idsin, P, body(C))

and Pentry = call-to-ently(A, S, C).

Definition 18 (en+to-exit).

v-to-exit(Pentry, Mi,, Idsi,, P, Body) =
if Body = true

then (Pentry y Wn 7 Idsin) 7

if Body = (Atom, As)

then ently-to_exit(Pint, Mint, Idsint, P, AS)

where (Pin,, Mint, Idsint) = call-to-success(P, Atom, Pent,,, , Mi,, IdSi”),

if Body = Atom

then call-to-success(P, Atom, Pentry, Mi”, IdSi,).

The function &point_compute computes the A’ of a subgoal S by performing
fixpoint computation on its subtree. It does so by applying the tixpoint operator t
to the function ret-l-to-lp, which traverses the subtree of S once, as described
below. ret-Z-to-lp T o repeatedly applies the function ret-l-to-lp until fixpoint is
reached for A’.

Dejinition 19 (@point-compute).

fkpoint_compute(P, S, A, Mi,, Ids,,) =
(A’, M” - (6 A, -, -)I U KS, A, A’, LabelN,(Idsi, U Idssubtree - {id(S)))),

where CM”, Label) = update-abs-ao-treed M’, S, Ids,,btree)
and (A’, M’, Idssubtree)=rec-l-to-lp t w(P,S, A,(A~“it, Mi”,0>, P)

where (S, A, hlinit, @point) E Mi,.

The application of the fixpoint operator t to the function ret-l_to-lp is made
explicit by means of the following definition.

Definition 20 (ret-l-to+ t).

ret-l-to-lp tO(P, S, A,(A’, M, Ids), P) = (A’, M, Ids),

ret-I-to-lp T(n + lXP, S, A, (A’, M, Ids), P>
= rec_l_to_lp(P, S, A, ret-l-to-lp t n(P, S, A,(A', M, Ids), P>, P>,

ret-l-to-lpt o(P,S,A,(A’,M,Ids),P)=(U..,A~, Un<,,,Mn,U,,<,Ids,),
where (AA, M,, Ids,) = ret-l-to-lp 7 n(P, S, A,(A’, M, Ids), P>.

DERIVATION OF VARIABLE DEPENDENCY 339

As mentioned before, the function ret-l-to-lp traverses the subtree once,
computing the projected success substitution A from the projected call substitution
A’ for the recursive case.

Definition 21 (ret-I-to-lp).

rec_l_to_lp(P, S, &(A:,,, M,,, Zdsi,),Cls) =

1

if 3 C E Cls . head(C) unifies with S

then ret-l-to-lp(P, S, A,)

cl_rec_l_to_lp (P, S, A, (h’in, Mi,, Idsi,), C), CLS - {C})

else (Ari, , Mi,) Idsi,).

The function cl-ret-l-to-lp computes the projected success substitution A from
the projected call substitution A’ one clause at a time for the recursive case. It uses
the abstract domain specific function lub, which returns the least upper bound of
two abstract substitutions.

Definition 22 (cl-ret-l-to-lp).

cl-ret-I-to-lp(P, S, A,(A;“, Mi,, Zds,),C) =

(Abut, M,,, - KS, A, AI,,Jix point>} U KS, A, Abut, fixpoint)), Ids,,,)
where AL,, = Zub(A;, , A;)
and (A;, Mout, Ids,,,)
= clause-lambda-to-lambda-prime(P, S, C, A, Mi,, Ids,,).

Once tixpoint computation is completed for the subtree of a recursive subgoal S,
the set of node IDS whose approximate success substitutions were used for this
fixpoint computation, Idssub_, is examined. If this contains only the node ID for S,
then the A’ computed for S is labeled complete. In this case, it is possible that some
other node IDS were “dependent” on this node ID. The dependency information
for these nodes is suitably updated by the function update-depend-set. If Idssub_
contains node IDS other than id(S), then the A’ obtained by the fixpoint computa-
tion is labeled approx. The dependency information is suitably updated in the
memo table by the function update-abs-ao-tree.

Definition 23 (updateabs-ao_tree).

update-abs-ao-tree(Mi, , S, MY,,,,~~~~) =
if (&,i,tree - {id(S)}) = 0

then (update-depend-set (Mi, , id(S)), complete)

else (Mi, - {dependset(id(S) , -)}

u { dependset (id(S) , (Zdssubtree - (id(S)}))} , approx) .

340 K. MUTHUKUMAR AND M. HERMENEGILDO

Definition 24 (update-depend-set).

update-depend_set(Min , Id) =

3Zd ’ , Set. (depend-set (Id ‘, Set) E Mi, A Id E Set)

then update-depend-set(M - { depend-set(Id’, Set))

U{depend-set(Zd’,Set- {Zd})},Zd)

where M =

I

if Set-{Zd] =0

then Mi, - {(S’, A, A’, approx)) U {(S’, A, A’, complete)]

where S’ = id-‘(Id’)

else Mi,

Min.

7.4. Outline of the Proof of Correctness of the Algotithm

Proposition 4. Given the following:

an abstract domain that satisfies the conditions:

(1) that the number of distinct (modulo renaming of variables) abstract substitu-
tions for a clause is finite,

(2) that they form a lattice with respect to a partial order induced by the
concretization function,

correct, terminating procedures to compute the following :

(1) abstract entry substitution Pentry for a clause C given the abstract call
substitution Acal, of a subgoal sg which unifies with the head hd of C,

(2) abstract success substitution for a subgoal sg given its abstract call substitu-
tion and the abstract exit substitution of a clause C whose head hd unifies
with sg,

(3) the LUB of two abstract substitutions (of the same clause),

the jixpoint computation algorithm described above correctly computes the abstract
AND-OR tree (i.e., the abstract substitutions at all points) for a given program and goal.
Also, it terminates for all inputs.

PROOF (Sketch). The correctness of this algorithm follows from:

the fact that it computes the abstract projected success substitution A’ of a
subgoal sg as the LUB of the abstract projected success substitutions Al
computed from the clauses Ci, where Ci, i = 1,. . . , n, are all clauses whose
heads unify with sg;

the fact that if an atom sg with the same projected call substitution A (module
renaming of variables) appears in different nodes of the tree, it has the same
value for the projected success substitution A’ at these nodes.

DERIVATION OF VARIABLE DEPENDENCY 341

Termination: When the given program has no recursive predicates, it is clear that
this algorithm terminates, since it builds the abstract AND-OR tree in a top-down
fashion and that tree cannot have two nodes with the same atom and projected call
substitution (modulo renaming of variables), with one node being the descendant
of the other.

When the given program has recursive predicates, the termination of this
algorithm may be seen as follows:

The subtree of a node with a recursive predicate p is finite. Since p can only
have a finite number of distinct call substitutions, the subtree can only have a
finite number of occurrences of nodes who have a variant of p and which
themselves have subtrees. All other nodes with p as their predicates use the
approximate value of the projected success substitution from the memo table
[since they have an ancestor with the same atom and projected call substitu-
tion (module renaming of variables)] and hence do not have any descendant
nodes.

Given that the subtree of a node with a recursive predicate p is finite, it is easy
to see that the complete construction of this subtree takes only a finite
number of steps. Broadly speaking, the construction of this tree proceeds as
follows: First the approximate value of the projected success substitution is
computed as the LUB of the projected success substitutions computed from
p’s nonrecursive clauses. Then the subtree is dynamically traversed in a
depth-first manner and we return to the root of the subtree. At this time, the
value of the projected success substitution is updated as the LUB of the old
value and the value computed from p’s recursive clauses. If there is a change
in this vlaue, then the dynamic depth-first traversal is continued again. Note
that this “looping” through the depth-first traversal can take place only a
finite number of times, since the LUB operation is obviously monotonic and
the abstract substitutions for a clause form a finite lattice, and so the fixpoint
will be reached in a finite number of steps. If there is no change in the value
of the projected success
complete, and so we have
node. q

8. IMPLEMENTATION RESULTS

substitution for this node, then -its subtree is
reached the end of tixpoint computation for this

In this section, we present the results of running an implementation of an abstract
interpreter which uses the fixpoint algorithm discussed in Section 7.3. The goal of
this abstract interpreter is to infer the groundness and independence of program
variables so that run-time groundness and independence checks can be eliminated
for an independent AND-parallel execution of a given logic program. It takes as
input a logic program which also contains a description of the query (or set of
queries) and its (their) abstract substitution, provided by the procedure qmode/2.”

“If the user does not provide a query form, a general one (using a most general abstract
substitution) is generated for all entry points which appear in the module declaration for the file.

342 K. MUTHUKUMAR AND M. HERMENEGILDO

It generates a memo table containing the abstract substitutions at all points of the
clauses which have been used for building the abstract AND-OR tree for the given
query or queries.

This implementation of the abstract interpreter is part of a parallelizing com-
piler that has proven successful in obtaining speedups for a variety of logic
programs [12, 141. Normally, the results of the abstract interpreter are passed to
the parallelizing compiler. However, there is an option in this system which enables
it to output only the results of the abstract interpreter. Basically, the output is an
annotated version of the given logic program, which contains as comments the
abstract cull substitutions of subgoals in all nonunit clauses. Lists are used in the
place of sets for abstract substitutions. The results of using such an option on an
example program (quicksort using difference lists) are presented in Table 1. The
first column gives a subgoal (along with the clause in which it occurs), and the
second column gives its abstract call substitution.

For reasons of space, we do not show the abstract AND-OR tree for this program.
However, we observe from Table 1 that, in the body of the second clause for
qsort, after the execution of partition (B,A,E,F) ,programvariables A,B,E,F

are ground and C,D,G,H are mutually independent. Therefore, in an IAP imple-
mentation of this program, the subgoals qsort (F, G, D 1 and qsort (E, C , [A I HI)
can be executed in parallel without any groundness or independence checks. It is
interesting to note that the same results would have been obtained even if the
query form had been the more general “ : - qmode (qsort (A, B) , [[Al LB1 I) .“.
Also, the use of the abstract interpreter (whose code is not greatly optimized)
added 45% to the compilation time, which is considered a reasonable overhead. In
fact, this overhead is not worse than that of previous, less precise abstract
interpreters [27].

TABLE 1. Results of abstract interpretation for the quicksort program

Clause/subgoal

:- qmode(qsort(A.B),[[Bll).

Abstract call substitution

qsort (A,B) :-
qsort(A,B, [I).

qsort([l.A.A).

% [IBII

qsort([AIBl ,C,D) :-
partition(B,A,E,F),

qsort (F,G.D) ,
qsort (E,C, [AlHI),

G=H.

partitionc [].A, [I, [I).

% [[Cl, [Dl, [El, [Fl r [Gl , [HI I
% [[Cl, [Dl. [Gl, [HI1
% [[Cl. [D.Gl, [HII

% [[C.Hl,[D,GlI

partitiont [AIBl .C,D. [AlEI) :-
A > C, % ILDI. [El1
!.
partition(B,C,D,E). % [[Dl, [El1

partitiont [AIBl ,C. [AIDI ,E) :-
A=&. % [[El.[Dll
partition(B,C,D,E). % [[El.[Dll

DERIVATIONOFVARIAE3LEDEPENDENCY 343

Next, we consider the simpler (form the point of view of analysis) version of
quicksort which uses an explicit call to append instead of difference lists. We
present the results of abstract interpretation of this program in the form of an
abstract AND-OR tree, since it is much simpler than the abstract AND-OR tree of the
previous program and it is more illustrative than a table. The part ition/ 4

predicate used here is the same as the one used in the previous program, and the
append/ 3 predicate is the standard one:

:- qmode(qsort(Xs,Ys),[[Ysll). %% query and its call

substitution

qsort([l, [I).

qsort([X]IW],Y) :-

partition(X,W,P,Q) ,

qsort(P,R),

ssort(Q,S),

append(R,[XISl,Y).

The abstract AND-OR tree for this program and query is shown in Figure 3. The
root of the tree contains the OR node qsort (A, B) with its call substitution to its
left and its success substitution to its right. There are three AND nodes:
qsort([XIWl,Y), partition(Xl,[YlIZll ,[YlIPll,Ql), and parti-

tion(x2, [~2lZ2] ,~2, [Y2lQ2l).The rest are all OR nodes.Foreach OR node,

IIBII 4SWAB) I01

1 (IPI IQI (~1 ISI wll partiIion(X.W.P.Q) IIRJ.ISJ.(YJJ qson(P.R) (ISI. qson(Q.s) IIYII appeOd(R.IXfs1.Y) 10

IIPIMQIIJ Xl >YI t~i.wll panilion(XI.ZI.PI.Ql) (01

101 I01 lIPIJ.IQIlI I01 - - -

FIGURE 3. Abstract AND-OR tree for the quicksort program.

344 K. MUTHUKUMAR AND M. HERMENEGILDO

the call substitution is shown on its left and the success substitution is shown on its
right. If there are two adjacent siblings M and N (with M to the left of N), the
success substitution for M is the call substitution for N. The projections of the call
and success substitutions for a predicate are underlined and are respectively below
the call and success substitutions for the predicate.

It can be seen from this tree that the terms bound to P and Q are ground and
the terms bound to R and s are independent when the subgoal qsort (P, R) ,
which occurs in the body of the recursive clause for qsort, is called. Therefore, in
an IAP implementation for this program, the subgoals qsort (P, R) and
qsort (Q, S) can be run in parallel without any groundness or independence
checks.

9. CONCLUSIONS AND FUTURE WORK

Motivated by the needs of applications such as compilation for independent AND

parallelism (IAP), we have presented an abstract interpreter that is specifically
geared towards detecting groundness and independence of terms with a high
degree of precision, using a novel abstract domain. We have presented efficient
algorithms for computing entry substitutions for clauses and success substitutions
for subgoals. These are the essential steps in any algorithm for an abstract
interpreter. We have also presented a top-down-directed, bottom-up tixpoint com-
putation algorithm that is independent of the abstract domain used in the inter-
preter. The techniques presented in this paper are of direct use in the compilation
of logic programs for execution in systems which support IAP, in keeping accurate
track of variable aliasing in other types of analysis, and, in general, in any
compilation program which can make use of information regarding variable shar-
ing, groundness, and independence.

We have also presented herein some results from the implementation of an
abstract interpreter which uses the algorithms discussed in this paper. This imple-
mentation is part of a parallelizing compiler for logic programs using independent
AND parallelism and a run-time system which have together proved successful in
obtaining speedups for a variety of logic programs [12]. Although a more detailed
study of the performance of the interpreter is a subject for further research, our
experiments analyzing various benchmarks have revealed that it is more accurate
than previous interpreters [27], and it already plays an essential part in achieving
the favorable speedup results.

At the same time we have identified ways in which the usefulness of the analysis
could be increased. In particular, and in the context of IAP,12 it would be quite
advantageous to enhance the existing abstract domain to include information about
the “freeness” of variables. To this end we have developed an abstract domain
capable of representing freeness and dependence and developed novel abstract
unification algorithms for it. The results from using this enhanced domain will be
reported elsewhere.

“And even more so in the context of nonstrict independent AND parallelism (NSIAF’), a type of IAP
in which goals are allowed to run in parallel even if they share variables, provided that they don’t affect
each other’s search spaces [14].

DERIVATION OF VARIABLE DEPENDENCY 345

Finally, based on our design decisions for the algorithm and our experiments
with the actual implementation of the abstract interpreter, we would also like to
suggest a number of other avenues for further research. The structure of the
abstract interpretation algorithm as described herein is such that an implementa-
tion of it requires double interpretation, i.e., the given program is interpreted in the
abstract domain by the abstract interpreter, which in turn is interpreted (run) by
the underlying system. There is a certain degree of inefficiency in doing this, and
previous experiments with different abstract interpreters [27, 83 suggest that
eliminating one of the interpretation steps can be advantageous. This can be done
by performing a partial evaluation of the abstract interpreter into the program
being analyzed, a step which should be done automatically. It would be interesting
to compare the performance of the abstract interpretation algorithm presented
using single and double interpretation.

The abstract domain used in this paper can be enhanced to include principal
functors of terms. This can improve the accuracy of the results computed by the
abstract interpreter. For example, consider the following program:

P(X,Y) :- q(X) ,r(X) ,s(Y).

q(f(W)).

q(g(a)) .

clauses for r(X) and s(Y).

Suppose that, at entry to p’s clause, it is known that x is instantiated to a term
whose principal functor is g. In the simple abstract domain, this information
cannot be used in an abstract substitution. If the entry substitution for p (x, Y)

contains {x,Y}, then we can only infer that the call substitution for the subgoal
r (x) also contains IX, Y), i.e. we cannot infer that x is grounded and thus
independent of Y. l3 But in the enhanced domain, since information is available
regarding the principal functor for the instantiation of each program variable, we
know that the principal functor of x is g at entry, and so x is ground after the
execution of q (X) . This translates to a more accurate abstract substitution inferred
at this program point. l4 Clearly this also means increased work for the abstractin-
terpreter. Furthermore, it is not necessary to limit the analysis to first-level
structures, and an arbitrary depth bound can be used [27]. It would be interesting
to study the tradeoff between greater accuracy and increased compilation time
during the abstract-interpretation phase brought about by the introduction of
different levels of structure depth in the abstract domain.

I3 For example, in an IAP implementation of this program, the lack of this information would make a
run-time independence check needed for the terms bound to X and Y in order to run the subgoals r (x)
and,? (Y) in parallel.

Consequently, in an IAP implementation of this program, the subgoals + (x) and s (Y) could then
be executed in parallel without a run-time independence check, thereby reducing the overhead for
parallelism and obtaining a better speedup.

346 K. MUTHUKUMAR AND M. HERMENEGILDO

We would like to thank the anonymous referees for making many useful suggestions which have helped
us improve the presentation of this paper. We would also like to thank Fosca Giannotti, Francesca
Rossi, Kevin Greene, and the other members of our research groups at MCC, the University of Texas,
and the University of Madrid for their useful comments on earlier drafts of this paper and for their
support.

REFERENCES

1. Bruynooghe, M., A Framework for the Abstract Interpretation of Logic Programs,
Technical Report CW62, Dept. of Computer Science, Katholieke Univ. Leuven, Oct.
1987.

2.

3.

Bruynooghe, M. and Janssens, G., An Instance of Abstract Interpretation Integrating
Type and Mode Inference, in: 5th International Conference and Symposium on Logic
Programming, MIT Press, Cambridge, Mass., Aug. 1988, pp. 669-683.

Chang, J.-H. and Despain, A. M., Semi-intelligent Backtracking of Prolog Based on
Static Data Dependency Analysis, in: International Symposium on Logic Programming,
IEEE Computer Sot., July 1985, pp. 10-22.

4. Corsini, M. and File, G., The Abstract Interpretation of Logic Programs: A General
Algorithm and Its Correctness, Research Report, Dept. of Pure and Applied Mathemat-
ics, Univ. of Padova, Italy, Dec. 1988.

5. Cousot, P. and Cousot, R., Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints, in: Conference
Record of the 4th ACM Symposium on Principles of Programming Languages, 1977, pp.
238-252.

6.

7.

8.

9:

10.

11.

12.

Debray, S., Static Inference of Modes and Data Dependencies in Logic Programs,
Technical Report 87-24, Dept. of Computer Science, Univ. of Arizona, Aug. 1987.

Debray, S., Static Analysis of Parallel Logic Programs, in: Fifth International Conference
and Symposium on Logic Programming, MIT Press, Cambridge, Mass., Aug. 1988.
Debray, S. K. and Warren, D. S., Automatic Mode Inference for Prolog Programs, J.
Logic Programming, Sept. 1988, pp. 207-229.

DeGroot, D., Restricted MD-Parallelism, in International Conference on Fifth Generation
Computer Systems, Tokyo, Nov. 1984, 471-478.

Deitrich, S. W., Extension Tables: Memo Relations in Logic Programming, in: Fourth
IEEE Symposium on Logic Programming, Sept. 1987, 264-272.

Gallagher, J., Codish, M., and Shapiro, E., Specialisation of prolog and fcp programs
using abstract interpretation, New Generation Comput. 6:159-186 (1988).

Hermenegildo, M. and Greene, K., &-Prolog and its Performance: Exploiting Indepen-
dent And-Parallelism, in: 1990 International Conference on Logic Programming, MIT
Press, Cambridge, Mass., June 1990.

13.

14.

15.

Hermenegildo, M. and Rossi, F., On the Correctness and Efficiency of Independent
And-Parallelism in Logic Programs, Technical Report ACA-ST-032-89, Microelectronics
and Computer Technology Corp. (MCC), Austin, TX 78759, Jan. 1989.
Hermenegildo, M., and Rossi, F., On the Correctness and Eficiency of Independent
And-Parallelism in Logic Programs. Technical Report ACA-ST-032-89, Microelectronics
and Computer Technology Corporation (MCC), Austin, TX 78759, Jan. 1989.
Hermenegildo, M. V., An Abstract Machine Based Execution Model for Computer Archi-
tecture Design and Efficient Implementation of Logic Programs in Parallel. Ph.D. Thesis, U.
of Texas at Austin, August 1986.

16. Jacobs, D., and Langen, A., Dec. 1988. Personal communication/Draft.

DERIVATION OF VARIABLE DEPENDENCY 347

17.

18.

19.

20.

21.

22.

Jones, N., and Sendergaard, H., A semantics-based framework for the abstract interpre-
tation of prolog, in: Abstract Intetpretation of Declarative Languages, chapter 6, 124-142,
Ellis-Horwood, 1987.

Mannila, H., and Ukkonen, E., Flow Analysis of Prolog Programs, in: 4th IEEE
Symposium on Logic Programming, IEEE Computer Society, Sept. 1987.

Marriott, Kim and Sflndergaard, Harald, Bottom-up dataflow analysis of normal logic
programs, in: Fifth International Conference on Logic Programming, MIT Press, Cam-
bridge, Mass., August 1988.

Marriott, Kim and S$ndergaard, Harald, Semantics-based dataflow analysis of logic
programs. Information Processing, April 1990, 601-606.

Mellish, C. S., Abstract Interpretation of Prolog Programs, in Third International
Conference on Logic Programming, 463-475, Imperial College, Springer-Verlag, July
1986.

Muthukumar, K., and Hermenegildo, M. V., Deriring A Fixpoint Computation Algorithm
for Top-down Abstract Interpretation of Logic Programs. Technical Report ACT-DC-153-90,
Microelectronics and Computer Technology Corporation (MCC), Austin, TX 78759,
April 1990.

23. Sato, T., and Tamaki, H., Enumeration of Success Patterns in Logic Programs. Theoreti-
cal Computer Science, 341227-240, 1984.

24. Sfindergaard, H., An application of abstract interpretation of logic programs: occur
check reduction, in: Fourth International Conference on Logic Programming, 769-787,
University of Melbourne, MIT Press, Cambridge, Mass., May 1987.

25. Ullman, J. D., Database and Knowledge-Base Systems. Computer Science Press, Mary-
land, 1988.

26. Waern, A., An Implementation Technique for the Abstract Interpretation of Prolog, in:
Fifth International Conference and Symposium on Logic Programming, 700-710, August
1988.

27. Warren, R., Hermenegildo, M., and Debray, S., On the Practicality of Global Flow
Analysis of Logic Programs, in: Fifth International Conference and Symposium on Logic
Programming, MIT Press, Cambridge, Mass., August 1988.

