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The competition graph of a digraph was introduced by Joel Cohen in 1968 in the study of 

ecological niches. It was generalized by Debra Scott in 1985 to the competition-common enemy 

graph. In this paper, we study some triangle-free competition-common enemy graphs. 

1. Introduction 

In 1968 Cohen [l] introduced the competition graph of the digraph corresponding 
to a food web in his study of ecological niches. In mathematical terms a food web 
is an acyclic digraph D = (V, A). For any arc xy E A, x is a predator of y and y is 
a prey of x. The competition graph of D is the graph G = (V, E) where xy E E if and 
only if x# y and for some z E V, xz,yz E A (i.e., x and y have a common prey in D). 
In 1978 Roberts [3] defined the competition number of a graph G, k(G), to be the 
smallest integer such that G together with k isolated nodes, G U Zk, is the competi- 
tion graph of some acyclic digraph, and showed that it was well defined. In 1985 
Scott [4] defined the competition-common enemy graph of a digraph D = (V, A) to 
be the graph G = (V, E) where xy E E if and only if x # y and for some z, w E V, 
xz, yz, wx, wy E A (so x and y have both a common prey and a common predator). 
Then the double competition number of a graph G, dk(G), is the smallest integer 
such that G UZ,, is the competition-common enemy graph of some acyclic 
digraph. Scott showed that the double competition number was well defined; sur- 
prisingly all of her examples had dk=2. In 1987 Jones et al. [2] found a class of 
graphs having arbitrarily large double competition numbers; however they were on- 
ly able to find one triangle-free graph having dk>2. Here we find an infinite class 
of triangle-free graphs with dk>2. 

2. Preliminaries 

Scott [4] showed that the double competition number of a graph with no isolated 
nodes is at least 2, since the nodes at the top and bottom of the food web will 
become isolated nodes in the competition-common enemy graph. She also found an 
upper bound in terms of the competition number: 
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Theorem 1. For every graph G, dk(G) I k(G) + 1. 

Roberts [3] had proved the following result on the competition number of 
triangle-free graphs: 

Theorem 2. If G = (V, E) is connected and triangle-free with IV1 > 1, then k(G) = 
\El -IV/) +2. 

So it has been of interest to find a class of triangle-free graphs of large double 
competition number. Jones et al. [2] proved the following for the complete tripartite 
graphs: 

Theorem 3. dk(K,,,.)221/-. 

These graphs are not triangle-free, but we will generalize them to get a class of 
triangle-free graphs. 

3. The triangle-free graphs 

Let C(5, n) be the graph of 5n nodes and 5n2 edges which consists of 5 columns 
of n nodes each (labelled (a)-(e)) with the columns arranged in a 5-cycle (a)-(b)- 
(c)-(d)-(e) such that any two nodes in adjacent columns are adjacent (so C(5, n) can 
be considered as a product of Cs and I,). Note that K,,,. would be C(3, n) in this 
notation. It is easy to construct a digraph to show that dk(C(5,1))=2, and Jones 
et al. [2] showed that dk(C(5,2)) = 3 by an exhaustive computer search. We now deal 
with the rest of this class. 

Theorem 4. dk(C(5, n)) > 2 for all n > 3. 

Proof. Suppose dk(C(5, n)) =2. Then there exists an acyclic digraph D having 
C(5, n) U I2 as its competition-common enemy graph. Since D is acyclic there exists 
a numbering of the nodes of D (and hence of C(5,n) UZ,) with the numbers 
0,1,2 )...) 5n + 1 such that each arc ij in D has i<j; i.e., a predator is always 
numbered less than its prey. Moreover, since C(5, n) does not contain any isolated 
nodes, one of the nodes of Z2 must be numbered 0 and the other numbered 5n + 1. 
Then the structure of C(5, n) imposes the following conditions on D: 

(I) any two nodes in adjacent columns must have both a common predator and 
a common prey, 

(II) any two nodes in the same column or in nonadjacent columns either do not 
have a common predator or do not have a common prey. 

Since C(5, n) is symmetric, we may assume without loss of generality that node 
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1 is in (a). Then 1 must have a common predator with each node of adjacent col- 
umns (b) and (e); but the only possible predator for 1 is 0. Thus 1 and all nodes of 
(b) and (e) have 0 as predator. 

Now consider node 5n. The only possible prey for 5n is 5n + 1, so 5n and all of 
its neighbours have 5n + 1 as prey. If 5n were in (a), (c) or (d) (and thus adjacent 
to (b) or (e)), then all of the nodes of (b) or (e) would have 0 as predator and 5n + 1 
as prey, a contradiction to (II). Thus 5n must be in (b) or (e). By symmetry we may 
assume that 5n is in (e), and thus 5n and all nodes of (a) and (d) have 5n + 1 as prey. 
Let k be the first node (other than 0) that is not in (a), and let m be the last node 
(other than 5n + 1) that is not in (e); then 1 <k< n + 2 and 4n - 1 <m < 5n. Now 
1,2, . ..) k - 1 are all in (a) and they all have 5n + 1 as prey, so no two of them can 
have a common predator. But each of them must have at least one predator from 
0, 1, . . . . k-2. Thus for each i= 1,2, . . . , k - 1, node i has i- 1 as predator, and each 
node of (b) and (e) has i- 1 as a common predator with i. It follows that each of 
m+l,m+2, . . . ,5n in (e) has 0, 1, . . . , k - 2 as predators. In particular since m + 1 has 
41, . ..) k - 2 as predators, 0, 1, . . . , k - 2 all have m + 1 as prey. 

Similarly, for each j= m + 1, m + 2, . . . , 5n node j has j + 1 as prey, each node of 
(a) and (d) has j+ 1 as a common prey with j, each of 1,2, . . . , k- 1 has m + 2, 
m+3,..., 5n,5n+l asprey,andm+2,m+3 ,..., 5n,5n + 1 all have k - 1 as predator. 
To summarize: 

i has i-l as predator for i= I,2 ,..., k-l, 

1,2,..., k-2 each has m+l,m+2 ,..., 5n,5n+l as prey, 

k-l has m+2,m+3 ,..., 5n,5n+l as prey, 

m+l has 0, 1, . . . . k - 2 as predators, 

m+2,m+3,..., 5n each has 0, 1, . . . , k - 1 as predators, 

j hasj+l as prey forj=m+l,m+2,...,5n. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

Now consider the location of k, in (b), (c), (d) or (e). Suppose first that k is in 
(c) or (e), and thus is adjacent to (d). Since each node of (d) and (a) has 5n + 1 as 
prey, and these two columns are not adjacent, (II) ensures that the predators of each 
of these 2n nodes must be distinct. By (l), 41, . . . , k - 2 all occur as predators in (a), 
so the nodes of (d) cannot have any node less than k - 1 as predator. But by (I) each 
of the n nodes of (d) must have a common predator with k. Since the only possible 
common predator is k- 1, and we need n of them, we get a contradiction. 

Next suppose k is in (d). As above, since k is in (d) the only predator k can have 
is k- 1. But then every node of (c) and (e) must have k- 1 as a common predator 
with k. So consider the nodes of (c). Since they all have k- 1 as predator, they must 
all have distinct prey (by (II)). But each must have a common prey with each node 
of(b). Since the nodes of (b) all have 0 as predator they must all have distinct prey. 
Thus each of the n nodes of (c) must have n distinct common prey with (b), which 
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means (c) needs at least n2 prey. Since the least possible numbering of a node oc- 
curring in (c) is k + 1, these n* prey must be chosen from k + 2, . . . ,5n + 1; i.e., from 
5n - k possibilities. Thus n* I 5n - kl5n - 2. Moreover, each node of (e) also has 
k- 1 as predator and must have at least one prey distinct from those of the rest of 
(e). Since (c) and (e) are not adjacent, the n* prey of(c) cannot include the (at least) 
n prey of (e), so rz* I 4n - 2, a contradiction since n > 3. 

Thus k is in (b). Since each node of (a) has 5n + 1 as prey, k must have a distinct 
predator in common with each node of (a), and so k must have at least n predators. 
Thus k = n or k = n + 1. By symmetry (reversing the roles of predators and prey) m 
is in (d) and m=4n or m=4n+l. 

So consider (c). Each node of (c) has (at least) one predator in common with k 
and (at least) one prey in common with m. Identify with each node of (c) a pair 
(x, y), where x is a common predator of the node with k and y is a common prey 
withm,soOlxlk-landm+lcy45n+l.Since(c)isnotadjacentto(a)norto 
(e), (x, y) cannot occur as a predator/prey pair at any node of (a) or (e). By (1) and 
(2), (x,y)#(i,j) for i=O,l,..., k-3 andj=m+l,m+2 ,..., 5n+l. By (5) and (6), 
(x,y)#(i,j) for i=O,l,..., k-l and j=m+3,m+4 ,..., 5n+l. By (1) and (3), 
(x,y)#(k-2, m +2). Thus the only possibilities for (x,y) are (k- l,m + l), (k- 1, 
m + 2) and (k- 2, m + 1). But we need n pairs, with n > 3, a contradiction. 

Thus dk(C(5, n)) > 2. 0 

An exhaustive computer search has shown that dk(C(5,3)) = 3, which completes 
the class. Moreover a minor modification of the above proof to allow one additional 
isolated node can be used to show the following theorem: 

Theorem 5. dk(C(5, n)) > 3 for n > 9. 

Unfortunately this method of proof breaks down for dk>4. However we con- 
jecture that the double competition numbers of this class are arbitrarily large. We 
have also studied C(m,n) for values of m other than 5, without finding any large 
double competition numbers. For all even m, we have found digraphs which give 
dk(C(m, n)) = 2 for all n (and in fact dk = 2 for every bipartite graph we have looked 
at). For all odd m greater than 5, we have found digraphs which give dk(C(m, 2)) = 2. 
However our study has led to the following conjecture: 

Conjecture. dk(C(m, n)) -+ 03 as n --f 0~ for all odd m L 3. 
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