THE DOUBLE COMPETITION NUMBER OF SOME TRIANGLE-FREE GRAPHS

Suzanne M. SEAGER
Mount Saint Vincent University, Halifax, NS, Canada B3M $2 J 6$

Received 7 September 1988
Revised 15 June 1989

Abstract

The competition graph of a digraph was introduced by Joel Cohen in 1968 in the study of ecological niches. It was generalized by Debra Scott in 1985 to the competition-common enemy graph. In this paper, we study some triangle-free competition-common enemy graphs.

1. Introduction

In 1968 Cohen [1] introduced the competition graph of the digraph corresponding to a food web in his study of ecological niches. In mathematical terms a food web is an acyclic digraph $D=(V, A)$. For any arc $x y \in A, x$ is a predator of y and y is a prey of x. The competition graph of D is the graph $G=(V, E)$ where $x y \in E$ if and only if $x \neq y$ and for some $z \in V, x z, y z \in A$ (i.e., x and y have a common prey in D). In 1978 Roberts [3] defined the competition number of a graph $G, k(G)$, to be the smallest integer such that G together with k isolated nodes, $G \cup I_{k}$, is the competition graph of some acyclic digraph, and showed that it was well defined. In 1985 Scott [4] defined the competition-common enemy graph of a digraph $D=(V, A)$ to be the graph $G=(V, E)$ where $x y \in E$ if and only if $x \neq y$ and for some $z, w \in V$, $x z, y z, w x, w y \in A$ (so x and y have both a common prey and a common predator). Then the double competition number of a graph $G, \mathrm{dk}(G)$, is the smallest integer such that $G \cup I_{\mathrm{dk}}$ is the competition-common enemy graph of some acyclic digraph. Scott showed that the double competition number was well defined; surprisingly all of her examples had $\mathrm{dk}=2$. In 1987 Jones et al. [2] found a class of graphs having arbitrarily large double competition numbers; however they were only able to find one triangle-free graph having $\mathrm{dk}>2$. Here we find an infinite class of triangle-free graphs with $\mathrm{dk}>2$.

2. Preliminaries

Scott [4] showed that the double competition number of a graph with no isolated nodes is at least 2 , since the nodes at the top and bottom of the food web will become isolated nodes in the competition-common enemy graph. She also found an upper bound in terms of the competition number:

Theorem 1. For every graph $G, \operatorname{dk}(G) \leq k(G)+1$.
Roberts [3] had proved the following result on the competition number of triangle-free graphs:

Theorem 2. If $G=(V, E)$ is connected and triangle-free with $|V|>1$, then $k(G)=$ $|E|-|V|+2$.

So it has been of interest to find a class of triangle-free graphs of large double competition number. Jones et al. [2] proved the following for the complete tripartite graphs:

Theorem 3. $\mathrm{dk}\left(K_{n, n, n}\right) \geq 2 \sqrt{n}$.
These graphs are not triangle-free, but we will generalize them to get a class of triangle-free graphs.

3. The triangle-free graphs

Let $C(5, n)$ be the graph of $5 n$ nodes and $5 n^{2}$ edges which consists of 5 columns of n nodes each (labelled (a)-(e)) with the columns arranged in a 5 -cycle (a)-(b)-(c)-(d)-(e) such that any two nodes in adjacent columns are adjacent (so $C(5, n)$ can be considered as a product of C_{5} and I_{n}). Note that $K_{n, n, n}$ would be $C(3, n)$ in this notation. It is easy to construct a digraph to show that $\mathrm{dk}(C(5,1))=2$, and Jones et al. [2] showed that $\mathrm{dk}(C(5,2))=3$ by an exhaustive computer search. We now deal with the rest of this class.

Theorem 4. $\mathrm{dk}(C(5, n))>2$ for all $n>3$.
Proof. Suppose $\mathrm{dk}(C(5, n))-2$. Then there exists an acyclic digraph D having $C(5, n) \cup I_{2}$ as its competition-common enemy graph. Since D is acyclic there exists a numbering of the nodes of D (and hence of $C(5, n) \cup I_{2}$) with the numbers $0,1,2, \ldots, 5 n+1$ such that each $\operatorname{arc} i j$ in D has $i<j$; i.e., a predator is always numbered less than its prey. Moreover, since $C(5, n)$ does not contain any isolated nodes, one of the nodes of I_{2} must be numbered 0 and the other numbered $5 n+1$. Then the structure of $C(5, n)$ imposes the following conditions on D :
(I) any two nodes in adjacent columns must have both a common predator and a common prey,
(II) any two nodes in the same column or in nonadjacent columns either do not have a common predator or do not have a common prey.

Since $C(5, n)$ is symmetric, we may assume without loss of generality that node

1 is in (a). Then 1 must have a common predator with each node of adjacent columns (b) and (e); but the only possible predator for 1 is 0 . Thus 1 and all nodes of (b) and (e) have 0 as predator.

Now consider node $5 n$. The only possible prey for $5 n$ is $5 n+1$, so $5 n$ and all of its neighbours have $5 n+1$ as prey. If $5 n$ were in (a), (c) or (d) (and thus adjacent to (b) or (e)), then all of the nodes of (b) or (e) would have 0 as predator and $5 n+1$ as prey, a contradiction to (II). Thus $5 n$ must be in (b) or (e). By symmetry we may assume that $5 n$ is in (e), and thus $5 n$ and all nodes of (a) and (d) have $5 n+1$ as prey. Let k be the first node (other than 0) that is not in (a), and let m be the last node (other than $5 n+1$) that is not in (e); then $1<k<n+2$ and $4 n-1<m<5 n$. Now $1,2, \ldots, k-1$ are all in (a) and they all have $5 n+1$ as prey, so no two of them can have a common predator. But each of them must have at least one predator from $0,1, \ldots, k-2$. Thus for each $i=1,2, \ldots, k-1$, node i has $i-1$ as predator, and each node of (b) and (e) has $i-1$ as a common predator with i. It follows that each of $m+1, m+2, \ldots, 5 n$ in (e) has $0,1, \ldots, k-2$ as predators. In particular since $m+1$ has $0,1, \ldots, k-2$ as predators, $0,1, \ldots, k-2$ all have $m+1$ as prey.

Similarly, for each $j=m+1, m+2, \ldots, 5 n$ node j has $j+1$ as prey, each node of (a) and (d) has $j+1$ as a common prey with j, each of $1,2, \ldots, k-1$ has $m+2$, $m+3, \ldots, 5 n, 5 n+1$ as prey, and $m+2, m+3, \ldots, 5 n, 5 n+1$ all have $k-1$ as predator. To summarize:

$$
\begin{align*}
& i \text { has } i-1 \text { as predator for } i=1,2, \ldots, k-1, \tag{1}\\
& 1,2, \ldots, k-2 \text { each has } m+1, m+2, \ldots, 5 n, 5 n+1 \text { as prey, } \tag{2}\\
& k-1 \text { has } m+2, m+3, \ldots, 5 n, 5 n+1 \text { as prey, } \tag{3}\\
& m+1 \text { has } 0,1, \ldots, k-2 \text { as predators, } \tag{4}\\
& m+2, m+3, \ldots, 5 n \text { each has } 0,1, \ldots, k-1 \text { as predators, } \tag{5}\\
& j \text { has } j+1 \text { as prey for } j=m+1, m+2, \ldots, 5 n . \tag{6}
\end{align*}
$$

Now consider the location of k, in (b), (c), (d) or (e). Suppose first that k is in (c) or (e), and thus is adjacent to (d). Since each node of (d) and (a) has $5 n+1$ as prey, and these two columns are not adjacent, (II) ensures that the predators of each of these $2 n$ nodes must be distinct. By (1), $0,1, \ldots, k-2$ all occur as predators in (a), so the nodes of (d) cannot have any node less than $k-1$ as predator. But by (I) each of the n nodes of (d) must have a common predator with k. Since the only possible common predator is $k-1$, and we need n of them, we get a contradiction.

Next suppose k is in (d). As above, since k is in (d) the only predator k can have is $k-1$. But then every node of (c) and (e) must have $k-1$ as a common predator with k. So consider the nodes of (c). Since they all have $k-1$ as predator, they must all have distinct prey (by (II)). But each must have a common prey with each node of (b). Since the nodes of (b) all have 0 as predator they must all have distinct prey. Thus each of the n nodes of (c) must have n distinct common prey with (b), which
means (c) needs at least n^{2} prey. Since the least possible numbering of a node occurring in (c) is $k+1$, these n^{2} prey must be chosen from $k+2, \ldots, 5 n+1$; i.e., from $5 n-k$ possibilities. Thus $n^{2} \leq 5 n-k \leq 5 n-2$. Moreover, each node of (e) also has $k-1$ as predator and must have at least one prey distinct from those of the rest of (e). Since (c) and (e) are not adjacent, the n^{2} prey of (c) cannot include the (at least) n prey of (e), so $n^{2} \leq 4 n-2$, a contradiction since $n>3$.
Thus k is in (b). Since each node of (a) has $5 n+1$ as prey, k must have a distinct predator in common with each node of (a), and so k must have at least n predators. Thus $k=n$ or $k=n+1$. By symmetry (reversing the roles of predators and prey) m is in (d) and $m=4 n$ or $m=4 n+1$.

So consider (c). Each node of (c) has (at least) one predator in common with k and (at least) one prey in common with m. Identify with each node of (c) a pair (x, y), where x is a common predator of the node with k and y is a common prey with m, so $0 \leq x \leq k-1$ and $m+1 \leq y \leq 5 n+1$. Since (c) is not adjacent to (a) nor to (e), (x, y) cannot occur as a predator/prey pair at any node of (a) or (e). By (1) and (2), $(x, y) \neq(i, j)$ for $i=0,1, \ldots, k-3$ and $j=m+1, m+2, \ldots, 5 n+1$. By (5) and (6), $(x, y) \neq(i, j)$ for $i=0,1, \ldots, k-1$ and $j=m+3, m+4, \ldots, 5 n+1$. By (1) and (3), $(x, y) \neq(k-2, m+2)$. Thus the only possibilities for (x, y) are $(k-1, m+1),(k-1$, $m+2)$ and $(k-2, m+1)$. But we need n pairs, with $n>3$, a contradiction.

Thus $\mathrm{dk}(C(5, n))>2$.
An exhaustive computer search has shown that $\mathrm{dk}(C(5,3))=3$, which completes the class. Moreover a minor modification of the above proof to allow one additional isolated node can be used to show the following theorem:

Theorem 5. $\mathrm{dk}(C(5, n))>3$ for $n>9$.
Unfortunately this method of proof breaks down for $\mathrm{dk}>4$. However we conjecture that the double competition numbers of this class are arbitrarily large. We have also studied $C(m, n)$ for values of m other than 5 , without finding any large double competition numbers. For all even m, we have found digraphs which give $\mathrm{dk}(C(m, n))=2$ for all n (and in fact $\mathrm{dk}=2$ for every bipartite graph we have looked at). For all odd m greater than 5 , we have found digraphs which give $\operatorname{dk}(C(m, 2))=2$. However our study has led to the following conjecture:

Conjecture. $\mathrm{dk}(C(m, n)) \rightarrow \infty$ as $n \rightarrow \infty$ for all odd $m \geq 3$.

Acknowledgement

I would like to thank Dr. Janice Jeffs for her helpful comments on this proof, and Dr. Kathryn Jones for her encouragement in writing it up.

References

[1] J.E. Cohen, Interval graphs and food webs: A finding and a problem, RAND Corporation Document 17696-PR, Santa Monica, CA (1968).
[2] K.F. Jones, J. Richard Lundgren, F.S. Roberts and S. Seager, Some remarks on the double competition number of a graph, Congr. Numer. 60 (1987) 17-24.
[3] F.S. Roberts, Food webs, competition graphs, and the boxicity of ecological phase space, in: Y. Alavi and D. Lick, eds., Theory and Applications of Graphs (Springer, New York, 1978) 477-490.
[4] D.D. Scott, The competition-common enemy graph of a digraph, Discrete Appl. Math. 17 (1987) 269-280.

