
Journal of Combinatorial Theory, Series B 80, 356�370 (2000)

Face Size and the Maximum Genus of a Graph
1. Simple Graphs1

Yuanqiu Huang

Department of Mathematics, Normal University of Hunan,
Changsha 410081, People's Republic of China

and

Yanpei Liu

Department of Mathematics, Northern Jiaotong University,
Beijing 100044, People's Republic of China

Received May 7, 1997

This paper shows that a simple graph which can be cellularly embedded on some
closed surface in such a way that the size of each face does not exceed 7 is upper
embeddable. This settles one of two conjectures posed by Nedela and S8 koviera
(1990, in ``Topics in Combinatorics and Graph Theory,'' pp. 519�529, Physica
Verlag, Heidelberg). The other conjecture will be proved in a sequel to this paper.
� 2000 Academic Press

1. INTRODUCTION

All graphs considered in this paper are finite and undirected and, unless
explicitly stated otherwise, they are also connected. In general, we allow
graphs to have loops and multiple edges. Graphs which lack both loops
and multiple edges will be called simple.

By a surface S we mean a compact connected 2-dimensional manifold
without boundary (that is, a closed surface). We consider both orientable
and nonorientable surfaces. It s well known that each orientable surface is
homeomorphic to a sphere with h handles while every nonorientable one
is homeomorphic to a sphere with k crosscaps. This number h or k is called
the genus, denotes by g(S), of the surface S when S is orientable or non-
orientable, respectively. A cellular embedding j: G � S of a graph G on a
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surface S is a homeomorphism of G to a subspace of S such that each com-
ponent of S& j(G) is homeomorphic to an open disk; we usually identify
j(G) with G.

Each of the components of S&G is called a face of G on S. The bound-
ary of each face is a closed walk in G. The size of a face is the number of
edges appearing on this walk, repeated edges being counted twice.

Every cellular embedding satisfies Euler's formula. Let G be a connected
graph with p vertices and q edges embedded on a surface S with r faces.
Then

p&q+r={2&2g(S),
2& g(S),

if S is orientable,
if S is nonorientable.

Note that a disconnected graph does not admit a cellular embedding on
any surface.

The maximum genus #M (G) of a connected graph G is the largest integer
k with the property that there exists a cellular embedding of G on the
orientable surface S of genus k. Since any cellular embedding must have at
least one face, Euler's formula implies that

#M (G)�w;(G)�2x ,

where ;(G)=q& p+1 is known as the Betti number (or cycle rank) of G.
A graph G is said to be upper embeddable if #M (G)=w;(G)�2x. The quan-
tity ;(G)&2#M (G) is called the deficiency of G (or Betti deficiency of G)
and is denoted by !(G). The importance of !(G) is in that the maximum
genus of a graph is usually determined by calculating !. In particular, a
graph G is upper embeddable if and only if !(G)�1 where !(G)=0 or 1
depending on whether ;(G) is even or odd, respectively. A graph G whose
deficiency is 2 or larger will be called a deficient graph; in other words, a
graph is deficient if and only if it is connected and not upper embeddable.

Since the introductory article on the maximum genus of graphs by
Nordhaus et al. [8] in 1971, the maximum genus of graphs has received a
considerable attention. Many authors (see, e.g., [6, 9�15, 17]) were dealing
particularly with upper embeddability of graphs. For example, Xuong [17]
and Jungerman [6] proved that every 4-edge-connected graph is upper
embeddable, although a little weaker condition of 3-edge-connectivity is
not enough for a graph to be upper embeddable (see [2] and [15] for
more details). In 1990, Nedela ans S8 koviera [7] proved that a loopless
graph which has a cellular embedding on a closed surface such that the size
of each face does not exceed 4 is upper embeddable. Moreover, they made
two conjectures. First, they conjectured that every loopless graph admitting
a cellular embedding on a closed surface with maximum face size at most
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5 is upper embeddable. Second, that restricting to simple graphs the con-
clusion remains true when the condition is relaxed to requiring that the
maximum face size does not exceed 7. In the present paper we establish the
latter conjecture by proving the following result:

Main Theorem. Let G be a simple graph. If G admits a cellular embed-
ding on a closed surface S (orientable or nonorientable) such that the size of
each face does not exceed 7, then G is upper embeddable.

An analogous result confirming the former conjecture will be published
in as sequel to this paper [5].

A simple example (which will be given at the end of this paper) shows
that the condition of the maximum face size not exceeding 7 in the above
theorem is best possible.

The following interesting corollary is just a simple rephrasing of the
theorem, nevertheless it reveals a surprising property of all cellular embed-
dings of a deficient simple graph.

Corollary. Every cellular embedding of a simple deficient graph on a
closed surface (orientable or nonorientable) contains a face with size at least 8.

The method of proof of our main theorem is based on Nebesky� 's maxi-
mum genus theorem combined with an induction on the genus employing
surface surgery.

Our notation and terminology can be found in [1] or [4] except the
following. Let G be a graph and A�E(G). Denote by G&A the graph
obtained from G by deleting all edges in A. Let c(G&A) and b(G&A)
denote the number of components of G&A and the number of components
of G&A with odd Betti number, respectively. For two subgraphs F and K
of G denote by EG(F, K) the set of all edges whose two end-vertices are
respectively in F and K. A circuit C is a connected 2-regular graph, and the
number of edges in C is called the length of C. A circuit with length k is
also said to be a k-circuit. The degree degG(v) of a vertex v in G is the
number of edges incident with v, loops being counted twice. When we talk
about an edge e, we understand that the edge e does not include its two
end-vertices. Contracting and edge e (not a loop) in G means to delete e
from G and identify its two end-vertices.

Let G be a graph cellularly embedded on a surface S. Throughout this
paper, a face with size not exceeding 7 will be said to be short. We say that
G is short-face embedded on S if each face of G on S is a short face; in this
case we also say that G has a short-face embedding on S.

The cardinality of a set X will be denoted by |X|.
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2. DEFICIENT GRAPHS

This section together with the next one will be devoted to preparations
for the main proof. Here we will deal with the maximum genus of a graph
in a greater detail with emphasis on deficient graphs. The next section will
be devoted to a surgery on surfaces. As we have already mentioned, the
maximum genus of a graph G is usually determined by means of its
deficiency. Nebesky� [9] gave a completely combinatorial characterization
of this invariant as follows:

Lemma 2.1 [9]. Let G be a connected graph. Then:

(1) !(G)=maxA�E(G)[c(G&A)+b(G&A)&|A|&1];

(2) G is upper embeddable if and only if c(G&A)+b(G&A)&|A|
�2 for any subset A�E(G).

Let us call a subset A�E(G) a Nebesky� set in G if !(G)=c(G&A)+
b(G&A)&|A|&1. A minimal Nebesky� set is a Nebesky� set that is minimal
under inclusion. The next lemma, which is obtained by combining results
of Nebesky� [11] and Fu and Tsai [3] provides structural information
about a deficient graph G (i.e., a graph G with !(G)�2) in terms of mini-
mal Nebesky� sets.

Lemma 2.2. Let G be a deficient graph, and let A�E(G) be a minimal
Nebesky� set in G. Then:

(i) c(G&A)�2, and each component F of G&A has an odd Betti
number, that is, ;(F )=1 (mod 2);

(ii) each component F of G&A is an induced subgraph of G;

(iii) |A|�2c(G&A)&3;

(iv) for any two distinct components F and K of G&A one has
|EG(F, K)|�1.

Proof. The details of the proofs of the properties (i) and (ii) can be
found in [11, Proof of Theorem 1] while the proofs of the properties (iv)
and also (i) are in [3, Lemma 2.1]. Clearly, the property (iii) is immediate
from the choice of A, the property (i), and the condition !(G)�2. K

Let G be a connected graph and let F be a connected vertex-induced sub-
graph of G. Denote by E(G, F ) the set of all edges of G which do not
belong to E(F ) but are incident with vertices in V(F ). We now introduce
an operation whose purpose is to spit the graph G into a family of smaller
graphs with suitable properties. In order to do this, we first form a graph
G� by the following process:
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(a) we remove V(F ) and E(F ) from G but do not remove E(G, F );

(b) we take a family C=[C1 , C2 , ..., Cn], n�1 of pairwise disjoint
circuits of arbitrary lengths �3;

(c) finally, we attach each edge of E(G, F ) formerly incident with a
vertex of F to an arbitrary vertex of some Cj (1� j�n).

The graph G� is thus obtained from G by replacing F with a collection C

a pairwise disjoint circuits. Let [G1 , G2 , ..., Gm] (m�1) be the set of all
components of G� . We shall call the family [G1 , G2 , ..., Gm] an F-resolution
of G by the family of circuits C or simply and F-resolution of G.

Observe that number and length of the chosen circuits as well as their
incidence with the edges of E(G, F ) in the definition of an F-resolution are
irrelevant. Therefore the resulting graph G� and the corresponding F-resolu-
tion of G are not uniquely determined. With these notions we can prove the
following lemmas.

Lemma 2.3. Let G be a connected graph and let [G1 , G2 , ..., Gm] be an
F-resolution of G by a family of circuits C. Then each Gi contains at least
one of the circuits Cj # C (it may occur that Gi=Cj).

Proof. Without loss of generality assume that Gi does not contain any
circuit Cj # C. By the definition of an F-resolution, Gi has no vertex inci-
dent with any edge of E(G, F). Furthermore, it follows that Gi is a compo-
nent of G&(V(F ) _ E(F ) _ E(G, F )). This implies that in G the vertices of
Gi are not joined to any vertex in F, contradicting the connectivity of G. K

The following lemma is crucial for the proof of our main result.

Lemma 2.4. Let [G1 , G2 , ..., Gm] be an F-resolution of a deficient graph
G where F is a component of G&A for some minimal Nebesky� set A�E(G).
Then at least one of the graphs G1 , G2 , ..., Gm is a deficient graph.

Proof. By Lemma 2.2., F is a vertex-induced subgraph of G. Set
Ai=A & E(Gi). Note that Ai may happen to be empty because Gi can
possibly be one Cj . It is easy to see that each component of Gi&Ai is either
one of the circuits Cj or one of the components of G&A other than F.

Note that for each 1�i�m we have

c(Gi&Ai)=b(Gi&Ai). (1)

Furthermore,

:
m

i=1

|Ai |=|A| (2)
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and

:
m

i=1

c(Gi&Ai)=c(G&A)&1+n. (3)

Now assume, to the contrary, that each Gi (1�i�m) is upper embed-
dable. By combining Lemmas 2.1 and 2.2 and (1) we obtain that

|Ai |�c(Gi&A i)+b(Gi&A i)&2=2c(Gi&Ai)&2.

If we sum these inequalities for 1�i�m and use (2) and (3) we get

|A|= :
m

i=1

|Ai |�2 :
m

i=1

c(Gi&Ai)&2m=2c(G&A)&2+2n&2m.

Note that Lemma 2.3 implies that n�m. Therefore we have that
|A|�2c(G&A)&2, which contradicts the property (iii) of Lemma 2.2.
This completes the proof. K

Recall that in the definition of an F-resolution the length of each circuit
Cj (1� j�n) may be arbitrary. With this in mind we obtain:

Lemma 2.5. Let [G1 , G2 , ..., Gm] be an F-resolution of a graph G by a
family of circuits C=[C1 , C2 , ..., Cn] and assume that for each i the graph
G$i is obtained from Gi by contracting some edges of circuits in C contained
in Gi , 1�i�m. Then [G$1 , G$2 , ..., G$m] is an F-resolution of G.

Proof. Trivial. K

3. SURGERY ON A SURFACE

Let j: G � S be a 2-cell embedding of a graph G on a surface S, and let
F be a connected subgraph of G. For any positive and arbitrarily small real
number = let N(F, =) denote the open collaring of j(F ) in S in which the dis-
tance of all points from j(F ) is smaller than =. Analogously, for each vertex
v # V(F ), let N(v, =) denote the open =-neighborhood of j(v) in S, that is,
the distance of all points of N(v, =) from j(v) is less than =. Notice that = can
be chosen arbitrarily small, and therefore we can assume its complement
S&N(F, =) on S to be a bordered surface, possibly disconnected.

For any connected component M of S&N(F, =), we take an appropriate
number of closed disks and identify each boundary circuit of M with that
of a closed disk, thereby obtaining a new surface denoted by S(M).
Observe that the orientability of S(M) may happen to be different from
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that of the original embedding surface S. We will call M the connected com-
ponent and S(M) the surface obtained by removing N(F, =) from S.

If C is a circuit of G, then S&N(C, =) has clearly at most two com-
ponents. We will call C a contractible circuit on S if S&N(C, =) has
precisely two components and at least one homeomorphic to a closed disk,
otherwise, C will be said to be a noncontractible circuit. Equivalently, a
contractible circuit on a surface is one that can be continuously contracted
to a point in the surface. (Purely combinatorial definitions of contractible
and noncontractible circuits were given by Thomassen in [16].)

The first result of this section easily follows from Euler's formula. It can
also be found in [7].

Lemma 3.1. Let C be a circuit of a graph G that is cellularly embedded
on a surface S, and let M be a connected component of S&N(C, =). Then:

(1) If C is a contractible circuit on S, then either g(SM)= g(S) or
g(SM)=0.

(2) If C is a noncontractible circuit on S, then g(SM)<g(S).

When applying the previous lemma repeatedly, we obtain the following
result:

Lemma 3.2. Let F be a connected subgraph of a graph G that is
cellularly embedded on a surface S, and let M be a connected component of
S&N(F, =). Then:

(1) If each circuit in F is contractible on S, then either g(SM)=g(S)
or g(SM)=0, and furthermore M has exactly one boundary circuit.

(2) If F has at least one noncontractible circuit on S, then g(SM)<
g(S).

Now let G be a deficient simple graph, and let j: G � S be a short-face
embedding of G on S. Throughout, we will identify j(G) with G. Let F
be a component of G&A where A is a minimal Nebesky� subset of E(G).
By Lemma 2.2(i), F is not a tree and hence contains some circuits; by
Lemma 2.2(ii), F is a vertex-induced subgraph of G.

Intuitively, we want to cut the surface S along F and leave a copy of
each edge on each side of the resulting (possibly disconnected) bordered
surface. We perform this, roughly, as follows. First, we make the graph F
``fat''��let L denote such a fat F. The main property of L is that this fat
graph (in particular, its fat vertices and fat edges) can be continuously
shrunk onto the original graph F. Then we take another fat copy of F,
denoted by L$, on the same surface S, but one which is only ``half as fat.''
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Now we excise L$ from S and take any connected component Mi

(i=1, ..., m) of the resulting (possibly disconnected) bordered surface.
Clearly, some parts of L&L$ are contained in Mi . We shrink them in the
same manner as we would do L, but only halfway, because the other half
was excised. The part of G lying in the interior of Mi together with these
shrunken parts of L&L$ lying in Mi (in fact, in its boundary) form a graph
Fi embedded in Mi . Finally we take closed disks and cap each boundary
component by one of them thereby obtaining a closed surface S(Fi)=
S(Mi) with F i embedded in it. Note that the orientability character of S(F i)
may be different from that of S.

Formally, the construction of Fi and its embedding on S(F i) will be per-
formed as follows. For a sufficiently small positive real number =, let us
take the open =-collaring L=N(F, =) of F, that is, the set of all points on
S whose distance from F in S is smaller than =. Let us recall that, in
general, an open collaring of F in the surface S is an open set L�S such
that F�L and F is a deformation retract of L. This means that there exists
a continuous mapping, called a deformation retraction, 8: L_[0, 1] � L
such that 80 is the identity mapping on L, 81 (L)=F, and 81 | F=idF . In
this particular case where L=N(F, =) we clearly can and will adopt the
following useful ``regularity'' assumption: for each t>0 we let 8t (N(F, =))
=N(F, =(1&t)). Now we remove L$=N(F, =�2) from S, thereby getting a
bordered, possibly disconnected, surface S&N(F, =�2). Observe that its
boundary consists of all elements of N(F, =) whose distance from F equals
=�2. Let Mi be any component of S&N(F, =�2) (i=1, ..., m) and let Li=L
& Mi . Define the graph Fi to be 8=�2 (Li) _ ( j(G) & int(Mi)).

It is obvious that F i is embedded in Mi . Moreover, B(Fi)=8=�2 (Li) is
the part of Fi which lies on the boundary of Mi whereas j(G) & int(Mi)
which lies in the interior of Mi .

We observe that for each edge e$ of Fi lying on the boundary B(Fi) of
Mi , there exists an original edge e of F such that e$ consists of all elements
of N(F, =) whose distance from e equals =�2. Analogously, for each vertex
v$ of Fi lying on B(Fi), there exists an original vertex v of F such that the
distance between v$ and v equals =�2. In this sense we can say that e$ and
v$ correspond to e and v, respectively. We must note that for each edge e,
there exist exactly two such edges e$ and e" (not necessarily belonging to
the same B(Fi)) corresponding to e, while for each vertex f of F the number
of such vertices corresponding to v depends on the number of corners on
S formed by the edges of F incident with v. Let B(Fi), the boundary of Mi ,
be composed of ni disjoint circuits of Fi , say C 1

i , C 2
i , ..., C ni

i . We now cap
each boundary circuit C j

i (1� j�ni) by a closed 2-cell D j
i and thus obtain

a new surface S(Fi), together with an embedding of the graph Fi .
Now we are in a position to establish several useful properties of the

graph Fi and its embedding on the surface S(Fi) (1�i�m).
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Let us denote by f (C j
i ) the face of F i in S(Fi) which is bounded by C j

i

and obtained from D j
i by removing its boundary. Clearly, the face f (C j

i ) is
an open 2-cellular face, and the size of f (C j

i ) is the length of C j
i .

Claim 1. For each i (1�i�m), Fi is a connected simple graph which is
cellularly embedded in S(Fi). Moreover, each face of the embedding of Fi in
S(F i) is a short face except possibly the faces f (C j

i ), 1� j�ni .

Proof. The simplicity of Fi follows directly from the definitions of Fi

and Mi and from the simplicity of G. In order to prove that Fi is connected,
it suffices to prove that Fi is cellularly embedded in S(Fi), since a cellular
embedding of a graph immediately implies its connectivity. To do this, let
us first analyze the possible position of each face of Fi with respect to B(F i).
For any face f of the embedding of Fi in S(F i), one of the following three
cases occurs.

Case (a). f, together with its boundary, lies entirely in the interior of
Mi . It follows that f may be viewed as a face of the original embedding of
G in S.

Case (b). f lies entirely in the interior of Mi ; however, its boundary
intersects the boundary of Mi at some vertices or edges of B(Fi). In this
case the face f is homeomorphic to a face f $ of G in S, where the boundary
of f $ can be obtained from that of f by replacing the vertices or the edges
belonging to B(Fi) with their corresponding vertices or edges of F. There-
fore f has the same size as f $.

Case (c). f is a face f (C j
i ), 1� j�ni .

The above three cases show that each face of Fi on S(F i) is an open
2-cell and the embedding is thus cellular. In particular, F i is connected.
Furthermore, each face f of the embedding is a short face except possibly
the faces f (C j

i ), 1� j�ni . K

Observe that there are three kinds of edges in Fi . We will say that an
edge e of Fi is of type k, k=0, 1, 2, if k end-vertices of e belong to B(F i).
An edge of type 0 can be identified with the corresponding original edge of
F. As far as the other two types are concerned we have the following:

Claim 2. For each Fi the following holds true:

(1) An edge e of Fi is of type 2 if and only if it lies entirely in B(Fi).

(2) If e=uv$ and e"=uv" are adjacent type 1 edges such that the
vertices v$ and v" belong to B(Fi) but u does not, then e$=e".
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Proof. First we prove the statement (1). If e belongs to B(Fi), then by
the definitions of Fi and Mi the two end-vertices of e must belong to B(F i).
Thus e is of type 2. Conversely, let e be of type 2. Assume to contrary that
e does not belong to B(Fi). Then we easily see rom the definitions of Fi and
Mi that, in the graph G, the two end-vertices of e are contained in V(F )
while e # E(G)&E(F ). This contradicts the statement of Lemma 2.2(ii) that
F is a vertex-induced subgraph of G.

Now we prove (2). Assume that e$=uv$ and e"=uv" is a pair of adjacent
edges where v$ and v" belong to B(Fi) but the common vertex u of e$ and
e" does not belong to B(Fi). In the graph G, the vertex u is in V(G)&V(F ).
So v is necessarily a vertex of some component of G&A different from F,
say K. Again, since the other end-vertices of e$ and e" belong to B(Fi), it
follows that in G, the other end-vertices of e$ and e" are in F. Therefore
we have that both e$ and e" are in EG(F, K). Since |EG(F, K)|�1 by
Lemma 2.2(iv), we have e$=e". K

Claim 3. The set [F1 , F2 , ..., Fm] is an F-resolution of G.

Proof. From the definitions of F i and Mi it is clear that the union
�m

i=1 F i can be regarded as being obtained from G by replacing the sub-
graph F with a collection of pairwise disjoint circuits �m

i=1 (�ni
j=1 C j

i )=
�m

i=1 B(F i). Thus it is straightforward to check that [F1 , F2 , ..., Fm] is an
F-resolution of G. K

Now we turn each of the circuits C j
i into a 3-circuit by contracting (if

necessary) some of its edges along the surface S(Fi). We let F $i and S(F $i)
be respectively the resulting graph and the resulting surface obtained by the
edge contraction process. Obviously S(F $i) is homeomorphic to S(Fi).

Claims 4 and 5 describe the graph F $i and its embedding in S(F i").

Claim 4. Each F $i is a connected simple graph (1�i�m), and the set
[F $1 , F $2 , ..., F $m] is an F-resolution of G.

Proof. Since Fi is connected (Claim 1), the connectivity of F $i follows
immediately. Next we prove that F $i is simple. Let B j

i 1� j�ni be the 3-cir-
cuit obtained from C j

i by the contraction process.
Suppose F $i has a loop e. Then e must be incident with a vertex in some

B j
i . In Fi , the edge e does not belong to C j

i while its two end-vertices do.
Thus in Fi , the edge e does not entirely lie in B(F i) while being of type 2.
This contradicts Claim 2, part (i).

Now suppose that F $i has a pair of parallel edges e$ and e". Let x and y
be their two common end-vertices. Then one of the following three cases
has to occur:
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(a) both x and y belong to some B j
i ;

(b) x and y belong to two distinct circuits B j1
i and B j2

i , j1 { j2 ,
1� j1 , j2�ni ; and

(c) one of x and y, say x, belongs to some B j
i but y does not belong

to any B j
i .

If the case (a) occurs, then in the graph Fi at least one of e$ and e", say
e$; does not belong to B(Fi). However e$ is of type 2, contradicting Claim 2,
part (1). In the case (b) neither e$ nor e" belongs to B(Fi) although they are
of type 2. This contradicts Claim 2, part (1) again. Finally, the occurrence
of the case (c) would imply a contradiction to Claim 2, part (2). Summing
up the above considerations, F $i (1�i�m) is simple.

The rest of the claim follows easily from Lemma 2.5. K

Claim 5. (1) If every circuit of F is contractible on S, then each F $i
(1�i�m) is short-face embedded on the surface S(F $i) with g(S(F $i))=g(S)
or g(S(F $i))=0. Moreover, one has |V(F $i)|<|V(G)| unless F is a 3-circuit
bounding a face.

(2) If F contains a noncontractible circuit on S, then each F $i (1�i�
m) is short-face embedded on the surface S(F $i) with g(S(F $i))<g(S).

Proof. We first prove the conclusion (1). Since each circuit of F is con-
tractible on S, it is immediate from Lemma 3.2, part (1) that g(S(F $i))=
g(S(Fi))=g(S) or g(S(F $i))= g(S(F i))=0. The fact that F $i is short-face
embedded in S(F $i) follows immediately from Claim 2.

Now we deal with the rest of the conclusion (1). By Lemma 3.2, part (1),
the bordered surface Mi has exactly one boundary circuit; in other words,
ni=1. Let Ci denote the unique boundary circuit of Mi and let Bi be the
circuit of F $i obtained from Ci by the edge contracting process. Then Bi is
a 3-circuit. Keeping in mind that F is simple and contains a circuit, we
have the following two cases:

Case 1. F is not a 3-circuit. Then |V(F )|>3, and thus we get that
|V(F $i)|<|V(G)| since |V(G)|&|V(F $i)|�|V(F)|&|V(Bi)|>0.

Case 2. F is a 3-circuit but does not bound a face of G in S. By the
hypothesis, F is a contractible 3-circuit on S. Thus S&N(F, =�2) has
exactly two connected components M1 and M2 , that is, m=2. Further-
more, the unique boundary circuit Ci of Mi (i=1, 2) is a 3-circuit. Again,
since F is a contractible 3-circuit but does not bound a face of G on S, we
see that both M1 and M2 must contain some vertices of V(G)&V(F ) and
thus so must both F1 and F2 . Therefore |V(F $i)|<|V(G)| (1�i�m=2).
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The two cases above imply that |V(Fi)|<|V(G)| unless F is a 3-circuit
bounding a face of G. This finishes the proof of the conclusion (1).

If we apply the part (2) of Lemma 3.2, the proof of the conclusion (2)
can be performed along the same lines as the proof of the conclusion (1)
above. The difference on this case is that the number of the boundary cir-
cuits of each Mi is possibly larger than one (1�i�m). However, here we
need not consider the inequality between |V(F $i)| and |V(G)|. We leave the
details to the reader. K

Summarizing the above claims, we can state the following result which
is crucial for the proof of the main theorem in the next section.

Lemma 3.3. Let G be a deficient simple graph that is short-face em-
bedded in a surface S. Let F be a component of G&A where A is a minimal
Nebesky� set of E(G). Then there exists an F-resolution [G1 , G2 , ..., Gm] of
G with the following properties:

(a) If every circuit of F is contractible on S, then each Gi (1�i�m)
is simple and has a short-face embedding on a surface Si with g(Si)= g(S)
or g(Si)=0. Moreover, one has |V(Gi)|<|V(G)| unless F is a 3-circuit
bounding a face.

(b) If F contains a noncontractible circuit on S, then each Gi (1�i�
m) is simple and has a short-face embedding on a surface Si with
g(Si)<g(S).

4. PROOF OF MAIN THEOREM

In this section we give the proof of the main theorem. As we have
already mentioned, the proof will be by induction on the genus. The next
lemma verifies the basis of the induction.

Lemma 4.1. Let G be a simple graph. If G has a short-face embedding on
the 2-sphere, then G is upper embeddable.

Proof. Assume to contrary that the conclusion does not hold. Then
there is a planar deficient graph with a short-face embedding on the
2-sphere. From among these choose G to have a minimum order. Fix a
short-face embedding of G on the 2-sphere, and let A be a minimal Nebesky�
subset of E(G).

Now we employ Lemma 3.3. Since G is embedded on the 2-sphere, each
circuit in G is contractible, so part 1 of that lemma applies. Clearly, we
only have to consider the following two cases.
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Case 1. There exists a component F of G&A that is not a 3-circuit
bounding a face. Lemma 3.3 now implies that there exists an F-resolution
[G1 , G2 , ..., Gm] of G such that each Gi (1�i�m) is simple and has a
short-face embedding on the 2-sphere, and furthermore |V(Gi)|<|V(G)|.
By the choice of G, each Gi (1�i�m) is upper embeddable, contradicting
Lemma 2.4.

Case 2. Each component F of G&A is a 3-circuit bounding a face of
G on the 2-sphere. Obviously, G has at least c(G&A) faces with size three.
Furthermore,

|V(G)|=:
F

|V(F )|=3c(G&A) (4)

{ |E(G)|=:
F

|E(F )|+|A|=3c(G&A)+|A|, (5)

where the sum ranges over all the components F of G&A. Let F(G) denote
the set of faces of G. By (4), (5), and Euler's formula for the plane we have

|F(G)|=2+|E(G)|&|V(G)|&|V(G)|=|A|+2. (6)

Taking into account that G is short-face embedded on the 2-sphere with at
least c(G&A) faces with the size three, we thus have

2 |E(G)|= :
f # F(G)

| f |�3c(G&A)+7(|F(G)|&c(G&A)). (7)

Substituting (5) for |E(G)| and (6) for |F(G)| into (7), and simplifying, we
obtain that

|A|�2c(G&A)& 14
5 �2c(G&A)&3,

which contradicts the property (iv) of Lemma 2.2. This finishes the proof of
the lemma. K

Now we proceed to the very proof of the main theorem.

Proof of Main Theorem. We employ induction on g(S), the genus of the
embedding surface S. The case when g(S)=0 has been covered by
Lemma 4.1. We thus assume that the conclusion is true for any surface with
genus smaller than g(S)�1, but to the contrary that it is false for the sur-
face S. We choose a graph G that is short-face embeddable on S, is not
upper embeddable, and whose order is a small as possible. Let A be a mini-
mal Nebesky� set of E(G). Then we can apply Lemma 3.3 and consider the
following cases.
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Case 1. For any component F of G&A, each circuit of F is contract-
ible on S. In this case we shall distinguish two subcases according to
part (1) of Lemma 3.3.

Subcase 1.1. There exists a component F of G & A that is not a
face-bounding 3-circuit. By Lemma 3.3, there exists an F-resolution
[G1 , G2 , ..., Gm] of G such that each Gi (1�i�m) is a simple graph that
has a short-face embedding on a surface Si with either g(Si)= g(S) or
g(Si)=0, and furthermore |V(Gi)|<|V(G)|. If g(Si)=0, then Gi is upper
embeddable by Lemma 4.1 (basis of induction). If g(Si)= g(S), then Gi is
upper embeddable by the choice of G. In either case we get that each Gi

(1�i�m) is upper embeddable. This contradicts Lemma 2.4.

Subcase 1.2. Each component F of G&A is a 3-circuit bounding a
face of G on S. By proceeding as in Case 2 of the proof of Lemma 4.1 we
can induce a similar contradiction. The only difference is that the general
form of Euler's formula yields the inequality |F(G)|�2+|E(G)|&|V(G)|.

Case 2. There exists a component F of G&A that contains a noncon-
tractible circuit on S. By part 2 of Lemma 3.3 there exists an F-resolution
[G1 , G2 , ..., Gm] of G such that each Gi (1�i�m) is simple and has a
short-face embedding on a surface Si with g(Si)<g(S). Therefore each
Gi (1�i�m) is upper embeddable by the inductive hypothesis, a con-
tradiction to Lemma 2.4 as well.

The contradictions in all the above cases show that G is upper embed-
dable. This completes the induction step and thereby establishes our
theorem. K

Example. We now demonstrate that the condition requiring a short-
face embedding of a simple graph to have faces of size at most 7 is best
possible. Let G be the following graph embedded in the plane.

Clearly, G is simple and the size of each face does not exceed 8. However,
taking A=[e1 , e2 , e3], we see that c(G&A)=b(G&A)=3 and c(G&A)+
b(G&A)&|A|�� 2, and therefore G is not upper embeddable by Lemma 2.1,
part 2.
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