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Abstract

Recent studies suggest that endothelial cells are a critical component of the normal

hematopoietic microenvironment. Therefore, we sought to determine whether primary endothelial cells have the capacity to repair
damaged hematopoietic stem cells. Highly purified populations of primary CD31* microvascular endothelial cells isolated from
the brain or lung did not express the pan hematopoietic marker CD45, most hematopoietic lineage markers, or the progenitor
marker c-kit and did not give rise to hematopoietic cells in vitro or in vivo. Remarkably, the transplantation of small numbers of
these microvascular endothelial cells consistently restored hematopoiesis following bone marrow lethal doses of irradiation.
Analysis of the peripheral blood of rescued recipients demonstrated that both short-term and long-term multilineage hematopoietic
reconstitution was exclusively of host origin. Secondary transplantation studies revealed that microvascular endothelial cell-
mediated hematopoietic regeneration also occurs at the level of the hematopoietic stem cell. These findings suggest a potential
therapeutic role for microvascular endothelial cells in the self-renewal and repair of adult hematopoietic stem cells.

© 2009 Elsevier B.V. All rights reserved.

Introduction

Hematopoietic stem cells (HSCs) and hematopoietic progeni-
tors reside in close proximity to sinusoidal endothelium in the
bone marrow and other hematopoietic organs such as the
spleen (reviewed by Kiel and Morrison (Kiel and Morrison,
2008)). It has been increasingly appreciated that endothelial
cells (ECs) comprise an important functional component of
the HSC/hematopoietic progenitor niche (Colmone and

Abbreviations: HSCs, hematopoietic stem cells; ECs, endothelial
cells; BM, bone marrow.

* Corresponding author. Hematologic Malignancies Program, Divi-
sion of Hematology and Medical Oncology, Knight Cancer Institute,
Oregon Health & Science University, 3181 SW Sam Jackson Park
Road, Portland, OR 97239, USA. Fax: +1 503 418 5044.

E-mail address: flemingw@ohsu.edu (W.H. Fleming).

Sipkins, 2008). The ability of endothelial cells to support
HSCs in vitro (Brandt et al., 1999; Chute et al., 2002, 2005; Li
et al., 2004) as well as their expression of numerous cytokines
with HSC-supportive activity (Li et al., 2004) suggests an
active role of endothelium in normal hematopoiesis.

We previously showed that transplanted intact adult blood
vessels have the capability to restore host hematopoiesis
following lethal irradiation (Montfort et al., 2002). Our
findings demonstrated the presence of a population of cells
within normal adult vascular tissue that has the capacity to
protect host hematopoietic stem cells from radiation-
induced death. To further investigate the cellular source of
this radioprotective activity we evaluated mature, adult
microvascular ECs. Moreover, we wished to determine
whether these protective cells have cell-autonomous hema-
topoietic potential and/or exert their effects on host
hematopoiesis in a non-cell-autonomous manner.

1873-5061/$ — see front matter © 2009 Elsevier B.V. All rights reserved.

doi:10.1016/j.scr.2009.08.001


https://core.ac.uk/display/82353978?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:flemingw@ohsu.edu
http://dx.doi.org/10.1016/j.scr.2009.08.001

18

B. Li et al.

Using a lethal irradiation model, we now demonstrate
that a single infusion of a low dose of microvascular ECs
isolated from adult brain or lung protects lethally irradiated
recipients from bone marrow failure. Peripheral blood
engraftment analysis in rescued recipients shows that
hematopoiesis is exclusively host derived and serial trans-
plantation studies demonstrate that true HSCs are rescued in
these EC-protected recipients. Our findings provide strong
evidence that microvascular endothelial cells have the
capacity to rescue mice from lethal irradiation through
restoring host-derived hematopoiesis.

Results

CD31 expressing microvascular endothelial cells
from the brain and lung provide protection against
lethal irradiation

We previously demonstrated that transplanted whole adult
blood vessels can restore host hematopoiesis following lethal
irradiation without significantly contributing to circulating
hematopoietic cells (Montfort et al., 2002). As our studies
revealed that signals generated in the irradiated mice caused
significant proliferation of the endothelial cells within the
transplanted vascular grafts, we speculated that endothelial
cells might mediate the radioprotective activity of the
vascular grafts.

Microvascular endothelial cells were isolated from brain
and lung tissue using a well-established approach (Abbott et
al., 1992; Unger et al., 2002). Briefly, following collagenase
treatment, enriched EC preparations were labeled with
antibodies to CD31 and Sca-1 and then sorted to homogeneity
by flow cytometry. As shown in Figs. 1a,b, CD31" cells
comprised ~10-20% of the total mononuclear cell prepara-
tions derived from these tissues. To test the potential of
microvascular endothelial cells to restore hematopoiesis,
highly purified brain or lung-derived CD31* cells were
transplanted into lethally irradiated recipients (1200 cGy)
at doses of 1x103, 1x10%, or 3x10* cells per mouse. As a
control, lethally irradiated mice were injected with media
only. Transplanted and control recipients were monitored
daily for survival. Combined results from several indepen-
dent experiments revealed that purified CD31" microvascu-
lar cells from both brain (Fig. 1c) and lung (Fig. 1d) provide
similar degrees of protection to lethally irradiated recipi-
ents. Specifically, transplantation of 3x10* CD31* cells from
brain rescued 100% of recipients, whereas 1x10% CD31* cells
from either brain or lung rescue 80% of recipients from lethal
irradiation, and a dose of 1x103 CD31* cells isolated from
either brain or lung saves 20% of recipients. Importantly,
100% of control mice, included in all experiments, died from
hematopoietic failure. These results clearly demonstrate
that a single, low dose of purified CD31* cells is sufficient to
rescue mice from bone marrow lethal doses of irradiation.

CD31" microvascular cells express endothelial cell
markers and are devoid of most differentiated
hematopoietic cell markers

CD31* cells isolated from brain and lung were evaluated for
expression of endothelial, HSC, and hematopoietic lineage
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Figure 1  Purified populations of CD31" microvascular endo-

thelial cells rescue lethally irradiated recipients. CD31" cells
were sorted from adult mouse brain (a) and lung (b). Reanalysis
of the twice sorted populations confirmed their high degree of
purity. Survival of lethally irradiated recipients transplanted
with CD31" cells from brain (c) or lung (d) was monitored daily.
CD317 cells rescued lethally irradiated hosts in a dose-dependent
manner. In (c), (@) 3x10*cells, n=4; (CJ) 1x10* cells, n=10; (W)
1x10%, cells n=10; (O) mock, n=13. In (d), (O) 1x10* cells,
n=10; (M) 1x10%, n=10; (O) mock, n=14. Combined results
from 2 or 3 independent experiments for each experimental
group. Mock is media only.

markers by flow cytometry (Figs. 2a—c) and RT-PCR (Fig. 2d).
Unfractionated bone marrow was used as a positive control
for this analysis (Fig. 2d, bottom panel). As expected, most
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CD31" microvascular cells express endothelial cell markers but not most hematopoietic markers. Characterization of

hematopoietic and endothelial cell surface marker expression on CD31" cells isolated from brain (a) and lung (b) by flow cytometry. (c)
Mean frequency of brain and lung-derived CD31" cells expressing cell surface markers. Error bars are SEM. Whereas the majority of
CD31" cells in both brain and lung coexpress CD105, CD34, and Sca-1 and Gr-1 on the cell surface (a and b), c-kit and other
hematopoietic markers were not detected. (d) RT-PCR analysis of sorted CD31" cells from brain (top panel) and lung (middle panel)
compared to unfractionated bone marrow (lower panel). DNA size (in base pairs) is indicated on the left side of the gel. M: DNA ladder.

CD31* cells showed cell surface expression of EC markers such
as CD105 (endoglin) and CD144 (VE-cadherin) (Figs. 2a—c),
and expressed EC-specific transcripts including flk1, tie2,
and vWF (Fig. 2d). Consistent with previous reports, the vast
majority of CD31* cells isolated from brain and lung also
expressed cell surface markers common to both ECs and
HSCs, including CD34 and Sca-1 (leronimakis et al., 2008;
Kotton et al., 2003; Luna et al., 2004; van de Rijn et al.,
1989). Similarly, expression of gata2 mRNA, which is also
common to both HSCs and ECs (Akashi et al., 2000; Dorfman
et al., 1992; Lee et al., 1991; Tsai and Orkin, 1997), was
detected in the sorted CD31" microvascular EC population.
Importantly, expression of the HSC/hematopoietic progen-
itor marker c-kit was not detected by flow cytometry or by
RT-PCR. Furthermore, most hematopoietic lineage-specific
markers including CD45 (Fig. S1), Mac-1, B220, CD3, CD5, and
NK1.1 and mb-1 were also not detected in the CD31* cells.
Interestingly, however, the transcription factors PU.1 and
gatal and the granulocytic marker Gr-1 were expressed in
the CD31* cells. Taken together, these data indicate that the
phenotype of CD31* cells from lung and brain is consistent

with microvascular ECs and not hematopoietic stem or
progenitor cells.

Long-term hematopoiesis in rescued recipients is
exclusively of host origin

To address the possibility that brain and lung-derived CD31*
microvascular cells may possess long-term, in vivo hemato-
poietic repopulating activity, we investigated the potential
contribution of CD31* donor-derived cells to the hematopoi-
etic systems of rescued mice. As a positive control for donor-
derived hematopoiesis, 1x10° whole bone marrow (BM) cells
were infused into irradiated hosts. Peripheral blood was
harvested at various time points after transplantation, and
the frequency of donor-derived blood cells (CD45.2) and
host-derived blood cells (CD45.1) was evaluated by flow
cytometry. No donor-derived leukocytes were detected in
the blood of recipient mice up to 8 months after CD31* cell
transplantation (Fig. 3a, sensitivity 0.5%). In contrast, in the
peripheral blood of control recipients that received bone
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Figure 3 CD31" cells do not directly contribute to multi-

lineage hematopoiesis in rescued hosts. Peripheral nucleated
blood cell analysis of bone marrow (BM) recipients (n=3) and
CD31" cell recipients (n=7), 8 months after transplantation. (a)
Levels of donor and host engraftment revealed that all
peripheral blood cells in the CD31" cell recipients were of host
origin. * indicates below level of detection (0.5%). (b) CD31" cell
recipients had fewer total circulating nucleated cells (left
panel) while the analysis of hemoglobin levels (middle panel,
Hgb) and platelets (right panel) revealed no differences
compared to BM recipients. (c) Multilineage reconstitution
analysis of radioprotected hosts. Populations of total peripheral
blood leukocytes cells from BM recipients and host cells from
brain CD31" cell recipients were assayed by flow cytometry for
T-cell (CD3), B-cell (B220), or myelomonocytic cell (Mac-1/Gr-1)
marker expression. Only the absolute number of B-cells was
decreased in CD31" cell recipients (**P<0.004). In all panels,
error bars show standard error of the mean. P value was
determined using an unpaired, two-tailed Student's t test.

marrow, a mean of 85% of the hematopoietic cells was donor
derived. Thus, CD31" cells do not possess any measurable
long-term hematopoietic repopulating activity.

To determine the extent of multilineage hematopoiesis in
both CD31* EC and bone marrow recipients, cohorts of mice
transplanted with either cell type were analyzed at 8 months.
Evaluation of the peripheral blood in CD31* cell-rescued
recipients revealed a moderate reduction in total leuko-
cytes, normal hemoglobin levels, and normal platelet
counts, comparable to bone marrow transplant recipients
(Fig. 3b). Analysis of hematopoietic lineages showed a
similar frequency of myelomonocytic cells along with a
reduction in the number of both B and T lymphocytes (Fig.
3c). Taken together these results demonstrate that CD31*
cell-rescued recipients maintain stable, long-term multi-
lineage hematopoiesis.

CD31* microvascular cells derived from the brain and
lung do not possess short-term hematopoietic activity

We and others have previously demonstrated that popula-
tions of bone marrow-derived hematopoietic progenitors are
capable of rescuing irradiated hosts by providing short-term
hematopoiesis until host stem/progenitor cells recover
(Baumann et al., 2004; Na et al., 2002). These findings
raise the possibility that transplanted CD31* cells rescue
lethally irradiated hosts by acting as a source of short-term
hematopoietic progenitors. To address this possibility, we
first assayed the in vitro hematopoietic colony-forming
activity of CD31" endothelial cells. Sorted CD31* cells were
seeded into methylcellulose and unfractionated bone mar-
row cells were used as a positive control. Bone marrow cells
gave rise to an average of 19+1.1 total hematopoietic
colonies per 5000 input cells, whereas sorted CD31* cells
from both the brain and lung did not give rise to any
detectable colonies (Table 1). Thus, CD31* cells lack
significant in vitro hematopoietic colony-forming capacity.

Severe anemia is a major cause of death following bone
marrow irradiation injury. We have previously identified a
short-lived, CD31 expressing erythroid lineage progenitor
cell population in the bone marrow that also provides
radioprotection (Baumann et al., 2004). To address the
possibility that donor CD31* endothelial cells have the
erythroid lineage progenitor potential, mice congeneic at
the hemoglobin locus (Hbb) were utilized. During the
recovery phase following CD31* cell transplant, analysis of
the irradiated recipients (Hbb®) revealed no contribution
from donor-derived hemoglobin (Hbb9, Fig. 4). Together
with the colony-forming data, these results indicate that
CD31* endothelial cells do not demonstrate any significant
short-term hematopoietic progenitor activity.

Table 1 In vitro colony-forming activity of sorted CD31*

cells

Input cells No. of CFU per 5x103 cells
experiments (SEM)

Unfractionated BM 3 19.0 (1.1)

Brain CD31" ECs 3 0

Lung CD31" ECs 2 0

Abbreviations: BM, bone marrow; ECs, endothelial cells; CFU,
colony-forming units; SEM, standard error of the mean.
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Figure 4 CD31" microvascular endothelial cells do not exhibit
erythroid progenitor activity. CD31" cells isolated from mice
congeneic at the hemoglobin locus were used to evaluate their
potential to give rise to the erythroid lineage following
transplant into irradiated recipients. Specifically, donor Hbb®
CD31" cells were transplanted into Hbb® recipients. Two weeks
after transplantation, blood samples were obtained and total
hemoglobin was evaluated by protein electrophoresis. Lanes 1-4
show the absence of detectable donor hemoglobin Hbb in 4 of 4
recipient mice.

Host-derived HSC are regenerated after CD31"*
cell transplantation

Serial transplantation was used to determine whether a
population of true, self-renewing host HSC had been
regenerated in lethally irradiated CD31* EC recipients.
Eight months after CD31 cell infusion, bone marrow was
harvested from rescued primary recipients and 2x10°
unfractionated cells were injected into CD45 congeneic,
lethally irradiated secondary recipients (Fig. 5a). Analysis of
the peripheral blood of these secondary recipients revealed
robust, multilineage hematopoietic reconstitution by the
donor cells (Fig. 5b). These serial transplantation findings
indicate that irradiated host HSCs are regenerated following
the infusion of CD31" microvascular cells.

Discussion

Our results demonstrate that highly purified populations of
primary CD31* microvascular endothelial cells can restore
hematopoiesis following bone marrow lethal doses of
radiation. The peripheral blood of rescued recipients shows
that both short-term and long-term multilineage hemato-
poietic reconstitutions are exclusively of host origin. Direct
evidence for the protection of the self-renewing hemato-
poietic stem cell is provided by secondary transplantation
studies. Taken together, these findings demonstrate an
important role for microvascular endothelial cells in the
repair of irradiated hematopoietic stem cells.

Consistent with our findings, Chute and co-workers
recently demonstrated a radioprotective effect of cultured
endothelial cells (Chute et al., 2007). However, there are
several important differences in the experimental approaches
utilized. In addition to using cultured cell preparations,
repetitive administration of 1x10° mouse brain endothelial
cells (i.e., a total dosage of 5% 10° cells) mediated the survival
of only 57% of lethally irradiated hosts. By contrast, we
demonstrate that only a single dose of 3x10* primary brain
endothelial cells is fully radioprotective. Moreover, we show
that different sources of primary endothelium, such as lung
CD31* cells, have comparable radioprotective activity when
transplanted at the same dose as brain ECs. Our findings

suggest that this activity may be a general property of adult
endothelium. Currently, it is unclear why cultured endothe-
lium is less efficient than freshly isolated endothelium in
restoring host hematopoiesis. One possibility is that since
cultured brain ECs are derived as outgrowths from isolated
vessels (Chute et al., 2002, 2007), they are a more
heterogeneous population of cells than those found in the
CD31* sorted populations we employed for our studies.
Alternatively, the culture conditions employed may simply
reduce the HSC repair capacity of the endothelial cells.

The mechanism by which transplanted endothelial cells
rescue host hematopoiesis and support host HSC recovery is
currently unknown. Given that during embryonic develop-
ment, endothelial cells differentiate into hematopoietic
cells (Chen et al., 2009; Eilken et al., 2009; Lancrin et al.,
2009; Zovein et al., 2008), it is possible that adult CD31* cells
may also possess hemogenic potential in certain experimen-
tal settings. Short-lived populations of myeloerythroid
progenitors, including the common myeloid progenitor
(CMP) and the megakaryocyte/erythrocyte-restricted pro-
genitors (MEP), rescue mice from lethal irradiation and
restore host HSC activity (Na et al., 2002; Nakorn et al.,
2003). However, the data from these studies do not support
the presence of CMP and MEP populations in these CD31* cell
populations. First, neither we nor Chute and colleagues
(Chute et al., 2007) found evidence of the transplanted
endothelial cells adopting hematopoietic fates in vivo as
donor cell-derived hematopoiesis was not detected. This is
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Figure 5 CD31" microvascular endothelial cells restore host
HSCs with self-renewal activity. (a) Schematic of serial
transplantation strategy. Eight months after transplantation
with brain-derived CD31" cells, the BM from radioprotected
hosts (CD45.2) was harvested and 2 x 10° cells were transplanted
into lethally, irradiated secondary recipients (CD45.1, n=5). (b)
Multilineage reconstitution of peripheral blood (PB) from each
secondary recipient was analyzed 6-8 weeks after transplanta-
tion. No significant differences in the extent of multilineage
hematopoietic reconstitution were observed in cells derived
from radioprotected hosts. Error bars are SEM.
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not a question of sensitivity as we were readily able to detect
the progeny of small numbers of CMPs in a previous study
(Bailey et al., 2006). In addition, whereas both CMPs and
MEPs express c-kit (Akashi et al., 2000; Na et al., 2002), c-kit
was not detectable on the cell surface or at the mRNA level in
the sorted CD31* cells. As we have previously identified a
CD31*, c-kit*, Sca-1" population of bone marrow cells that
have transient erythroid lineage generating potential (Bau-
mann et al., 2004), congenic CD31* cell recipients were
evaluated for the presence of donor-derived hemoglobin
(Hbb? into Hbb®, Fig. 4). No early wave of donor-derived
erythroid engraftment was detected, excluding a role for
CD31* cell-derived erythroid progenitors in mediating
radioprotection. In addition, hematopoietic progenitor cell
activity was not detected in CFU assays of sorted CD31* donor
cells and these cells did not express the panhematopoietic
marker CD45 (Fig. S1). This assay is sensitive enough to
detect single progenitor cells; therefore, the lack of CFU
activity rules out the presence of even a small number of
myeloerythroid progenitors in the CD31* EC preparations.
Based on all of these findings, we conclude that CD31* cells
mediate host hematopoietic recovery in a non-cell-autono-
mous manner. However, it is worth noting that the infused
CD31* EC may also be providing some other form of indirect
hematopoietic support. Potential mechanisms could include
improving vascular stability and minimizing bleeding from
thrombocytopenia, leading to enhanced hematopoietic
recovery and survival.

In addition to inducing hematopoietic failure, myeloa-
blative treatments such as ionizing irradiation and chemo-
therapy significantly damage endothelium in the bone
marrow sinusoids (Kopp et al., 2005; Li et al., 2008; Narayan
et al., 1994; Salter et al., 2009; Slayton et al., 2007).
Moreover, repair of BM sinusoids appears to be a critical step
in restoring normal hematopoiesis (Avecilla et al., 2004;
Kopp et al., 2005; Salter et al., 2009). Intriguingly, neither
we (Goldman and Fleming, unpublished observations) nor
others (Chute et al., 2007) have found any evidence of CD31*
cell engraftment within the hematopoietic or endothelial
compartments in the BM of lethally irradiated recipient
mice. Similar to mature ECs, transplanted endothelial
progenitor cells do not integrate into BM vasculature in
measurable numbers, yet they still protect lethally irradiat-
ed hosts (Salter et al., 2009). The non-cell-autonomous
rescue of hematopoietic cells and BM sinusoidal endothelium
by transplanted ECs and EPCs is very likely mediated through
the actions of secreted and/or cell surface expressed
cytokines. To date, a number of cytokines have been
identified that provide some degree of hematopoietic
radioprotection to lethally irradiated mice (Singh and
Yadav, 2005), including interleukin-1, granulocyte colony-
stimulating factor, and c-kit ligand/stem cell factor, all of
which are normally expressed by ECs (Li et al., 2000).
Interestingly, the administration of individual cytokines is
not nearly as effective in rescuing lethally irradiated mice as
combinations of cytokines (Streeter et al., 2003). These
findings suggest that more than one EC-derived cytokine
mediates the EC-mediated regeneration of hematopoiesis. In
the future, it will be important to determine if the repair of
HSC is due to EC-mediated attenuation of DNA damage, the
enhancement of DNA repair mechanisms, or a combination of
both mechanisms.

Conclusions

These studies demonstrate that transplantation of small
numbers of highly purified CD31* microvascular endothelial
cells can restore hematopoiesis following bone marrow
lethal doses of radiation. Importantly, in these transplanted
recipients, host hematopoietic stem cell activity was
restored by the endothelial cells in a non-cell-autonomous
manner. Taken together, these findings highlight a biolog-
ically important and potentially therapeutic role for micro-
vascular endothelial cells in the repair of irradiated
hematopoietic stem cells.

Materials and methods
Mice

Eight- to 12-week-old Thy1.1 /5.2 Hyb or C57Bl/6 mice were
used as donors and age-matched C57BLl/6 (Ly5.1) mice were
used as recipients. Mice were purchased from the Jackson
Laboratory (Bar Harbor, ME) and housed in an SPF animal
care facility at Oregon Health & Science University (Port-
land, OR). Recipient mice were kept on acidified water (pH
2.2) prior to transplantation. All procedures were approved
by the Institutional Animal Care and Use Committee of the
Oregon Health & Science University.

Donor tissue preparation and surface marker
expression analysis

Microvascular endothelial cells were isolated using a
modification of published protocols (Abbott et al., 1992;
Unger et al., 2002). Specifically, brains and lungs were
collected from donor mice, washed with modified Hank's
balanced salt solution (HBSS; with 5% FCS and 10 mM HEPES
buffer), digested with 0.5% collagenase in Buffer A (DMEM
with 1% penicillin/streptomyocin, 10 mM HEPES, and 3% BSA)
at 37 °C for 1 h, and then passed through 70-um filter to
remove tissue debris, and the resulting cell pellets were then
washed in modified HBSS. Lipids were removed from the
brain cell preparation by resuspending the cell pellet in
Buffer A containing 25% BSA and centrifuging at 2500 rpm for
20 min. Brain and lung cell preparations were stained with
CD31/PECAM-1 (MEC13.3; BD Pharmingen, San Diego, CA)
and CD31* cells were sorted using a Vantage Cell Sorter
(Becton Dickinson, San Jose CA). Coexpression analysis was
performed with Ly6A/E (Sca-1), CD34, CD105, c-kit, and VE
cadherin antibodies (BD Pharmingen).

Radioprotection assay

Recipient mice were irradiated twice with 575-600 cGy 3 h
apart using a J. L. Shepherd Co. cesium irradiator. Sorted
CD31* cells from donor brain and lung were diluted in 200 pl
of modified HBSS at doses of 3x10% 1x10% and 1x103.
Following the second dose of irradiation, donor cells were
injected into the retroorbital plexus of recipients anesthe-
tized with isoflurane. Irradiated control mice received 200 pl
modified HBSS only. Recipient mice that had been main-
tained on acidified water were switched to nonacidified
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Table 2  Primers used for RT-PCR analysis

Gene Forward primer Reverse primer Size (bp)
CD31 AGGGGACCAGCTGCACATTAGG AGGCCGCTTCTCTTGACCACTT 452

flk1 TGAGCCAAGTGTTAAGTGTGG GAGCAAGCTGCATCATTTCC 292

tie2 GGATGGCAATCGAATCACTG TCTGCTCTAGGCTGCTTCTT 371

vWF CTC AGA GCT TCG GCG CAT CAC CAG GAC AAA CAC CAC ATCCAG AAC CAT 495
c-kit TGT CTC TCC AGT TTC CCT GC TTC AGG GAC TCA TGG GCT CA 765

pu.1 AACCACTTCACAGAGCTGCA CAAGCCATCAGCTTCTCCAT 260
gatat ATG CCT GTA ATC CCA GCA CT TCA TGG TGG TAG CTG GTA GC 581
gata2 GACTATGGCAGCAGTCTCTTCC GGTGGTTGTCGTCTGACAATT 296
mb-1 GCC AGG GGG TCT AGA AGC TCA CTT GGC ACC CAG TAC AA 308

hprt CACAGGACTAGAACACCTGC GCTGGTGAAAAGGACCTCT 249

Abbreviations: bp, base pairs; VWF, von Willebrand Factor.

water containing antibiotics (10° unit/liter Polymyxin B
sulfate and 1.1 g/liter neomycin sulfate) and monitored daily
over 60 days. For secondary transplantation, bone marrow
was obtained from brain CD31* cell-radioprotected recipi-
ents 8 months after the primary transplantation. Primary
recipients transplanted with bone marrow received 1x10°
donor cells with 2x 10* host cells, while secondary recipients
received 2 x10° unfractionated BM cells.

Assessment of hematopoietic reconstitution

Peripheral blood was obtained from primary or secondary
recipients by retro-orbital puncture. Aliquots of 200 ul were
analyzed for complete blood counts and platelet counts
(Antech Diagnostics, Portland, OR). For the determination of
donor-derived hematopoiesis, peripheral blood was collect-
ed and nucleated cells were prepared by sedimenting
erythrocytes in 2% Dextran (T-500) followed by hypotonic
lysis. Cell pellets were washed and incubated with anti-
CD45.1-FITC and anti-CD45.2-PE in combination with line-
age-specific markers for T-cells (CD3-APC), B-cells (B220-
APC), or myelomonocytic cells (Mac-1-APC and Gr-1-APC) (BD
Pharmingen). The coexpression of these cell surface antigens
was determined by using a FACscan Il and dead cells were
excluded using scatter gates and propidium iodide. Up to 50
000 events were analyzed to provide a sensitivity of 0.5%.

Hemoglobin analysis

Hemoglobin analysis was performed on peripheral blood
isolated as described previously (Baumann et al., 2004).
Donor Hbbd CD31* cells were transplanted into Hbb* recipi-
ents. Approximately 70 pul of peripheral blood was collected
from each recipient mouse and centrifuged and the pellets
were lysed with 1xcystamine solution. Hemoglobin lysates
were applied to a cellulose acetate plate (Helena Laborato-
ries, Beaumont, TX) and electrophoresed at 300 V for 30 min.
Following electrophoresis, plates were stained with Ponceau S
for 20 min, rinsed in deionized water, and destained in 2
changes of 7% glacial acetic acid prior to imaging.

Methylcellulose assay

Complete methylcellulose medium with recombinant cyto-
kines (Methocult M3434, Stem Cell Technologies Inc.,

Vancouver, Canada) was used for colony-forming assays.
CD31" cells from brain and lung were sorted and plated in
triplicate at a concentration of 5x103/plate —1.5x10%/plate
in a 1:10 (v/v) ratio of methylcellulose. As a positive control
1.5x10* mononuclear whole bone marrow cells/plate were
cultured in triplicate. Cells were incubated at 37 °C in a
humidified incubator with 5% CO, in air and colonies were
counted on Day 14.

RT-PCR analysis

Total RNA was isolated from 2000-5000 sorted CD31-positive
cells from brain and lung using the Qiagen one-step RT-PCR
kit (Qiagen, Valencia, CA) according to the manufacturer's
protocol. The same number of unfractionated bone marrow
cells was used as a positive control. PCR were performed at
94 °C, 1 min, 58 °C, 1 min, and 72 °C, 1 min, for a total of 30
cycles. Amplicons were electrophoresed on a 1% agarose gel,
and then stained with ethidium bromide. RNA isolation and
RT-PCR were performed a minimum of two times. The
primers used and the corresponding amplicon sizes are listed
in Table 2.
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