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Overlap between Hartree–Fock–Bogoliubov (HFB) vacua is very important in the beyond mean-field
calculations. However, in the HFB transformation, the U , V matrices are sometimes singular due to the
exact emptiness (vi = 0) or full occupation (ui = 0) of some single-particle orbits. This singularity may
cause some problem in evaluating the overlap between HFB vacua through Pfaffian. We found that this
problem can be well avoided by setting those zero occupation numbers ui , vi to some tiny values denoted
by ε (> 0), which numerically satisfies 1 + ε2 = 1 (e.g., ε = 10−8 when using the double precision data
type). This treatment does not change the HFB vacuum state because u2

i , v2
i = ε2 are numerically zero

relative to 1. Therefore, for arbitrary HFB transformation, we say that the U , V matrices can always be
nonsingular. From this standpoint, we present a new convenient Pfaffian formula for the overlap between
arbitrary HFB vacua, which is especially suitable for symmetry restoration. Testing calculations have been
performed for this new formula. It turns out that our method is reliable and accurate in evaluating the
overlap between arbitrary HFB vacua.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

The Hartree–Fock–Bogoliubov (HFB) approximation has been a
great success in understanding interacting many-body quantum
systems in all fields of physics. However, the beyond mean-field
effects (e.g., the nuclear vibration and rotation) are missing in the
HFB calculations. Methods that go beyond mean-field, such as the
Generator Coordinate Method (GCM) and the projection method,
are expected to take those missing effects into consideration and
present better description of the many-body quantum system. In
the beyond mean-field calculations, operator matrix elements and
overlaps between multi-quasiparticle HFB states are basic blocks.
These matrix elements and overlaps can be evaluated using the
generalized Wick’s theorem (GWT) [1,2], or equivalently using Pfaf-
fian [3–7], or using the compact formula in Ref. [8]. However,
in the efficient calculations (e.g., see [5]), all of the matrix ele-
ments and overlaps require the value of the overlap between HFB
vacua.

Thus, the reliable and accurate evaluation of the overlap be-
tween HFB vacua is very important for the stability and the ef-
ficiency of the beyond mean-field calculations. Especially in cases
near to the Egido pole [9], the overlap between HFB vacua is very
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tiny, and a small error could lead to a large uncertainty of the ma-
trix elements. In the past, numerical calculations of the overlap
were performed with the Onishi formula [10]. Unfortunately, the
Onishi formula leaves the sign of the overlap undefined due to the
square root of a determinant. Several efforts have been made to
overcome this sign problem [11–16]. In 2009, Robledo proposed a
different overlap formula with the Pfaffian rather than the deter-
minant [17]. This formula completely solves the sign problem but
requires the inversion of the matrix U in the Bogoliubov transfor-
mation. To avoid the singularity of U , the formula for the limit
when several orbits are fully occupied is given in Ref. [18]. Simul-
taneously, the limit when some orbits are exact empty was also
considered to reduce the computational cost. Meanwhile, various
Pfaffian formulae for the overlap between HFB vacua have been
proposed by several authors [3,6,7]. In Ref. [7], the overlap formula
does not require the inversion of U , but the empty orbits in the
Fock space should be omitted.

In practical calculation, one should first identify the singular-
ity of the matrices U and V in the Bogoliubov transformation.
This can be easily tested with the Bloch–Messiah theorem (see de-
tails in Ref. [19]). The matrices U and V can be decomposed as
U = DŪ C and V = D∗ V̄ C . Here, D and C are unitary matrices.
Ū and V̄ refer to the BCS-transformation and are constructed from
the occupation numbers ui , vi with 0 ≤ ui, vi ≤ 1 and u2

i + v2
i = 1

(see Eq. (7.9) and Eq. (7.12) in Ref. [19]). The limits of fully occu-
pied (ui = 0, vi = 1) and fully empty (ui = 1, vi = 0) levels have
under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by
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been carefully treated in Refs. [6,7,18] to avoid the collapse of the
overlap computation.

However, we note that in most realistic cases the vi ’s can be
extremely close to 0 or 1 but not exact 0 or 1. Strictly speaking,
these levels with such extreme emptiness or occupation should be
considered but may lead to exotic values (extremely huge or ex-
tremely tiny) of the Pfaffian in the proposed formulae. What is
worse, the Pfaffian values are easily out of the scope of the double
precision data type and cause the computation collapsed.

Careful treatment must be made to avoid such data overflow. In
this paper, we implement an accurate and reliable calculation for
the overlap between arbitrary HFB vacua in a unified way. For the
cases of (ui = 1, vi = 0) and (ui = 0, vi = 1), we treat them as the
cases of (ui = 1, vi = ε) and (ui = ε, vi = 1), respectively. The tiny
quantity ε > 0 is chosen such that ε2 should be numerical zero
relative to 1 in the practical calculation. In other words, ε should
numerically satisfy 1+ε2 = 1. Under this condition, ε may be cho-
sen as large as possible so that the calculated Pfaffian values are
not necessarily too huge or too tiny. For instance, one can choose
ε = 10−8 when using double precision. Because v2

i (u2
i ) = ε2 is

actually zero relative to u2
i (v2

i ) = 1 in practical calculations, this
treatment does not change the HFB vacuum at all. Therefore, with-
out losing the generality, we assume that all levels in the Fock
space are partly occupied, but some of their ui , vi values are al-
lowed to be extremely close to 0 or 1. Ideally, U , V are nonsingular
in our assumption, and we can derive a new formula for the over-
lap between the HFB vacua based on the work of Bertsch and
Robledo [7]. This formula is especially convenient for the symme-
try restoration. Numerical calculations have been carried out for
heavy nuclear system to test the precision of the new formula by
comparing with the Onishi formula.

In Section 2, the formalism of the new overlap formula is given.
Section 3 provides an example of numerical calculation. A sum-
mary is given in Section 4.

2. The overlap between the HFB vacua

We denote ĉ†
i and ĉi as the creation and annihilation operators

defined in an M-dimensional Fock-space. The Hartree–Fock–Bogoli-
ubov (HFB) transformation is(

β̂

β̂†

)
=

(
U † V †

V T U T

)(
ĉ
ĉ†

)
. (1)

Here, we assume U and V are nonsingular matrices, and their
shapes are M × M . The HFB vacuum (unnormalized) can be written
as

|φ〉 = β̂1β̂2...β̂M |−〉, (2)

where |−〉 is the true vacuum. By definition, one has

β̂i|φ〉 = 0 for 1 ≤ i ≤ M. (3)

The second HFB vacuum |φ′〉 is defined in the same way, but the
prime, ‘′ ’, is attached to the corresponding symbols to show differ-
ence.

The overlap between |φ〉 and |φ′〉 is given by
〈
φ|φ′〉 = 〈−|β̂†

M β̂
†
M−1...β̂

†
1β̂

′
1β̂

′
2...β̂

′
M |−〉

= sM〈−|β̂†
1β̂

†
2...β̂

†
M β̂ ′

1β̂
′
2...β̂

′
M |−〉, (4)

where, sM = (−1)[M(M−1)/2] . If M is even, sM = (−1)M/2. Following
the technique of Bertsch and Robledo [7], one can obtain

〈
φ|φ′〉 = sM pf

(
V T U V T V ′ ∗

−V ′ † V U ′ † V ′ ∗
)

. (5)
The shape of the matrix in Eq. (5) is 2M ×2M , and no empty levels
are omitted. For the norm overlap 〈φ|φ〉, it is real and positive.
From Eq. (5) and the Bloch–Messiah theorem, one can get

〈φ|φ〉 = sM pf

(
V T U V T V ∗

−V † V U † V ∗
)

=
M/2∏
i=1

v2
i . (6)

Denoting
∏M/2

i=1 vi by N, the normalized quasi-particle vacuum,
|ψ〉, can be written as

|ψ〉 = |φ〉
N

. (7)

Then, one finds that

〈
ψ |ψ ′〉 = sM

NN′ pf

(
V T U V T V ′ ∗

−V ′ † V U ′ † V ′ ∗
)

. (8)

In the symmetry restoration, the general rotational operator, in-
volving the spin and particle number projection, may be written
as

R̂(Ξ) = R̂(Ω)e−iN̂φn e−i Ẑφp , (9)

where R̂(Ω) is the rotation operator, and Ω refers to the three
Euler angles α, β , γ . e−iN̂φn and e−i Ẑφp are ‘gauge’ rotational op-
erators induced by the neutron and proton number projection.
N̂ and Ẑ are neutron and proton number operators, respectively.
φn and φp are “gauge” angles for neutron and proton, respectively.
Ξ refers to (Ω,φn, φp). The matrix element 〈ψ |R̂(Ξ)|ψ ′〉 needs to
be calculated. Let’s define the general rotation transformation for
symmetry restoration,

R̂(Ξ)

(
ĉ
ĉ†

)
R̂

†(Ξ) =
(
D

†(Ξ) 0
0 D

T (Ξ)

)(
ĉ
ĉ†

)
, (10)

where Di j(Ξ) = 〈i|R̂(Ξ)| j〉, and |i( j)〉 = ĉ†
i( j)|−〉. The D(Ξ) matrix

has the dimension M × M . One can get

R̂(Ξ)

(
β̂ ′
β̂ ′ †

)
R̂

†(Ξ) = D(Ξ)

(
ĉ
ĉ†

)
, (11)

where

D(Ξ) =
( [D(Ξ)U ′]† [D∗(Ξ)V ′]†

[D∗(Ξ)V ′]T [D(Ξ)U ′]T

)
. (12)

By comparing Eq. (11) with Eq. (1), one can obtain the ro-
tated overlap by replacing U ′ and V ′ in Eq. (8) with D(Ξ)U ′ and
D

∗(Ξ)V ′ , respectively. Thus

Npf(Ξ) = 〈ψ |R̂(Ξ)
∣∣ψ ′〉 = sM

NN′ pf
[
M(Ξ)

]
, (13)

where

M(Ξ) =
(

V T U V T
D(Ξ)V ′ ∗

−V ′ †
D

T (Ξ)V U ′ † V ′ ∗
)

. (14)

This formula is essentially the same as the one proposed by
Bertsch and Robledo [7], but we will transform it into a new form.
Supposing that there is a Ξ0 satisfying Npf(Ξ0) �= 0, we have

Npf(Ξ)

Npf(Ξ0)
= pf[M(Ξ)]

pf[M(Ξ0)] = pf[PM(Ξ)P T ]
pf[PM(Ξ0)P T ]

= pf[W(Ξ)]
pf[W(Ξ0)] , (15)

where
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W(Ξ) =
( [U ′V ′ −1]† −D

T (Ξ)

D(Ξ) U V −1

)
, (16)

and P is

P =
(

0 (V ′ †)−1

(V T )−1 0

)
. (17)

Therefore, one can get

Npf(Ξ) = C pf
[
W(Ξ)

]
, (18)

where, the coefficient C is actually independent of Ξ0, and can be
written as

C = Npf(Ξ0)

pf[W(Ξ0)] = sM

NN′ det P
= sM
NN′. (19)

Here, 
 is a phase determined by


 = det D∗ det D ′ det C det C ′ ∗. (20)

In Eq. (18), we have used the Bloch–Messiah theorem and the fol-
lowing equation

det P = det
[(

V ′ †)−1]
det

[(
V T )−1]

. (21)

Eq. (18) looks more convenient to be implemented and may
save some computing time in contrast to Eq. (13), where extra
evaluation of V T

D(Ξ)V ′ ∗ is required for each mesh point in the
integral of projection.

For comparison, let us present a brief introduction of the over-
lap of the Onishi formula [10]. The unitary and canonical transfor-
mation of the quasi-particles under rotation R̂(Ξ) can be written
as

R̂(Ξ)

(
β̂ ′
β̂ ′ †

)
R̂

†(Ξ) =
(

X(Ξ) Y(Ξ)

Y
∗(Ξ) X

∗(Ξ)

)(
β̂

β̂†

)
, (22)

where

X(Ξ) = U ′ †
D

†(Ξ)U + V ′ †
D

T (Ξ)V ,

Y(Ξ) = U ′ †
D

†(Ξ)V ∗ + V ′ †
D

T (Ξ)U∗. (23)

The Onishi formula is then expressed as (see Ref. [20])

NOnishi(Ξ) = 〈ψ |R̂(Ξ)
∣∣ψ ′〉

= (±)

√
det

[
X(Ξ)

]
e−i(Mnφn+Mpφp)/2, (24)

where Mn and Mp are the numbers of neutron and proton orbits
in the Fock space, respectively. The value of det[X(Ξ)] is a com-
plex number, and the sign of the square root is left undefined.
Extra efforts must be made to determine the sign before the appli-
cation of the Onishi formula. For instance, in the Projected Shell
Model [21] without particle number projection, the overlap be-
tween the BCS vacua is real and positive, thus there is no sign
ambiguity and the Onishi formula works.

3. Numerical test of the overlap formulae

Although the sign problem is solved in Eq. (13) and Eq. (18),
one can imagine that N, N′ are extremely tiny numbers by def-
inition. Thus pf[M(Ξ)] is also very tiny, but pf[W(Ξ)] should
be huge. Numerical accuracy of Eqs. (13) and (18) needs to be
carefully tested. It is believed that the Onishi formula is accu-
rate except for its undetermined sign. So, it is helpful to compare
the numerical values of the overlaps using Eq. (13), Eq. (18) and
Eq. (24).
Fig. 1. (Color online.) Overlaps of the ground state neutron slater determinant for
226Th as functions of φn with Euler angles α = γ = 0◦ , β = 10◦ , calculated with
present formula [Eq. (18)] and the Onishi formula [Eq. (24) with ‘+’ sign]. Re[N(φn)]
and Im[N(φn)] are the real and imaginary parts of the overlap.

To demonstrate the accuracy and the reliability of Eqs. (13) and
(18), numerical calculations are performed for the typical example
of the deformed heavy nucleus 226Th. For projection, we should
take |ψ〉 = |ψ ′〉, and then 
 = 1.

The U , V matrices are obtained from the Nilsson+ BCS method.
The single particle levels are generated from the Nilsson Hamilto-
nian with the standard parameters [22]. The single-particle model
space contains 5 neutron major shells with N = 4–8 and 5 proton
major shells with N = 3–7, i.e., the Fock space has 145 neutron
levels (Mn = 290) and 110 proton levels (Mp = 220). The numbers
of the active neutrons and protons are 96 and 70, respectively. The
quadrupole deformation is taken to be ε2 = 0.2. Here, we only con-
sider the axial symmetry for simplicity.

In the no pairing case, the BCS vacuum becomes a pure slater
determinant, which is a challenge for Eq. (18) because all vi ’s
above the Fermi surface are zero. Consequently, N = 0 and W(Ξ)

is meaningless due to the singularity of V . Here, we use the double
precision data type and set vi = ε = 10−8 for those vi = 0 orbits
to avoid the collapse of calculation. Therefore we have

〈φn|φn〉 = (
10−16) 290−96

2 = 10−1552,

〈φp|φp〉 = (
10−16) 220−70

2 = 10−1200,

where, |φn〉 and |φp〉 are BCS vacua for neutrons and protons,
respectively, and |φ〉 = |φn〉|φp〉. The tiny numbers 10−1552 and
10−1200 are too far out of the scope of the double precision data
(∼ 10±307). To avoid the data overflow, we multiply the tiny vari-
able by 10200 several times until the scaled absolute value falls
into the interval [10−200,10200]. In other words, we use a number
y and an integer number k to express a tiny number x through
x = y × (10−200)k . If x is a huge number, then k is negative.

However, for the Onishi formula of Eq. (24), we do not need to
change vi = 0 to vi = ε. The overlaps for the neutron part, calcu-
lated with Eq. (18) and Eq. (24), are compared in Fig. 1. The curves
of Eq. (18) are continuous, but the sign uncertainty of Eq. (24)
causes the discontinuity. However, if one copies the sign of Eq. (18)
to Eq. (24), one can compare numerical difference between Eq. (18)
and Eq. (24) using the following quantity, R ,

R =
∣∣∣∣NOnishi(φn)

Npf(φn)
− 1

∣∣∣∣. (25)

In all calculations, we found that R < 10−12 with double preci-
sion. This confirms that a small change of vi from zero to ε almost
does not affect numerical accuracy. However, it is crucial to keep
Eq. (18) valid. Yet notice that Npf(Ξ) in Eq. (18) is obtained from
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Fig. 2. The amplitude of projection, 〈ψ | P̂ N P̂ Z P̂ I
00|ψ〉, as a function of spin I at N =

96 and Z = 70 using Eq. (18). |ψ〉 is the axially deformed BCS vacuum but without
pairing.

a product of tiny and giant numbers. The same calculations have
also been done with Eq. (13), and we also get R < 10−12. Thus we
have presented an alternative way of using Eq. (13), where we set
vi = ε for those empty orbits rather than omitting them [7].

Once the overlap is available, it is straightforward to perform
the symmetry restoration. The deformed BCS vacuum of 226Th has
been projected onto good particle number and spin. Therefore, one
can test how precise the numerical calculations with Eq. (18) sat-
isfy

∑
N,Z ,I

〈ψ | P̂ N P̂ Z P̂ I
00|ψ〉 = 1, (26)

where P̂ N , P̂ Z , and P̂ I
M K are neutron-number, proton-number, and

spin projection operators, respectively. For the above vacuum state
without pairing (i.e. the ground state slater determinant), the par-
ticle numbers of both neutrons and protons are good. Indeed, our
particle number projection (using 16 mesh points in the integral)
shows that 〈ψn| P̂ N |ψn〉 = 1 (N = 96), or 0 (N �= 96) with numer-
ical errors less than 10−13. Calculations for the protons also have
the same accuracy. This again shows the reliability of Eq. (18). An-
gular momentum projection is also performed on the same state
in addition to the particle number projection. The amplitude of
〈ψ | P̂ N P̂ Z P̂ I

00|ψ〉 with (N = 96, Z = 70) is plotted as a function of
spin I in Fig. 2. In the integral of the spin projection, 100 mesh
points are taken, and the range of spin is 0 ≤ I ≤ 70, and we in-
deed reproduced Eq. (26) with numerical error around 10−12.

We also have tested Eq. (18) in the projection of the triaxially
deformed vacuum with normal pairing, which seems more conve-
nient to use Eq. (18). With the present method, similar accuracy
has also been achieved.
4. Summary

Following the strategy of Bertsch and Robledo [7], we have pro-
posed a new formula of the overlap between HFB vacua by using
the Pfaffian identity and assuming that the inverse of the V ma-
trix exists. This formula is especially convenient and efficient in
the symmetry restoration, and has the same high accuracy as the
Onishi formula as well as the correct sign. The reliability of the
present formula has been tested by carrying out the calculations
of the overlap and the quantum number projection for the heavy
nucleus 226Th. In the testing calculations, one has to be faced with
two numerical problems: (1) The extreme (huge or tiny) quantities
are certainly encountered, and we have properly treated this sit-
uation to avoid data overflow (see the text). (2) For those empty
orbits with vi = 0, which make Eq. (18) invalid, one can change
vi to a small quantity ε (> 0) to avoid the singularity of V matrix.
It turns out that such treatments work very well. Testing calcula-
tions have confirmed that the present formula is even applicable to
the pure slater determinant without losing the numerical accuracy.
Thus it is promising that Eq. (18) may be applicable in evaluating
the overlap between arbitrary HFB vacua.
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