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Abstract This paper aims to investigate the response of laterally loaded rectangular cross sectional

barrettes. Twenty-eight model tests for laterally loaded barrette were investigated to study the effect

of sand relative density, aspect ratio of pile cross section, loading direction and load eccentricity.

Based on this study, the lateral resistance of the barrette that loaded in the direction of major axis

is higher than that loaded in the direction of minor axis. Sand relative density has significant effect

on the lateral capacity of the barrettes. The ratio of the lateral capacity of the barrettes loaded in the

direction of major axis compared to the barrettes loaded in the direction of minor axis is reduced as

the sand relative density increases. Increasing the flexure stiffness of the barrette cross section causes

a reduction in the lateral displacement of the barrette head. Increasing load eccentricity causes a

significant reduction in the barrette lateral resistance.
� 2012 Ain Shams University. Production and hosting by Elsevier B.V.

All rights reserved.
1. Introduction

The lateral resistance of piles is governed by several factors,

the most important factor is the ratio of the structural stiffness
of the pile to the soil stiffness. The relative stiffness of the foun-
dation element with respect to the soil controls the mode of
failure and the manner in which the pile behaves under an ap-

plied lateral load. A barrette is a large cross section rectangular
2277553.

l.com (A.Z. El Wakil), Ash-

).

ttra, Alexandria City, Egypt.

39.

Shams University.

g by Elsevier

y. Production and hosting by Elsev

11
pile. Due to dependence of the flexural stiffness of the rectan-
gular section on its orientation and the nonlinear behavior of
the barrette materials, loading direction affects the lateral

resistance of the barrette. Although some axial load tests have
been performed in field to investigate the axial response of the
barrettes Geotechnical Engineering Office [1]; Fellenius et al.

[2]; Ng et al. [3], little study has been conducted to investigate
the lateral response of barrettes. Due to the rectangular geom-
etry, the lateral resistance of the barrettes depends on loading

direction and may be controlled by the bending capacity of the
barrette section, which may be different from responses of dri-
ven concrete piles and drilled shafts. Recently, a large-scale lat-
eral load test program for deep foundations has been carried

out in Hong Kong for the Kowloon – Canton Railway Corpo-
ration, Hong Kong, with the participation of the Hong Kong
University of Science and Technology. Plumbridge et al. [4]

and Ng et al. [5] have described the over-all test program
and reported test results on single bored piles. The response
ier B.V. All rights reserved.
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Figure 1 Complete set-up of testing procedures.
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of laterally loaded large-section barrettes based on the load
tests, to simulate the response of the two test barrettes consid-
ering the nonlinear behavior of concrete and steel reinforce-

ment, and to study the influence of loading direction on the
lateral response of the barrettes. The lateral response of the
barrettes is influenced by loading direction because of the

dependence of the flexural stiffness of the rectangular barrettes
on their orientation and the nonlinear behavior of their mate-
rials Zhang [6]. Extensive theoretical and experimental studies

have been carried out by several investigators on laterally
loaded piles to determine their ultimate lateral loads and dis-
placements, under working loads. Matlock and Reese [7] de-
fine the relative rigidity of a laterally loaded pile in terms of

the ratio of the flexural stiffness of the pile, EI, and the coeffi-
cient of lateral subgrade reaction, ks. Their method is applica-
ble only if the deflection of piles is within the range of linear

deformation of the soil. Vesic [8], Davisson and Gill [9], Broms
[10], Banerjee and Davies [11] and Poulos and Davis [12] define
and utilize a stiffness ratio, Kr, as

Kr ¼ EpIp=EsL
4 ð1Þ

where Es is the deformation modulus of the soil, Ep the mod-
ulus of elasticity of the pile material, Ip the moment of inertia
of pile cross-section and L the length of the pile. The pile usu-

ally behaves as a rigid one for Kr values greater than 10�2.
Kasch et al. [13] have proposed that embedded length to diam-
eter ratio, L/d, of the pile also be used to assess the flexural

behavior of the pile and concluded that in order to ensure rigid
behavior, the L/d ratio should not exceed about 6. However,
under some conditions, a foundation can have L/d ratio as

high as 10 and still behave as a rigid one, but, for flexible
behavior L/d should be in excess of 20. Based on the studies
of Meyerhof et al. ([14,15]), the pile behavior is rigid even
though L/d is as high as 16. From the above studies, it is felt

that assessing the rigid behavior of the pile through relative
stiffness factor, Kr, would be a better option. Failure of rigid
or short shafts takes place when the lateral earth pressure

resulting from lateral loading attains the limiting lateral resis-
tance of the supporting soil along the full length of the mem-
ber. The rigid pile is assumed to be infinitely stiff and the

only motion allowed is pure rotation of the shaft as a rigid
body about some point on the axis of the shaft for rigid body
motion, the rotation of the shaft and the displacement at the
ground line define the deformed position of the pile. From

the extensive search it is found that little studies has been con-
ducted to investigate the lateral response of the barrettes so
this laboratory experimental study is performed to study the

effect of cross section of the barrettes on their lateral resistance
also the effect of sand relative density and direction of loading
on the barrettes behavior were investigated.

2. Testing equipment

To study the behavior of laterally loaded barrettes in sand, lab-

oratory tests were conducted on a small scalemodel of three bar-
rettes having cross section dimensions of (B \ L) equal to
50 \ 50 mm, 50 \ 100 mm, and 50 \ 150 mm. The barrettes

models were machined from steel plates of thickness 3 mm to
have a length of 710 mm, and side ratios L/B equal 1, 2, and 3.
Twenty-eight laboratory experiments are conducted to study
the behavior of laterally loaded barrettes. The model barrettes
were laterally loaded; the lateral loads are applied using a fric-
tionless pulley fixed to the soil bin via a steel wire connected to
the top of the barrettes at one end and to a hanger at the other

end. Standard weights are used for loading. Two-dial gauges –
of accuracy 0.01 mm–were used tomeasure the barrettes lateral
displacements. The dial gauges were attached horizontally on

the top surface of the barrettes on the same loading level. The
general layout of the equipment used in the present study is illus-
trated in Fig. 1. The lateral displacement of the barrettes was

considered as the average of the two dial gauges readings. The
soil bin is made out of two steel rings each of 300 mm height
and 750 mmdiameter. These rings were assembled to form a soil
bin of total height 600 mm. The sides of the soil bin were

strengthen using circular steel plates to prevent any lateral
deformation of the side walls and to facilitate the erections of
the steel rings using steel bolts. Also vertical steel ribs are added

to each ring and welded to the boundary circular plates of each
ring. The soil bin is placed on a rigid steel girder resting on the
ground, accurately vertical. Spirit level was used to ensure verti-

cal and horizontal levels of test setup. It is obvious that the
dimensions of the soil bin are big enough to overcome the effects
of the boundary conditions on the barrettes response, whereas

the diameter of soil bin to the barrettes biggest side dimension
is 5.0. It is worth mentioning that the barrettes length are
710 mm and the sand height is 600 mm, and the loading level
is at the level of the barrettes head and the pulley diameter is

100 mm that’s to say the wire is kept in a horizontal level be-
tween the barrettes and the pulley. To study the vertical eccen-
tricity effect the loading steel wire was designed to be fixed at

a height of 600 mm and 650 mm on the barrettes shafts. Finally
it is worth mentioning that the barrettes were designed to be
loaded in both directions, minor axis direction, and major axis

direction. Considering the dimensions and material of the stud-
ied barrettes and the range of deformation modulus of sand
which was given by Poulos [16], the studied barrettes are consid-

ered as rigid. Also considering the limitation of Meyerhof et al.
([14], [15]) the studied barrettes are rigid.
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Figure 2 Notations for the studied parameters.
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3. Experimental procedure

The barrette is vertically placed in the center of soil bin accord-
ing to the testing program and the sand was formed in the soil

bin in layers each of 50 mm thickness. To ensure homogeneity
of sand formation a designed weight of sand, with an accuracy
of 0.001 kN, was formed into a certain volume of the soil bin

by compaction to give the specified relative density of 35%,
65%, and 90% according to a planned testing program shown
in Table 1 and Fig. 2 shows the notations of the studied
parameters. Compaction was carried out manually using a

rammer weighing 40.0 N and of 200 mm diameter. The top
surface of the formed sand was leveled using sharpened
straight steel plate. The load was applied incrementally; each

increment was kept constant till no significant change occurs
in displacement, that is to say the difference between two suc-
cessive readings is less than 0.01 mm per 5 min for three con-

secutive readings. The corresponding pile displacements were
measured within an accuracy of 0.01 mm using the two-dial
gauges. The sand used was medium size sand of minimum

dry unit weight 15.6 kN/m3, maximum dry unit weight of
18.2 kN/m3, uniformity coefficient of 2.95, effective diameter
0.19 mm, and specific gravity 2.6.

4. Test results and discussion

A total of 28 tests were carried out on laterally loaded barrettes
constructed on sand deposit. The effect of aspect ratio of the

barrette cross section, L/B, sand relative density, load direc-
tion, and load eccentricity on the lateral resistance were stud-
ied. The lateral force and displacement were obtained and

discussed. The ultimate lateral capacity of vertical barrette
was obtained from load displacement curves. The head lateral
displacement (S) of the barrette is expressed in non-dimen-

sional form in terms of pile width (B) as percentage ratio (S/
B, %). The ultimate lateral capacity of the barrette is obtained
from the load–displacement curve as the pronounced peaks,

after which the barrette is failed. Wile in curves where no def-
inite failure point occurs, the ultimate load is taken as the
point where the slope of the load displacement curve first
reached to zero or steady minimum value Vesic [17]. The mea-

sured ultimate loads for the barrettes constructed in loose,
medium and dense sand for different studied parameters are
Table 1 Model tests program.

Series Constant parameters

1 Rd = 35%, H/B = 12, e/B = 2, Load parallel

2 Rd = 65%, H/B = 12, e/B = 2, Load parallel

3 Rd = 90%, H/B = 12, e/B = 2, Load parallel

4 Rd = 35%, H/B = 12, e/B = 2, Load parallel

5 Rd = 65%, H/B = 12, e/B = 2, Load parallel

6 Rd = 90%, H/B = 12, e/B = 2, Load parallel

7 Rd = 65%, H/B = 12, e/B = 2, L/B = 2

8 Rd = 65%, H/B = 12, a = 0�, e/B = 0

9 Rd = 65%, H/B = 12, a = 0�, e/B = 1

10 Rd = 65%, H/B = 12, a = 90�, e/B = 0

11 Rd = 65%, H/B = 12, a = 90�, e/B = 1

Rd relative density of sand, H pile embedment depth, a is the inclination a

and e is load eccentricity.
given in Table 2. Typical variations of lateral force (P) with
horizontal displacement, (S) of model barrette that con-

structed in medium sand for the three studied aspect ratios
are shown in Fig. 3. In this series sand relative density, Rd

65%, embedment ratio, H/B and Load eccentricity, e/B were
kept constant while the aspect ratios L/B have different values

of 1, 2, and 3. This figure shows typical load vs. normalized
displacement ratio (S/B) for the barrette that constructed in
medium dense sand under lateral loading acting in the direc-

tion of minor axis of the barrette cross section Pa90. It is clear
that, the ultimate lateral capacity of the barrette increases
with the increase of the aspect ratio of the barrette cross

section. At the same load intensity the lateral displacement is
decrease as the aspect ratio is increased. The maximum value
of lateral resistance is found to be at normalized displacement
of 4.5%, 5.0%, and 9.0% for aspect ratios of 1, 2, and 3

respectively. It is also observed that the maximum normalized
Variable parameters

to minor axis, a = 90� L/B= 1, 2 and 3

to minor axis, a = 90� L/B= 1, 2 and 3

to minor axis, a = 90� L/B= 1, 2 and 3

to major axis, a = 0� L/B= 1, 2 and 3

to major axis, a = 0� L/B= 1, 2 and 3

to major axis, a = 0� L/B= 1, 2 and 3

a = 0, 30�, 60� and 90�
L/B= 1, 2 and 3

L/B= 1, 2 and 3

L/B= 1, 2 and 3

L/B= 1, 2 and 3

ngle, B width of cross section of the pile, L length of pile cross section



Table 2 Ultimate lateral load for laterally loaded barrettes constructed in sand with different sand relative densities and variable

aspect ratio.

Aspect ratio, (L/B) Ultimate lateral load, N (e/B = 2.00 and H/B = 12.00)

Load in the direction of minor axis, Pa90 Load in the direction of major axis, Pa0

Loose sand

Rd = 35%

Medium sand

Rd = 65%

Dense sand

Rd = 90%

Loose sand

Rd = 35%

Medium sand

Rd = 65%

Dense sand

Rd = 90%

1 140 300 590 140 300 590

2 200 400 790 470 600 800

3 260 650 1100 640 900 1150
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Figure 4 Variation of lateral load with horizontal displacement

for barrette. constructed in medium sand and lateral load in the

direction of major axis (Pa0).
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Figure 5 Variation of ultimate lateral load with aspect ration L/

B for barrettes constructed in sand with different densities, and

lateral load in the direction of minor axis.
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B for barrettes constructed in sand with different densities, and
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direction of minor axis (Pa90).
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displacement up to the barrettes failure is increased as the as-
pect ratio increased; this trend is observed for all test results at

different sand relative densities. For the same barrette lateral
load, the lateral displacement is decreased significantly as the
aspect ratio increases. For example, at lateral force of 400 N,
the normalized lateral displacement is decreased from 16%

for L/B = 1 to 5.00 and 3.00% for L Æ B = 2 and 3 respec-
tively, with displacement reduction 69% and 81% respectively.
Fig. 4 shows the variations of lateral load (Pa0) with lateral dis-

placement (S) that constructed in medium dense sand and the
load in the direction of the major axis. The figure clearly indi-
cates that changing the load direction parallel to the major axis

causes significant increase in lateral resistance of the barrette.
The figure also shows that the lateral displacement is decreased
as the aspect ratio increased. For example, at lateral force of



0

200

400

600

800

1000

1200

0 20 40 60 80 100

L/B=1

L/B=2

L/B=3

Relative density of sand, Rd%

La
te

ra
l L

oa
d,

 P
α

90
, N

Figure 7 Variation of ultimate lateral load with sand relative

density and lateral load in the direction of minor axis.

0

200

400

600

800

1000

1200

0 20 40 60 80 100

Relative density of sand, Rd%

La
te

ra
l L

oa
d,

 P
α

0,
 N

L/B=1

L/B=2

L/B=3

Figure 8 Variation of ultimate lateral load with sand relative

density, Rd and lateral load in the direction of major axis.

0

200

400

600

800

0 30 60 90

Direction of load, αo

La
te

ra
l l

oa
d 

re
si

ta
nc

e,
 P

α
, Ν

Figure 9 Variation of ultimate load capacity with loading

direction, (L/B = 2, e/B= 2, H/B = 12 and Rd = 65%).

Behavior of laterally loaded small scale barrettes in sand 347
400 N, the normalized lateral displacement decreased from
16% for L/B = 1 to 1.75 and 0.60% for L Æ B = 2 and 3

respectively, with displacement reduction 89% and 96%
respectively. Both figures confirm the significant increase in
the lateral resistance of the barrettes with the increase of bar-

rettes aspect ratio. The increase of the barrette resistance is
large in the case of loading parallel to the major axis compared
to the case of load in the direction of minor axis. The increase

of the lateral resistance on changing the load direction can be
attributed to the side friction and the increase of the flexural
stiffness of the barrette section which has significant effect
Table 3 Percentage of increase of lateral capacity of barrettes cons

ratio of barrette.

Aspect ratio,

(L/B)

% Of increase of lateral capacity for rectang

B = 12.00)

Load in the direction of minor axis, Pa90

Loose sand

Rd = 35%

Medium sand

Rd = 65%

Dense

Rd =

1 100 100 100

2 143 133 144

3 186 217 200
on the lateral resistance of the barrettes and also causes signif-
icant reduction of the lateral displacement of the barrette head.

4.1. Influence of the barrette cross sections

In order to study the effect of the barrette cross section on the
lateral resistance Figs. 5 and 6 are constructed. The studied as-

pect ratios are 1, 2, and 3 for square barrette of section
50 · 50 mm and rectangular barrettes of section 50 · 100 mm,
and 50 · 150 mm respectively. These three barrette shapes have

constant embedment depth of 600 mm with load eccentricity of
100 mm. The ultimate lateral resistance with different aspect ra-
tios of the three studied sand densities are shown in Fig. 5 for the
case of load in the direction of minor axis and Fig. 6 for the case

of load in the direction of major axis. These figures clearly dem-
onstrate the significant effect of aspect ratio of the barrette on
the lateral resistance. These figures demonstrate that the lateral

resistance increase as the aspect ratio increase particularly for
the barrette loaded in the direction of the major axis. For the
same aspect ratio (L/B = 2), a gain in the lateral resistance for

the barrette constructed in medium dense sand and loading in
direction of minor axis compared to square section is 133%, rel-
ative to a gain of 200% for the barrette loading in themajor axis.
The percentage of increase in the lateral resistance with the in-

crease of the sand relative density is more significant for the bar-
rette loaded in the direction of major axis compared with the
barrette loaded in the direction of the minor axis.

4.2. Influence of sand relative density

To investigate the effect of sand relative density and load direc-

tion on the lateral capacity of the barrtte Figs. 7 and 8 are
tructed in sand with different sand densities and variable aspect

ular barrette/capacity of square barrette (e/B = 2.00 and H/

Load in the direction of major axis, Pa0

sand

90%

Loose sand

Rd = 35%

Medium sand

Rd = 65%

Dense sand

Rd = 90%

100 100 100

336 200 136

457 300 195
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constructed, for the barrette loaded in the direction of minor
axis and major axis respectively. Fig. 7 clearly shows that the

increase of sand relative density resulted in little increase in lat-
eral resistance in the loose condition while this increase is sig-
nificant in medium and dense sand. Also the figure shows that

the rate of increase in the barrette capacity increases as the as-
pect ratio of the barrette section increases. For example the
rate of increase for loose sand, L/B= 2.00 and 3.00 is 43%

and 85% compared with square barrette, which these values
was 33% and 116% for medium dense sand and 44% and
100% for dense sand. Fig. 7 shows that the increase of sand
density resulted in moderate increase in the lateral resistance

of the barrette for the three studied aspect ratios. For example
the rate of increase for loose sand, L/B = 2.00 and 3.00 is
235% and 357% compared to square barrette, which these val-

ues are 200% and 300% for medium dense sand and 35% and
77% for dense sand. These results it clearly indicates that the
barrette lateral capacity on loading in the direction of major

axis increases significantly for the barrette constructed in loose
sand, the ratio of increase in the barrette resistance decreases
as the sand relative density increases compared to loose condi-
tion. Table 3 illustrates the ratio of increase of the barrette

capacity compared with the case of square barrette.
Table 4 Ultimate lateral load for laterally loaded barrettes constru

variable aspect ratio of barrette.

Aspect ratio, (L/B) Ultimate lateral load, N (Rd = 65% and H/B

Load in the direction of minor axis, Pa90

e/B = 0 e/B= 1 e/B =

1 800 400 300

2 1000 700 400

3 1300 900 650
4.3. Influence of load direction

In order to study the effect of lateral load direction on the
resistance of the barrette, series 7 is performed. In this series
the aspect ratio is 2, embedment depth is 600 mm, load eccen-

tricity is 100 mm and sand relative density is 65%. The ulti-
mate lateral resistance with different load directions of this
series is shown in Fig. 9. This figure clearly demonstrates the
significant effect of the load direction on the lateral resistance

of the barrette. This figure demonstrates that the lateral resis-
tance of the barrette for the case of loading in the major axis
direction, Pa0 is higher than that loaded in the direction of

the minor axis, Pa90. Also Fig. 10 is plotted to compare the ef-
fect of lateral load direction on the lateral capacity of the bar-
rette for the tested sand densities. This figure ensures that the

structural stiffness of the barrette section in the direction of
lateral load has major effect on the lateral resistance. The lat-
eral resistance for the barrette tested in the direction of minor

axis regarding to the major axis is about 66.7% for medium
density sand, while this value is found to be 42.5% for loose
sand and 98% for dense sand. From the obtained results it is
concluded that the ratio between lateral resistance of the bar-

rette tested in the direction of minor axis related to the capac-
ity of the barrette loaded in the major direction is affected by
the sand relative density and the barrette structural stiffness.

from this figure it is concluded that the higher the sand relative
density the lower the difference in the capacity of the barrette
tested in both directions, the minor axis, and the major axis.

4.4. Influence of load eccentricity

In order to study the effect of lateral load eccentricity on the
barrettes resistance, serieses 2, 5, 8, 9, 10, and 11 are per-

formed. In these series the embedment depth is 600 mm, sand
relative density is 65% and e/B is varied from 1, 2, and 3. The
load deflection results for these seriese are shown in Fig. 11.

This figure clearly demonstrates the significant effect of the
load eccentricity on the barrettes lateral resistance. This figure
shows that the lateral resistance of the barrette significantly in-

creases with load eccentricity is decreased and reaches the max-
imum value at load eccentricity equals to zero. This
observation is shown for the barrettes loaded in the directions

of minor and major axes. Also it is clearly observed that the
barrettes with no eccentricity have more resistance than the
barrettes with load eccentricity. The barrette lateral
displacement at failure load increases as the load eccentricity

decreases. For the same relative displacement the lateral
resistance increases as the load eccentricity is decreased for
examples; for L/B = 2 and the load in the direction of minor

axis at relative displacement (S/B) = 5%, the corresponding
cted in medium dense sand, with different load eccentricity and

= 12.00)
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2 e/B= 0 e/B = 1 e/B = 2

800 400 300
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lateral load is 1100, 850, and 440 N for e/B= 0, 1, and 2
respectively. The barrette lost 22.73% and 60% from its lateral
resistance as the load eccentricity (e/B) increased to 1 and 2

respectively. The obtained lateral resistance and corresponding
eccentricity is plotted in Fig. 12. From this figure it is clear that
the rate of increase in the lateral capacity of the barrette as the

load eccentricity is decreased is moderate for e/B reduced from
2 to 1 while the rate of increase is significantly high as e/B is
reduced from 1 to 0. This trend is shown for the barrette load-

ing in both minor and major axis. The obtained ultimate lat-
eral resistance for different load eccentricity is given in Table 4.

5. Scale effect

It is well known that due to scale effects and nature of soils
especially granular soils, soils may not play the same role in

the laboratory models as is in the prototype. These differences
occur preliminary because of the differences in stress level be-
tween the model tests and the field tests Vesic [17], and Nazir
and Nasr [18]. The stress level around the small scale model

pile is much smaller than that in around the full scale piles. De-
spite the involvement of scale effects, the study not only can
provide insight into the likely behavior of rectangular cross

sectional pile that constructed in different sand densities, but
also will provide a useful basic for further research using
full-scale tests or centrifugal model tests and numerical studies

leading to an increased understanding of rectangular cross sec-
tional piles installed in sand subjected to lateral loads.

6. Conclusions

From the accomplished experimental study the following con-
clusions are obtained:

1. The lateral resistance of the barrette loaded in the direction
of major axis is higher than that the barrette that loaded in
the direction of minor axis.

2. Sand relative density has significant effect on the lateral
capacity of the barrettes. That’s to say the higher the rela-
tive density of sand the higher the lateral capacity of the

barrette.
3. The ratio of the lateral capacity of the barrette that loaded

in direction of major axis regarding the barrette loaded in

the direction of minor axis is reduces as the sand relative
density increases.

4. Increasing the flexure stiffness of the barrette cross section
in the direction of lateral load causes a reduction of lateral

displacement of the barrette head.
5. Increasing load eccentricity causes a significant reduction in

the barrette lateral resistance.

6. The maximum lateral resistance for the barrette is attained
at zero load eccentricity.
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