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Abstract

Given a graph G= (X, U), the problem dealt with in this paper consists in partitioning X into a disjoint union of cliques by adding
or removing a minimum number z(G) of edges (Zahn’s problem). While the computation of z(G) is NP-hard in general, we show
that its computation can be done in polynomial time when G is bipartite, by relating it to a maximum matching problem. When G
is a complete multipartite graph, we give an explicit formula specifying z(G) with respect to some structural features of G. In both
cases, we give also the structure of all the optimal clusterings of G.
© 2007 Published by Elsevier B.V.
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1. Introduction

In this paper, we deal with a problem arising in data analysis and set by Zahn in 1964 ([17]; see also [2,3] for
references on Zahn’s problem and related topics): given a symmetric relation S defined on a finite set X, find an
equivalence relation also defined on X and which best approximates S by minimizing the number of disagreements
with respect to S. In the social sciences, this problem may arise for instance in the following context. We have to
decide whether some entities (the elements of X; they can represent individuals [11], animals [9,15], objects such as
cars [6] or micro-computers [4], member states of the U.N.O. [9,14], companies [12], and so on; see also [16] for
details and references) are similar or not. One way to decide which objects are similar and which are not consists in
comparing them by pairs. Because of different reasons (diversity of the criteria, existence of thresholds, inconsistency
of the deciders, and so on), the result got from these pair-wise comparisons is often a symmetric relation which is not
transitive: entities x and y may be considered as similar, as well as y and z, while x and z are not considered as similar.
Then, in order to cluster these entities, we look for an equivalence relation minimizing the number of disagreements
with respect to results provided by the pair-wise comparison experiment.

This number of disagreements is given by the symmetric difference distance d(S, E) between S and an equivalence
relation E; this distance is defined by

d(S, E) = |S�E|,
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where � stands for the symmetric difference. Because of the symmetry of S and E, d(S, E) is always even; then we
shall deal with another distance �(S, E)= 1

2d(S, E). Notice that the number of equivalence classes is not fixed a priori
and thus depends on the relation S.

For a given symmetric relation S, an equivalence relation minimizing � from S is called a Zahn equivalence relation of
S. The distance �(S, E) between S and a Zahn equivalence relation E of S is called the Zahn index of S. The computation
of the Zahn index of a symmetric relation is NP-hard in general [7].

It is usual to associate a simple undirected graph G with a symmetric relation S defined on X: the vertex set of
G is X and there is an edge between two distinct vertices x and y if and only if x and y are in relation with respect
to S. Similarly, an equivalence relation E defined on X can also be considered as a graph H with X as its vertex set
and such that H is a disjoint union of cliques. (Notice that the graphs G and H are assumed to be loopless; it means
that we do not take the reflexivity of S or of E into account; in fact, this simplification does not change anything
to the other features of Zahn equivalence relations; thus this assumption will be done until the end of this paper.)
The distance �(S, E) between S and E becomes a distance between G and H, equal to the number of edges that we
have to add to G or to remove from G in order to transform G into H. Thus, we get a graph theoretic formulation
of Zahn problem (already used in [17]). For a given undirected graph G, the minimum number of edges that we
have to add or to remove to transform G into a disjoint union of cliques is called the Zahn index z(G) of G; a
graph H associated with an equivalence relation and at distance z(G) from G is called a Zahn equivalence graph
of G.

In this paper, we compute the Zahn index and the set of all Zahn equivalence graphs of any bipartite graph and
of any multipartite complete graph. In [13], Tomescu considered complete bipartite graphs to compute the maximum
value of z(G) over the set of graphs with a given number of vertices. With this respect, our study carries on Tomescu’s
work by considering graphs which are natural extensions of complete bipartite graphs, namely any bipartite graphs
(not necessarily complete) and multipartite complete graphs (notice that dealing with any multipartite graph does not
seem an easy task). Moreover, we pay attention to these kinds of graphs also because they form a family of polynomial
instances of this problem, which is rather rare: to our knowledge, the only graphs known to constitute non-trivial
families of polynomial instances are the ones described by Zahn in [17] and ours.

Section 2 gives the notations and the terminology used in this paper. Preliminary lemmas can be found in Section
3. Section 4 is devoted to the computation of the Zahn index and the Zahn equivalence graphs of any bipartite graph,
while the same is done in Section 5 for any complete tripartite graph and more generally for complete multipartite
graphs in Section 6.

2. Notations and terminology

Throughout the paper, all the graphs that we deal with are undirected. Moreover, G = (X, U) will denote a graph
with X as its vertex set and U as its edge set. The complementary graph of G is noted G.

A graph H = (X, U) which is a disjoint union of cliques is called an equivalence graph defined on X; H is the graph
theoretic representation of an equivalence relation E defined on X; the (connected) components of H (that is, the cliques
of H) are associated with the equivalence classes of E.

The distance �(G, H) between two graphs G and H defined on the same vertex set is the one introduced in
Section 1 applied to the edge sets of G and H, i.e. the cardinality of the symmetric difference between the edge
sets of G and H. It is also the number of edges that must be added to G or removed from G in order to get H.

A bipartite graph is noted G=(X=A∪B, U), where X=A∪B is the set of vertices of G, such that A∩B is the empty
set and every edge of G has one end in A and one in B. Similarly, a tripartite graph is noted G = (X = A ∪ B ∪ C, U)

where {A, B, C} is a tripartition of X such that the three subgraphs induced by A, B or C are independent sets of G.
More generally, a k-partite graph is noted G = (X = A1 ∪ · · · ∪ Ak, U), where {A1, . . . , Ak} is a k-partition of X, such
that each subgraph induced by Ai (1� i�k) is an independent set of G.

A k-partite graph G = (X = A1 ∪ · · · ∪ Ak, U) is complete if, for every i and j with 1� i < j �k, U contains all the
possible edges with one extremity in Ai and one in Aj . Thus a complete k-partite graph is the complementary graph of
the equivalence graph with k cliques and conversely.

A complete bipartite graph G = (X = A ∪ B, U) is balanced if |A| = |B|, and nearly balanced if |A| = |B| ± 1.
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Kn is the complete graph on n vertices; in particular, K1 is a vertex and K2 is the graph with two vertices linked by
an edge; Ka,b (resp. Ka1,a2,...,ak

for k� 2) is the complete bipartite (resp. k-partite) graph with a vertices in one vertex
subset and b in the other one (resp. a1, a2, . . . , ak vertices in the k vertex subsets).

3. Preliminary lemmas

In order to show the main theorems (Sections 4–6), we first prove four technical lemmas.

Lemma 1. Let G = (X = A ∪ B, U) be a bipartite graph. Let H be an equivalence graph defined on X such that there
exists one component P with at least two vertices in A and at least one vertex in B. Let A′ (resp. B ′) be a subset of P ∩A

(resp. P ∩ B) with ∅ �= A′ �= P ∩ A and |A′| = |B ′|; let A′′ (resp. B ′′) denote the set of vertices (P ∩ A) − A′ (resp.
(P ∩ B) − B ′). Let H ′ be the equivalence graph obtained from H by splitting P into two components: one induced by
A′ ∪ B ′, the other one induced by A′′ ∪ B ′′ (see Fig. 1 for an illustration). Then:

�(G, H ′)��(G, H)

and the equality is obtained in the above relation if and only if, in G, any vertex of A′ is adjacent to any vertex of B ′′
and any vertex of A′′ is adjacent to any vertex of B ′.

Proof. Fig. 1 illustrates the graphs H and H ′, where a line between two sets means that all the edges with one end
in each set exist. Notice that the existence of A′ and B ′ is provided by the fact that P contains at least two vertices
of A and at least one vertex of B. Notice also that A′′ is not empty while B ′′ can be, and B ′′ can be bigger or smaller
than A′′.

We set a′ = |A′|, a′′ = |A′′|, b′ = |B ′| and b′′ = |B ′′|. Then we get

�(G, H ′) − �(G, H) = (number of edges between A′ ∪ B ′ and A′′ ∪ B ′′ in G)

− (number of edges between A′ ∪ B ′ and A′′ ∪ B ′′ in G).

As G is bipartite with X = A ∪ B, it becomes

�(G, H ′) − �(G, H)�(a′b′′ + b′a′′) − (a′a′′ + b′b′′).

We chose a′ = b′; so:

�(G, H ′) − �(G, H)�(a′b′′ + a′a′′) − (a′a′′ + a′b′′) = 0,

hence the first part of Lemma 1. Moreover, we have the equality �(G, H ′) = �(G, H) if and only if the previous
inequalities are all equalities, that is, if and only if the number of edges between A′ ∪ B ′ and A′′ ∪ B ′′ in G is equal to
a′b′′ + b′a′′ while the number of edges between A′ ∪ B ′ and A′′ ∪ B ′′ in G is equal to a′a′′ + b′b′′. It is exactly the
same as saying that, in G, any vertex of A′ is adjacent to any vertex of B ′′ and any vertex of B ′ is adjacent to any vertex
of A′′. This completes the proof. �

A B

P

H H'

A' B'

A'' B'' A'' B''
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A' B'

Fig. 1.
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Lemma 2. Let G = (X = A ∪ B, U) be a bipartite graph, and let H be any Zahn equivalence graph of G. For each
component P of H, the subgraph of G generated by P is a balanced or nearly balanced complete bipartite graph.

Proof. Let P be any component of H; suppose, without loss of generality, that we have |A ∩ P |� |B ∩ P |. Let x be a
vertex belonging to P ∩ A. Set A′ = (A ∩ P) − {x}, B ′ = B ∩ P, a′ = |A′| and b′ = |B ′|: then b′ − a′ �1. Consider the
equivalence graph H ′ obtained from H by removing x from P and by isolating x into a clique reduced to this vertex, as
shown by Fig. 2.

Then, the variation of � is given by

�(G, H ′) − �(G, H) = (number of edges between x and A′ ∪ B ′ in G)

− (number of edges between xand A′ ∪ B ′ in G)

= (the number of edges between x and B ′ in G)

− a′ − (b′ − number of edges between x and B ′ in G)

= 2(the number of edges between x and B ′ in G) − a′ − b′.

Suppose that the number of edges between x and B ′ in G is strictly less than b′; then, we would have

�(G, H ′) − �(G, H)�2b′ − 2 − a′ − b′ = b′ − a′ − 2� − 1;

as H is a Zahn equivalence graph of G, �(G, H) is minimum over the set of equivalence graphs defined on X, thus a
contradiction with the previous inequality: so x is adjacent to every vertex of B ′ in G. As this is true for any x belonging
to P ∩ A, all the edges between P ∩ A and P ∩ B exist in G, and so the subgraph of G generated by P is a complete
bipartite graph.

Moreover, the previous result involves also the equality:

�(G, H ′) − �(G, H) = b′ − a′.

Once again because of the optimality of H, we must have b′ − a′ �0. With the previous inequality b′ − a′ �1, this
involves that b′ − a′ is equal to 0 or to 1 or, in other words, |B ∩ P | = |B ′| = |A′| = |A ∩ P | − 1 or |B ∩ P | = |B ′| =
|A′| + 1 = |A ∩ P |: the subgraph of G generated by P is balanced or nearly balanced. This completes the proof. �

To state Lemma 3, we recall the definition of betweenness (see for instance [1,10]):

Definition. Let A, B, and C be three sets; C is said to be between A and B if A ∩ B ⊆ C ⊆ A ∪ B.
Similarly, let G = (X, U), G′ = (X, U ′) and G′′ = (X, U ′′) be three graphs defined on the same vertex set X. Let U1

(resp. U2) be the set of edges which are in G′′ (resp. G) but not in G (resp. G′′): G′′ is obtained from G by adding the
edges of U1 and removing the ones of U2. If G′ is obtained from G by adding a part U ′

1 of U1 and removing a part U ′
2

of U2, G′ is said to be between G and G′′.

Lemma 3. Let G = (X, U) be a graph, H a Zahn equivalence graph of G and G′ = (X, U ′) a graph between G and
H; then, H is also at minimum distance from G′ and any equivalence graph which is at minimum distance from G′ is
at minimum distance from G.
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Proof. Let U1 (resp. U2) be the set of edges which are in H (resp. G) but not in G (resp. H ). Then G′ is obtained from
G by adding a part U ′

1 of U1 and removing a part U ′
2 of U2. Thus we have

�(G, H) = |U1| + |U2|
= |U ′

1| + |U ′
2| + |U1 − U ′

1| + |U2 − U ′
2|

= �(G, G′) + �(G′, H).

Let H ′ be any Zahn equivalence graph of G′ : �(G′, H ′)��(G′, H). Then, as � is a distance and by the optimality of
a Zahn equivalence graph:

�(G, H)��(G, H ′)��(G, G′) + �(G′, H ′)��(G, G′) + �(G′, H) = �(G, H).

So, all these inequalities are equalities, and thus:

• �(G′, H) = �(G′, H ′): H is at minimum distance from G′,
• �(G, H ′) = �(G, H): H ′ is at minimum distance from G. �

Lemma 4. Let G = (X, U) and G′ = (X, U ′) be two graphs defined on the same vertex set X. If, for every Zahn
equivalence graph H of G, G′ is between G and H, then the set of Zahn equivalence graphs of G is the same as the set
of Zahn equivalence graphs of G′.

Proof. It immediately follows from the previous lemma. �

Notice in particular that (with the same notation as for Lemma 4), if G has only one Zahn equivalence graph H, then
for any graph G′ between G and H, H is the unique Zahn equivalence graph of G′.

4. Zahn index of bipartite graphs

In this section, we compute Zahn index for any bipartite graph G by relating it to the maximum cardinality of a
matching of G. Some results are known about some complete bipartite graphs. More precisely, Tomescu [13] shows
that z(G) is maximum over the set of graphs G with a given number n of vertices if and only if G is K(n+1)/2,(n−1)/2 if
n is odd or Kn/2,n/2 or Kn/2+1,n/2−1 if n is even, and gives the value of z(G) in these cases. Theorem 1 gives the value
of z(G) for any bipartite graph G and describes the structure of the Zahn equivalence graphs of G in this case.

Theorem 1. Let G = (X = A ∪ B, U) be a bipartite graph, m its number of edges and � the maximum cardinality of
a matching of G. Then:

(1) z(G) = m − �.
(2) An equivalence graph H is at distance z(G) from G if and only if it contains a maximum matching of G and,

for each component P of H, the subgraph of G generated by P is a balanced or nearly balanced complete bipartite
subgraph of G.

Proof. Let M be a matching of cardinality �. The partial graph (A ∪ B, M) of G is an equivalence graph at distance
m − � of G: thus z(G)�m − �.

Let us consider now an equivalence graph H defined on X at distance z(G) from G. By Lemma 2, for each component
P of H, the subgraph of G generated by P is a balanced or nearly balanced complete bipartite graph. According to
Lemma 1, it is possible, without modifying the distance to G, to transform H into an equivalence graph H ′ which is a
disjoint union of cliques K1 and K2, the edges of the cliques K2 belonging to G: this transformation is performed by
splitting the components of H iteratively, and more precisely by isolating the edges of M as long as it is possible. Then,
the set of edges of H ′ is a matching of G: its cardinality is at most �; so: z(G) = �(G, H) = �(G, H ′)�m − �. Finally,
we have: z(G) = m − �.

Moreover, �(G, H ′) = m − � implies that the number of edges of H ′ is � and these edges, which are the edges
of M, belong also to H: hence H contains a maximum matching of G. Conversely, consider an equivalence graph H
defined on X, containing a maximum matching M of G and such that, for each component P of H, the subgraph of G
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generated by P is a balanced or nearly balanced complete bipartite graph. The same transformation as above gives an
equivalence graph H ′ of which the components are reduced to cliques K1 or K2, with � edges (the ones of M) and
verifying �(G, H ′) = �(G, H). As H ′ contains only the � edges of M, we get �(G, H ′) = m − �, which implies that H
is at minimum distance from G. �

For complete bipartite graphs, we thus get the following corollary:

Corollary 1. The Zahn index of Ka,b, with a�b, is equal to b(a − 1).

Proof. It is direct from Theorem 1 and from the fact that the maximum cardinality of a matching of Ka,b with a�b is
equal to b. �

Corollary 2. If a graph G with n vertices and m edges contains a complete balanced or nearly balanced bipartite
graph as a partial graph, then z(G) = n(n − 1)/2 − m and Kn is a Zahn equivalence graph of G.

Proof. By Theorem 1, Kn is a Zahn equivalence graph of Kn/2,n/2 if n is even and of K(n+1)/2,(n−1)/2 if n is odd. As G
contains Kn/2,n/2 if n is even or K(n+1)/2,(n−1)/2 if n is odd, G is between Kn and Kn/2,n/2 if n is even or K(n+1)/2,(n−1)/2
if n is odd. Thus, by Lemma 3, Kn is a Zahn equivalence graph of G and z(G) is given by the number of edges that
must be added to G to get Kn, that is: z(G) = n(n − 1)/2 − m. �

Remarks. 1. Though Zahn problem is NP-hard in general, Theorem 1 shows that bipartite graphs constitute a family
of polynomial instances, since it is well-known that the computation of a maximum matching in a bipartite graph is a
polynomial problem (see for instance [8]).

2. As shown in [5], it is possible to recognize in polynomial time whether a graph contains a complete balanced or
nearly balanced bipartite graph as a partial graph.

3. Theorem 1 shows also that the number of Zahn equivalence graphs of a given graph (and thus the number of Zahn
equivalence relations of a symmetric relation too) can be very high: for instance, the n! perfect matchings of Kn,n are
Zahn equivalence graphs of Kn,n. Moreover, their structures can be also very different: for instance, K2n is a Zahn
equivalence graph of Kn,n (the n(n−1) missing edges are added) with n(2n−1) edges and only one component while,
as said above, a perfect matching with n edges and n components (the n2 − n edges which do not belong to the perfect
matching are deleted) is another Zahn equivalence graph of Kn,n.

5. Zahn index of complete tripartite graphs

We consider now complete tripartite graphs Ka,b,c for any integers a, b and c. Theorem 2 gives the description of all
the Zahn equivalence graphs of Ka,b,c.

Theorem 2. Let G=Ka,b,c = (X =A∪B ∪C, U) be a complete tripartite graph with |A|=a, |B|=b, |C|= c, a�b

and a�c. Then:

• if a�b + c, the graph H = Ka+b+c is the unique graph at minimum distance from G;
• if a�b+c+1, an equivalence graph H is at minimum distance from G if and only if one component of H contains

b + c or b + c + 1 vertices of A, all the vertices of B and all the vertices of C, while each other component of H
is reduced to only one vertex of A.

Proof. Consider a graph H at minimum distance from G and a maximum (with respect to cardinality) component P1
of H; let p1 denotes the cardinality of P1. Let A1, B1 and C1 be the sets of vertices of P1 which belong, respectively,
to A, B and C, and let a1, b1 and c1 denote the respective cardinalities of these sets. We prove the statement of
Theorem 2 in three steps; Step 2 is divided into six substeps.

Step 1: Let us show the inequality: a1 �b + c + 1. Suppose the contrary: a1 > b + c + 1. Consider a new graph H ′
obtained from H by removing one vertex from A1 and by creating a new component reduced to this vertex, as illustrated
by Fig. 3.
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Then we get

�(G, H ′) − �(G, H) = b1 + c1 − (a1 − 1)�b + c − a1 + 1 < 0,

which is impossible, since H is at minimum distance from G. Hence the inequality:

a1 �b + c + 1.

Step 2: We suppose in this step that H has at least two components. We want to show that this case is impossible if
a�b + c and, otherwise, that P1 contains at least b + c vertices of A and all the vertices of B ∪ C, while each other
component of H is reduced to only one vertex of A. We do this in six substeps; what we want to show in these substeps
is specified at the beginning of each substep below.

For this, let P2 be another component of H, and set p2 = |P2|. Let A2, B2 and C2 be the sets of vertices of P2 which
belong, respectively, to A, B and C; let a2, b2 and c2 denote the cardinalities of these sets.

Substep 1: a1 �a2, a1 �= 0, b1 �b2, b1 �= 0, c1 �c2, c1 �= 0.
Consider the equivalence graph H ′ obtained from H by shifting A1 and A2 in P1 and P2, as shown by Fig. 4.
Then we get

�(G, H ′) − �(G, H) = a1(b1 + c1) + a2(b2 + c2) − a1(b2 + c2) − a2(b1 + c1)

= (a1 − a2)[(b1 + c1) − (b2 + c2)].
As H is at minimum distance from G : �(G, H ′)−�(G, H)�0. So the inequality a1 < a2 would involve b1+c1 �b2+c2,
and therefore p1 < p2, a contradiction with the maximality of p1. So we have a1 �a2. Since this relation is true for any
component P2 of H and because A is not empty, we deduce that a1 cannot be equal to 0. By similar shiftings involving
B1 and B2 or C1 and C2, we can show the other relations of Substep 1: b1 �b2, b1 �= 0, c1 �c2 and c1 �= 0.

Substep 2: At least one of the integers a2, b2 or c2 is equal to zero.
Suppose that a2, b2 and c2 are not equal to zero. Consider a new graph H ′ obtained from H by moving simultaneously

one vertex from A2 to A1, one vertex from B2 to B1 and one vertex from C2 to C1 (see Fig. 5).
Then we get (the first parentheses are associated with the move of the vertex of A2, the second with the one of B2,

the third with the one of C2)

�(G, H ′) − �(G, H) = (a1 − a2 + 1 + b2 − 1 + c2 − 1 − b1 − c1)

+ (b1 − b2 + 1 + a2 − 1 + c2 − 1 − a1 − c1)

+ (c1 − c2 + 1 + a2 − 1 + b2 − 1 − a1 − b1)

= (a2 + b2 + c2) − (a1 + b1 + c1) − 3 < 0,

a contradiction with the minimality of H.
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Substep 3: Only one of the integers a2, b2 and c2 is not equal to zero.
Suppose that a2 = 0, b2 �= 0 and c2 �= 0. Consider a new graph H ′ obtained from H by moving simultaneously one

vertex from B2 to B1 and one vertex from C2 to C1, as shown by Fig. 6.
Then the variation of � is given by (the first parentheses are associated with the move of the vertex of B2, the second

with the one of C2)

�(G, H ′) − �(G, H) = (b1 − b2 + 1 + c2 − 1 − c1 − a1) + (c1 − c2 + 1 + b2 − 1 − b1 − a1)

= − 2a1 < 0.

As H is at minimum distance from G, the previous result is impossible.
By the same way, one may prove that the relations b2 = 0, a2 �= 0, c2 �= 0 are impossible simultaneously and,

similarly, the relations c2 = 0, a2 �= 0, b2 �= 0 are impossible simultaneously.
Substep 4: Except P1, any clique of H is reduced to one vertex.
Suppose that we have b2 �= 0, a2 = c2 = 0. If b2 �2, consider a new graph H ′ obtained from H by removing one

vertex from B2 to constitute a new clique reduced to this vertex (see Fig. 7).
Then:

�(G, H ′) − �(G, H) = −b2 + 1 < 0,

once again a contradiction with the choice of H at minimum distance from G. So: b2 = 1.
The same result holds if we consider A or C instead of B: any clique of H different from P1 is reduced to one vertex.
Substep 5: The unique vertex of P2 belongs to A.
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P2

Fig. 8.

A B C

A1 C1B1 P1

P2

Fig. 9.

From the previous result, we know that P2 contains only one vertex. Suppose that we have a2 = 0 (the vertex of P2
belongs to B or to C). Consider a new equivalence graph H ′ obtained from H by moving the vertex of P2 from P2 to
P1 (Fig. 8 illustrates the case for which the vertex of P2 belongs to B).

Then, if the vertex of P2 belongs to B (resp. to C), we get

�(G, H ′) − �(G, H) = b1 − a1 − c1 (resp.�(G, H ′) − �(G, H) = c1 − a1 − b1).

As H is at minimum distance from G, the previous equality involves b1 �a1 + c1 (resp. c1 �a1 + b1). Notice that these
two inequalities b1 �a1 + c1 and c1 �a1 + b1 are not compatible simultaneously with a1 > 0 (Substep 1). Thus, all the
components of H except P1 are issued from the same set B or C. Then, if this set is B (resp. C), we get a1 = a, c1 = c,
b > b1 �a + c (resp. a1 = a, b1 = b, c > c1 �a + b), what is incompatible with a �b and c > 0 (resp. a�c and b >

0). Hence a contradiction: the vertex of P2 does not belong to B nor to C, and thus it belongs to A.
Substep 6: a > a1 �b + c.
From Substep 5, it appears that, in the condition of Step 2 (H has at least two components), any component P2 of H

with P2 �= P1 is reduced to one vertex of A. Then, if we move the vertex of such a component P2 to A1 (see Fig. 9),
we get, as above, an equivalence graph H ′ verifying �(G, H ′) − �(G, H) = a1 − b1 − c1. Once again, the optimality
of H involves the inequality a1 − b1 − c1 �0. Hence the relations a > a1 �b + c, since A1 �= A.

Step 3. We may now conclude.
According to Step 2, if a�b + c, H has only one clique and therefore H = Ka+b+c is the only optimal solution.
Suppose now that a > b + c. If H has only one clique, then a = a1 and, by Step 1, a = b + c + 1; in this case, the

statement of Theorem 2 is satisfied: one component of H (H itself!) contains b + c + 1 vertices of A, all the vertices of
B ∪ C, while the other components (there is none!) are reduced to one vertex of A. If H has at least two components,
using the results of Step 2 and the relation a1 �b+c+1 got in Step 1, we get successively: a1 =b+c or a1 =b+c+1;
H has a − a1 + 1 components, that is a − (b + c) + 1 or a − (b + c) components; in the first (resp. second) case, one
component of H contains all the vertices of B, all the vertices of C and (b + c) (resp. b + c + 1) vertices of A while the
other components of H are reduced to one vertex of A.

Conversely, still for a > b+ c, consider an equivalence graph H with a − (b+ c)+1 (resp. a − (b+ c)) components,
with one component containing all the vertices of B, all the vertices of C and b + c (resp. b + c + 1) vertices of A, the
other cliques of H being reduced to one vertex of A. From Theorem 1, H is at minimum distance from Ka,b+c. As the
graph G is between Ka,b+c and H, Lemma 3 involves that H is at minimum distance from G. �
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Corollary 3. Let G=Ka,b,c = (X=A∪B ∪C, U) be a complete tripartite graph with |A|=a, |B|=b, |C|= c, a�b

and a�c. Then:

• if a�b + c, z(G) = (a2 + b2 + c2 − a − b − c)/2;
• if a�b + c + 1, z(G) = ab + ac − bc − b − c.

Proof. It follows directly from Theorem 2. �

6. Generalization to complete k-partite graphs

The following theorem is a generalization of Theorem 2 to complete k-partite graphs for any k�3. But we may notice
that Theorem 3 is not a generalization of the second part of Theorem 1 when applied to complete bipartite graphs.

Theorem 3. Let k be greater than or equal to 3 and let G = Ka1,a2,...,ak
= (X = A1 ∪ · · · ∪ Ak, U) be a complete

k-partite graph with |Ai | = ai for 1� i�k and a1 �ai for 2� i�k. Then:

• if a1 �
∑k

i=2 ai , the complete graph H = Ka1+a2+···+ak
defined on X is at minimum distance from G, and it is the

unique graph at minimum distance from G;
• if a1 �

∑k
i=2 ai+1, an equivalence graph H is at minimum distance from G if and only if it contains a1−∑k

i=2 ai+1
or a1 − ∑k

i=2 ai cliques and, in the first (resp. second) case, there is one clique containing simultaneously all
the vertices of

⋃k
i=2 Ai as well as

∑k
i=2 ai (resp.

∑k
i=2 ai + 1) vertices of A1, while each other clique of H is

reduced to one vertex of A1.

Proof. The proof is by induction on k. For k = 3, the statement of Theorem 3 is exactly the same as the one of
Theorem 2.

Suppose that k is greater than 3 and that the statement of Theorem 3 is true for k − 1. We may assume without loss
of generality that a2 is greater than or equal to ak . Then consider the complete (k − 1)-partite graph G′ = (X = A1 ∪
· · · ∪ Ak−2 ∪ A′, U ′) with A′ = Ak−1 ∪ Ak . Notice that G and G′ have the same vertex set and that all the edges of G′
are edges of G. Set a′ = |A′| = ak−1 + ak . Then we get a′ �a1 + a2 �

∑k−2
i=1 ai : A′ is not bigger than the union of the

other cliques.
First case: a1 �

∑k
i=2ai .

If a′ �a1, A′ is the biggest clique of G′; then the induction hypothesis implies that Ka1+a2+···+ak−2+a′ =Ka1+a2+···+ak

is the only graph at minimum distance from G′; as G is between G′ and Ka1+a2+···+ak
, Lemma 4 gives the expected

result for G. Similarly, if a′ < a1, A1 is the biggest clique of G′ but is not bigger than the union of the other cliques;
then the same argument as before allows us to conclude.

Second case: a1 �
∑k

i=2ai + 1.
Then we have a1 �a′. The induction hypothesis implies that G is between G′ and any graph at minimum distance

from G′. So, here again by Lemma 4, the set of Zahn equivalence graphs of G is the same as the set of Zahn equivalence
graphs of G′. Hence the result. �

Next theorem gives the value of Zahn index of complete k-partite graph for k� 2 (thus it is a generalization of
Corollaries 1 and 3).

Theorem 4. For k�2, let G = Ka1,a2,...,ak
be a complete k-partite graph with a1 �ai for 1� i�k. Then:

• if a1 �
∑k

i=2 ai , z(G) = 1
2

∑k
i=1 ai(ai − 1);

• if a1 �
∑k

i=2 ai + 1, z(G) = 1
2

[∑k
i=1 ai(ai − 1) − (2a1 − n)(2a1 − n − 1)

]
,

where n = a1 + · · · + ak is the order of G.

Proof. For k = 2, Corollary 1 gives the result. For k�3, we consider two cases, as for Theorem 3.
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First case: a1 �
∑k

i=2 ai .
Theorem 3 shows that, in this case, there is only one equivalence graph at minimum distance from G, which is the

complete graph. To change the k-partite graph G into the complete graph defined on the same number of vertices, it is
necessary to add all the missing edges in each part of G; hence the result:

z(G) = 1

2

k∑
i=1

ai(ai − 1).

Second case: a1 �
∑k

i=2 ai + 1.
Let A′

1 denote a part of A1 having
∑k

i=2 ai =n− a1 vertices. According to Theorem 3, z(G) is the distance between
G and an equivalence graph H with a1 − ∑k

i=2 ai + 1 cliques of which one is induced by A′
1 ∪ ⋃k

i=2Ai , while each
other clique of H is reduced to one vertex of A1. To change G into H, we have to add all the edges with both extremities
in A′

1 or in Ai for 2� i�k, and we have to remove all the edges between A1 − A′
1 and the parts A2, . . . , Ak . As we

have |A1 − A′
1| = a1 − (n − a1) = 2a1 − n, we get

z(G) = 1

2
(n − a1)(n − a1 − 1) + 1

2

k∑
i=2

ai(ai − 1) + (2a1 − n)(n − a1)

= 1

2

[
k∑

i=1

ai(ai − 1) − (2a1 − n)(2a1 − n − 1)

]
.

This completes the proof. �

To conclude this paper, we state a last corollary:

Corollary 4. Let G a graph containing Ka1,a2,...,ak
as a partial graph, for some k�3 and with a1 �ai for 2� i�k and

a1 �
∑k

i=2 ai +1. Then Ka1+a2+···+ak
is a Zahn equivalence graph of G and z(G)=n(n−1)/2−m, where n=∑k

i=1ai

denotes the number of vertices of G and m its number of edges. Moreover, if a1 �
∑k

i=2 ai , then Ka1+a2+···+ak
is the

only Zahn equivalence graph of G.

Proof. Notice that G is between Ka1,a2,...,ak
and Ka1+a2+···+ak

. For a1 �
∑k

i=2 ai , we know from Theorem 3 that
Ka1+a2+···+ak

is the unique Zahn equivalence graph of Ka1,a2,...,ak
; in this case, Lemma 4 gives the expected result. For

a1 = ∑k
i=2ai + 1, by Theorem 3, Ka1+a2+···+ak

is still a Zahn equivalence graph of Ka1,a2,...,ak
(though it is not the

only one); hence the result, by Lemma 3. �

Notice that it is possible (see [5]) to determine, for any fixed k�3 and any fixed integers a1, a2, . . . , ak , whether a
graph contains Ka1,a2,...,ak

as a partial graph in polynomial time. Then, for these graphs, Corollary 4 shows that it is
easy to compute their Zahn index.

7. Conclusion

As a conclusion, we may summarize the previous results.
Though the computation of Zahn index is NP-hard in general, it becomes polynomial for bipartite graphs, because of

the relation z(G) = m − �, where G is any bipartite graph, m the number of edges of G and � the maximum cardinality
of a matching of G. Anyway, the Zahn equivalence graphs of such a graph G may be very numerous and their structures
may be very different (see the remarks of Section 4).

For complete k-partite graphs G = (X, U) with k�3, Sections 5 and 6 provide explicit formulas between z(G) and
the cardinalities of the sets of the k-partition of X. We also give characterizations of the equivalence graphs at minimum
distance from G, showing sometimes that the optimal solution is unique.

Some of these results are extended to graphs containing a complete balanced or nearly balanced bipartite graph or a
complete k-partite graph (k�3) as a partial graph, leading in some cases to the uniqueness of the optimal solution of
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such a graph. These graphs constitute also a family of graphs for which the computation of Zahn index and of a Zahn
equivalence graph is polynomial.
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