brought to you by CORE

Discrete Mathematics 312 (2012) 1453-1457

Contents lists available at SciVerse ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Note Rainbow connection of graphs with diameter 2[★]

Hengzhe Li*, Xueliang Li, Sujuan Liu

Center for Combinatorics and LPMC-TJKLC, Nankai University, Tianjin 300071, China

ARTICLE INFO

Article history: Received 8 March 2011 Received in revised form 9 January 2012 Accepted 9 January 2012 Available online 31 January 2012

Keywords: Edge-coloring Rainbow path Rainbow connection number Diameter

1. Introduction

ABSTRACT

A path in an edge-colored graph *G*, where adjacent edges may have the same color, is a *rainbow path* if no two edges of the path are colored the same. The *rainbow connection number* rc(G) of *G* is the minimum integer *k* for which there exists a *k*-edge-coloring of *G* such that any two distinct vertices of *G* are connected by a rainbow path. It is known that for a graph *G* with diameter 2, deciding if rc(G) = 2 is NP-Complete. In particular, computing rc(G) is NP-hard. So, it is interesting to know the upper bound of rc(G) for such a graph *G*. In this paper, we show that $rc(G) \leq 5$ if *G* is a bridgeless graph with diameter 2, and that $rc(G) \leq k + 2$ if *G* is a connected graph with diameter 2 and has *k* bridges, where $k \geq 1$. Crown Copyright © 2012 Published by Elsevier B.V. All rights reserved.

All graphs considered in this paper are undirected, finite, and simple. We refer to book [2] for graph theoretical notation and terminology not described here. A path in an edge-colored graph *G*, where adjacent edges may have the same color, is a *rainbow path* if no two edges of the path are colored the same. An edge-coloring of graph *G* is a *rainbow-connected edge-coloring* if any two distinct vertices of graph *G* are connected by a rainbow path. Such an edge-coloring is *rainbow*. The *rainbow connection number* rc(G) of *G* is the minimum integer *k* such that *G* has a rainbow-connected edge-coloring using *k* colors. It is easy to see that diam $(G) \leq rc(G)$ for any connected graph *G*, where diam(G) is the diameter of *G*.

The rainbow connection number was introduced by Chartrand et al. in [5]. It has application in transferring information of high security in multicomputer networks. We refer the readers to [3,6] for details. Bounds on the rainbow connection numbers of graphs have been studied in terms of other graph parameters, such as radius, dominating number, minimum degree, connectivity, etc. [1,4,5,8–10]. Chakraborty et al. [3] investigated the hardness and algorithms for the rainbow connection number, and showed the following result.

Theorem 1 ([3]). Given a graph G with diameter 2, deciding if rc(G) = 2 is NP-Complete. In particular, computing rc(G) is NP-hard.

It is well-known that almost all graphs have diameter 2. So, it is interesting to find a sharp upper bound on rc(G) when *G* has diameter 2. Clearly, the best lower bound on rc(G) for such a graph *G* is 2. In this paper, we give sharp upper bounds on the rainbow connection number of a graph with diameter 2: if *G* is a bridgeless graph with diameter 2, then $rc(G) \le 5$; if *G* is a connected graph with diameter 2 and has *k* bridges, where $k \ge 1$, then $rc(G) \le k + 2$.

E-mail addresses: lhz2010@mail.nankai.edu.cn (H. Li), lxl@nankai.edu.cn (X. Li), sjliu0529@126.com (S. Liu).

[☆] Supported by NSFC.

^{*} Corresponding author.

⁰⁰¹²⁻³⁶⁵X/\$ – see front matter Crown Copyright © 2012 Published by Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2012.01.009

2. Main results

We begin with some notation and terminology. Let *G* be a graph. The *eccentricity* of a vertex *u*, written as $\epsilon_G(u)$, is $\max\{d_G(u, v) : v \in V(G)\}$. The *radius* of a graph, written as $\operatorname{rad}(G)$, is $\min\{\epsilon_G(u) : u \in V(G)\}$. A vertex *u* is a *center* of a graph *G* if $\epsilon_G(u) = \operatorname{rad}(G)$. Let *G* be a graph and *U* be a set of vertices of *G*. The *k*-step open neighborhood of *U* in *G*, denoted by $N_G^k(U)$, is $\{v \in V(G) : d_G(U, v) = k\}$ for each *k*, where $0 \le k \le \operatorname{diam}(G)$ and $d_G(U, v) = \min\{d_G(u, v) : u \in U\}$. We write $N_G(U)$ for $N_G^1(U)$ and $N_G(u)$ for $N_G^1(\{u\})$. For any two subsets *X* and *Y* of *V*(*G*), let $E_G[X, Y]$ denote $\{xy : x \in X, y \in Y, xy \in E(G)\}$. Let *c* be a rainbow-connected edge-coloring of *G*. A path *P* is a $\{k_1, \ldots, k_r\}$ -rainbow path if it is a rainbow path and $c(e) \in \{k_1, \ldots, k_r\}$ for each *e* in E(P). In particular, an edge *e* is a *k*-color edge if it is colored by *k*.

Proposition 2. If *G* is a bridgeless graph with diameter 2, then either *G* is 2-connected, or *G* has only one cut-vertex v. Furthermore, the vertex v is the center of *G*, and *G* has radius 1.

Proof. Let *G* be a bridgeless graph with diameter 2. Suppose that *G* is not 2-connected, that is, the graph *G* has a cut-vertex, say *v*. Moreover, the graph *G* has only one cut-vertex, since diam(*G*) = 2. If some vertex other than *v* is not adjacent to *v*, then its distance from vertices in the other components of G - v is at least 3, a contradiction. Therefore *v* is the center of *G*, and *G* has radius 1. \Box

Lemma 3. Let *G* be a bridgeless graph with diameter 2. If *G* has a cut vertex, then $rc(G) \leq 3$.

Proof. Let *u* be a cut-vertex of *G*. By Proposition 2, the vertex *u* is the only cut-vertex of *G* and is also adjacent to all other vertices. Let *F* be a spanning forest of G - u, and let (X, Y) be one of the bipartitions defined by *F*. Note that *F* has no isolated vertices, because *G* has no bridges. We provide a 3-edge-coloring *c* of *G* as follows: c(e) = 1, if $e \in E[u, X]$; c(e) = 2, if $e \in E[u, Y]$; c(e) = 3, if $e \in E[X, Y]$. By construct, paths joining any vertex of *X* to any vertex of *Y* through *u* are rainbow. Rainbow paths $\langle x, u, y, x' \rangle$ join any two vertices in *Y*. \Box

Let X_1, X_2, \ldots, X_k be pairwise disjoint vertex subsets of *G*. Notation $X_1 \sim X_2 \sim \cdots \sim X_k$ means that there exists some desired rainbow path $\langle x_1, x_2, \ldots, x_k \rangle$, where $x_i \in X_i$ for each $i \in \{1, \ldots, k\}$.

Lemma 4. If *G* is a 2-connected graph with diameter 2, then $rc(G) \le 5$.

Proof. Pick a vertex v in V(G) arbitrarily. Let

 $B = \{u \in N_G^2(v) : \text{ there exists a vertex } w \text{ in } N_G^2(v) \text{ such that } uw \in E(G) \}.$

We consider the following two cases distinguishing either $B \neq \emptyset$ or $B = \emptyset$.

Case 1. $B \neq \emptyset$.

In this case, the subgraph G[B] of G induced by B has no isolated vertices. Let F be a spanning forest F of G[B], and let (B_1, B_2) be one of the bipartitions defined by F. Now we divide $N_G(v)$ as follows. Set $X = \emptyset$ and $Y = \emptyset$. For each u in $N_G(v)$, if $u \in N_G(B_1)$, then we put u into X. If $u \in N_G(B_2)$, then we put u into Y. If $u \in N_G(B_1)$ and $u \in N_G(B_2)$, then we put u into X. By the argument above, we know that for each x in X (y in Y), there exists a vertex y in Y (x in X) such that x and y are connected by a path P with length 3 satisfying ($V(P) - \{x, y\}$) $\subseteq B$.

We have the following claim for each u in $N_G(v) - (X \cup Y)$.

Claim 1. For each u in $N_G(v) - (X \cup Y)$, either u has a neighbor w in X, or u has a neighbor w in Y.

Proof of Claim 1. Let *u* be a vertex in $N_G(v) - (X \cup Y)$. Note that B_1 is nonempty. If $z \in B_1$, then *u* and *z* are nonadjacent since $u \notin X \cup Y$. Moreover, diam(G) = 2 implies that *u* and *z* have a common neighbor *w*. We see that $w \notin N_G^2(v)$, otherwise, $w \in B$ and $u \in X \cup Y$, a contradiction. Similarly, we have that $w \notin N_G(v) - (X \cup Y)$. Thus *w* must be contained in $X \cup Y$.

By the claim above, for each u in $N_G(v) - (X \cup Y)$, either we can put u into X such that $u \in N_G(Y)$, or we can put u into Y such that $u \in N_G(X)$. Now X and Y form a partition of $N_G(v)$.

For $N_G^2(v) - B$, let

$$A = \{ u \in N_G^2(v) : u \in N_G(X) \cap N_G(Y) \};$$

$$D_1 = \{ u \in N_G^2(v) : u \in N_G(X) - N_G(Y) \};$$

$$D_2 = \{ u \in N_G^2(v) : u \in N_G(Y) - N_G(X) \}.$$

We see that at least one of D_1 and D_2 is empty. Otherwise, there exist $u \in D_1$ and $v \in D_2$ such that $d_G(u, v) \ge 3$, a contradiction. Without loss of generality, suppose $D_2 = \emptyset$.

First, we provide a 5-edge-coloring $c : E(G) - E_G[D_1, X] \rightarrow \{1, 2, \dots, 5\}$ defined by

 $c(e) = \begin{cases} 1, & \text{if } e \in E_G[v, X]; \\ 2, & \text{if } e \in E_G[v, Y]; \\ 3, & \text{if } e \in E_G[X, Y] \cup E_G[Y, A] \cup E_G[B_1, B_2]; \\ 4, & \text{if } e \in E_G[X, A] \cup E_G[X, B_1]; \\ 5, & \text{if } e \in E_G[Y, B_2], \text{ or otherwise.} \end{cases}$

Next, we color the edges in $E_G[X, D_1]$ as follows. For each u in D_1 , color one edge incident with u by 5 (solid lines) and the other edges incident with u by 4 (dotted lines). See Fig. 1.

We have the following claim for the coloring above.

Claim 2. (i) For each x in X, there exists a vertex y in Y such that x and y are connected by a $\{3, 4, 5\}$ -rainbow path in G - v. (ii) For each y in Y, there exists a vertex x in X such that x and y are connected by a $\{3, 4, 5\}$ -rainbow path in G - v.

(iii) For any two vertices u and u' in D_1 , there exists a rainbow path connecting u and u'.

(iv) For each u in D_1 and each u' in X, there exists a rainbow path connecting u and u'.

Proof of Claim 2. First, we show that (i) and (ii) hold. We only prove part (i), since part (ii) can be proved by a similar argument. By the procedure of constructing *X* and *Y*, we know that for any $x \in X$, either there exists a vertex $y \in Y$ such that $xy \in E(G)$, or there exists a vertex $y \in Y$ such that x and y are connected by a path *P* with length 3 satisfying $(V(P) - \{x, y\}) \subseteq B$. Clearly, this path is a $\{3, 4, 5\}$ -rainbow path.

Next, we show that (iii) holds. The vertices u and v have a common neighbor w in X since diam(G) = 2. Furthermore, without loss of generality, suppose that uw is a 5-color edge. Therefore $\langle u, w, y, v, w', u' \rangle$ is a rainbow path connecting u and u', where u' is adjacent to w' by a 4-color edge u'w'.

Finally, we show that (iv) holds. Pick a vertex y in Y. The vertices u and y have a common neighbor w in X since diam(G) = 2. Therefore $\langle u, w, y, v, u' \rangle$ is a rainbow path connecting u and u'. We complete the proof of Claim 2. \Box

It is easy to see that the edge-coloring above is rainbow in this case by Fig. 1 and Table 1.

Case 2. $B = \emptyset$.

In this case, clearly, $N_G(u) \subseteq N_G(v)$ for each u in $N_G^2(v)$. To show a rainbow coloring of G, we need to construct a new graph H. The vertex set of H is $N_G(v)$, and the edge set is $\{xy : x, y \in N_G(v), x \text{ and } y \text{ are connected by a path } P \text{ of length at most 2 in } G - v$, and $V(P) \cap N_G(v) = \{x, y\}$.

Claim 3. The graph H is connected.

Proof of Claim 3. Let *x* and *y* be any two distinct vertices of *H*. Since *G* is 2-connected, the vertices *x* and *y* are connected by a path in G - v. Let $\langle v_0, v_1, \ldots, v_k \rangle$ be a shortest path joining *x* and *y* in G - v, where $x = v_0$ and $v_k = y$.

If k = 1, then by the definition of H, the vertices x and y are adjacent in H. Otherwise, $k \ge 2$. Since diam(G) = 2, the vertex v_i is adjacent to v, or v_i and v have a common neighbor u_i if $d_G(v, v_i) = 2$. For each integer i with $0 \le i \le k - 1$, if $d_G(v, v_i) = 1$ and $d_G(v, v_{i+1}) = 1$, then v_i and v_{i+1} are contained in V(H), and they are adjacent in H. If $d_G(v, v_i) = 1$ and $d_G(v, v_{i+1}) = 1$, then v_i and v_{i+1} are contained in V(H), and they are adjacent in H. If $d_G(v, v_i) = 2$ and $d_G(v, v_{i+1}) = 1$, then u_i and v_{i+1} are contained in V(H), and they are adjacent in H. If $d_G(v, v_i) = 2$ and $d_G(v, v_{i+1}) = 1$, then u_i and v_{i+1} are contained in V(H), and they are adjacent in H. If $d_G(v, v_i) = 2$ and $d_G(v, v_{i+1}) = 2$, then u_i and u_{i+1} should be contained in B, which contradicts the fact that $B = \emptyset$. Therefore there exists a path joining x and y in H. We complete the proof of Claim 3. \Box

Let *T* be a spanning tree of *H*, and let (*X*, *Y*) be the bipartition defined by *T*. Now divide $N_c^2(v)$ as follows. For $N_c^2(v)$,

let
$$A = \{ u \in N_G^2(v) : u \in N_G(X) \cap N_G(Y) \}.$$

For $N_G^2(v) - A$,

let
$$D_1 = \{ u \in N_G^2(v) : u \in N_G(X) - N_G(Y) \},\$$

 $D_2 = \{ u \in N_G^2(v) : u \in N_G(Y) - N_G(X) \}.$

We see that at least one of D_1 and D_2 is empty. Otherwise, there exist $u \in D_1$ and $v \in D_2$ such that $d_G(u, v) \ge 3$, a contradiction. Without loss of generality, suppose $D_2 = \emptyset$. Therefore *A* and D_1 form a partition of $N_G^2(v)$. See Fig. 2. First, we provide a 4-edge-coloring $c : E(G) - E_G[D_1, X] \rightarrow \{1, 2, ..., 4\}$ defined by

$$c(e) = \begin{cases} 1, & \text{if } e \in E_G[v, X]; \\ 2, & \text{if } e \in E_G[v, Y]; \\ 3, & \text{if } e \in E_G[X, Y] \cup E_G[Y, A]; \\ 4, & \text{if } e \in E_G[X, A], \text{ or otherwise.} \end{cases}$$

Next, we color the edges in $E_G[X, D_1]$ as follows. For each u in D_1 , color one edge incident with u by 5 (solid lines), the other edges incident with u by 4 (dotted lines). See Fig. 2.

It is easy to check that the edge-coloring above is rainbow in this case by Fig. 2 and Table 2. By this both possibilities have been exhausted and the proof is thus complete. \Box

Combining Proposition 2 with Lemmas 3 and 4, we have the following theorem.

Theorem 5. If *G* is a bridgeless graph with diameter 2, then $rc(G) \le 5$.

Fig. 1.

Table 1 Rainbow paths in *G*.

	•						
	v	X	Y	Α	<i>B</i> ₁	<i>B</i> ₂	<i>D</i> ₁
v		$v \sim X$	$v \sim Y$	$v \sim X \sim A$	$v \sim X \sim B_1$	$v \sim X \sim B_1 \sim B_2$	$v \sim X \sim D_1$
X		Claim 2 and $Y \sim v \sim X$	$X \sim v \sim Y$	$X \sim v \sim Y \sim A$	$X \sim v \sim Y \sim B_2 \sim B_1$	$X \sim v \sim Y \sim B_2$	Claim 2
Y			Claim 2 and $X \sim v \sim Y$	$Y \sim v \sim X \sim A$	$Y \sim v \sim X \sim B_1$	$Y \sim v \sim X \sim B_1 \sim B_2$	$Y \sim v \sim X \sim D_1$
Α				$A \sim X \sim v \sim Y \sim A$	$A \sim Y \sim v \sim X \sim B_1$	$A \sim X \sim v \sim Y \sim B_2$	$A \sim Y \sim v \sim X \sim D_1$
B_1					$B_1 \sim X \sim v \sim Y \sim B_2 \sim B_1$	$B_1 \sim X \sim v \sim Y \sim B_2$	$B_1 \sim B_2 \sim Y \sim v \sim X \sim D_1$
<i>B</i> ₂						$B_2 \sim B_1 \sim X \sim v \sim Y \sim B_2$	$B_2 \sim Y \sim v \sim X \sim D_1$
D_1							Claim 2

Table 2

Rainbow paths in G.

	υ	X	Y	Α	<i>D</i> ₁
v		$v \sim X$	$v \sim Y$	$v \sim X \sim A$	$v \sim X \sim D_1$
Χ		Claim 2 and $Y \sim v \sim X$	$X \sim v \sim Y$	$X \sim v \sim Y \sim A$	Claim 2
Y			Claim 2 and $X \sim v \sim Y$	$Y \sim v \sim X \sim A$	$Y \sim v \sim X \sim D_1$
Α				$A \sim X \sim v \sim Y \sim A$	$A \sim Y \sim v \sim X \sim D_1$
D_1					$D_1 \sim A \sim Y \sim v \sim X \sim D_1$

Remark 1. Recently, Dong and Li [7] have given a class of graphs with diameter 2 that achieve equality for this bound.

For graphs containing bridges, the following proposition holds.

Proposition 6. If *G* be a connected graph with diameter 2 and has *k* bridges, where $k \ge 1$, then $rc(G) \le k + 2$.

Proof. Since diam(G) = 2, all bridges have a common endpoint u. Moreover, the vertex u is adjacent to all other vertices. For all bridges, we color them with different colors. The remaining edges can be colored similar to Lemma 3 with two new colors and one old color. It is easy to check that the coloring above is a rainbow-coloring of G with k + 2 colors. \Box

Tight examples. The upper bound in Proposition 6 is tight. The graph $(kK_1 \cup rK_2) \vee v$ has a rainbow connection number achieving this upper bound, where k > 1, r > 2.

References

- [1] M. Basavaraju, L.S. Chandran, D. Rajendraprasad, A. Ramaswamy, Rainbow connection number and radius, Proceedings of the Foundations of Software Technology and Theoretical Computer Science (2011).
- J.A. Bondy, U.S.R. Murty, Graph Theory, in: GTM, vol. 244, Springer, 2008.
- [3] S. Chakraborty, E. Fischer, A. Matsliah, R. Yuster, Hardness and algorithms for rainbow connectivity, J. Combin. Optim. 21 (2011) 330-347.
- [4] L.S. Chandran, A. Das, D. Rajendraprasad, N.M. Varma, Rainbow connection number and connected dominating sets. arXiv:1010.2296v1 [math.CO].
- [4] L.S. Chaldhan, A. Das, D. Rajendraprasad, P.M. Varna, Rainbow connection number and connected dominating of [5]
 [6] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, Rainbow connectivity of a graph, Networks 54 (2009) 75–81.
 [6] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, Rainbow connectivity of a graph, Networks 54 (2009) 75–81.
- [7] J. Dong, X. Li, Note on the rainbow connection numbers of graphs with diameter 2, 2011, arXiv:1106.1258v2 [math.CO].
- [8] M. Krivelevich, R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum degree, J. Graph Theory 63 (2010) 185–191.
- [9] X. Li, Y. Sun, Rainbow Connections of Graphs, in: SpringerBriefs in Math., Springer, New York, 2012.
 [10] I. Schiermeyer, Rainbow connection in graphs with minimum degree three, in: J. Fiala, J. Kratochvl, M. Miller (Eds.), Combinatorial Algorithms, in: Lecture Notes in Computer Science, vol. 5874, Springer, Berlin, Heidelberg, 2009, pp. 432-437.