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a b s t r a c t

A path in an edge-colored graph G, where adjacent edges may have the same color, is a
rainbow path if no two edges of the path are colored the same. The rainbow connection
number rc(G) of G is the minimum integer k for which there exists a k-edge-coloring of G
such that any two distinct vertices ofG are connected by a rainbowpath. It is known that for
a graph G with diameter 2, deciding if rc(G) = 2 is NP-Complete. In particular, computing
rc(G) is NP-hard. So, it is interesting to know the upper bound of rc(G) for such a graph G.
In this paper, we show that rc(G) ≤ 5 if G is a bridgeless graph with diameter 2, and that
rc(G) ≤ k + 2 if G is a connected graph with diameter 2 and has k bridges, where k ≥ 1.

Crown Copyright© 2012 Published by Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are undirected, finite, and simple. We refer to book [2] for graph theoretical notation
and terminology not described here. A path in an edge-colored graph G, where adjacent edges may have the same color,
is a rainbow path if no two edges of the path are colored the same. An edge-coloring of graph G is a rainbow-connected
edge-coloring if any two distinct vertices of graph G are connected by a rainbow path. Such an edge-coloring is rainbow. The
rainbow connection number rc(G) of G is the minimum integer k such that G has a rainbow-connected edge-coloring using k
colors. It is easy to see that diam(G) ≤ rc(G) for any connected graph G, where diam(G) is the diameter of G.

The rainbow connection number was introduced by Chartrand et al. in [5]. It has application in transferring information
of high security in multicomputer networks. We refer the readers to [3,6] for details. Bounds on the rainbow connection
numbers of graphs have been studied in terms of other graph parameters, such as radius, dominating number, minimum
degree, connectivity, etc. [1,4,5,8–10]. Chakraborty et al. [3] investigated the hardness and algorithms for the rainbow
connection number, and showed the following result.

Theorem 1 ([3]). Given a graph G with diameter 2, deciding if rc(G) = 2 is NP-Complete. In particular, computing rc(G) is
NP-hard.

It is well-known that almost all graphs have diameter 2. So, it is interesting to find a sharp upper bound on rc(G) when
G has diameter 2. Clearly, the best lower bound on rc(G) for such a graph G is 2. In this paper, we give sharp upper bounds
on the rainbow connection number of a graph with diameter 2: if G is a bridgeless graph with diameter 2, then rc(G) ≤ 5;
if G is a connected graph with diameter 2 and has k bridges, where k ≥ 1, then rc(G) ≤ k + 2.
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2. Main results

We begin with some notation and terminology. Let G be a graph. The eccentricity of a vertex u, written as ϵG(u), is
max{dG(u, v) : v ∈ V (G)}. The radius of a graph, written as rad(G), is min{ϵG(u) : u ∈ V (G)}. A vertex u is a center of a graph
G if ϵG(u) = rad(G). Let G be a graph andU be a set of vertices of G. The k-step open neighborhood ofU in G, denoted byNk

G(U),
is {v ∈ V (G) : dG(U, v) = k} for each k, where 0 ≤ k ≤ diam(G) and dG(U, v) = min{dG(u, v) : u ∈ U}. WewriteNG(U) for
N1

G(U) andNG(u) forN1
G({u}). For any two subsets X and Y of V (G), let EG[X, Y ] denote {xy : x ∈ X, y ∈ Y , xy ∈ E(G)}. Let c be

a rainbow-connected edge-coloring ofG. A path P is a {k1, . . . , kr}-rainbow path if it is a rainbowpath and c(e) ∈ {k1, . . . , kr}
for each e in E(P). In particular, an edge e is a k-color edge if it is colored by k.

Proposition 2. If G is a bridgeless graph with diameter 2, then either G is 2-connected, or G has only one cut-vertex v.
Furthermore, the vertex v is the center of G, and G has radius 1.
Proof. Let G be a bridgeless graph with diameter 2. Suppose that G is not 2-connected, that is, the graph G has a cut-vertex,
say v. Moreover, the graph G has only one cut-vertex, since diam(G) = 2. If some vertex other than v is not adjacent to v,
then its distance from vertices in the other components of G − v is at least 3, a contradiction. Therefore v is the center of G,
and G has radius 1. �

Lemma 3. Let G be a bridgeless graph with diameter 2. If G has a cut vertex, then rc(G) ≤ 3.
Proof. Let u be a cut-vertex of G. By Proposition 2, the vertex u is the only cut-vertex of G and is also adjacent to all other
vertices. Let F be a spanning forest of G−u, and let (X, Y ) be one of the bipartitions defined by F . Note that F has no isolated
vertices, because G has no bridges. We provide a 3-edge-coloring c of G as follows: c(e) = 1, if e ∈ E[u, X]; c(e) = 2, if e ∈

E[u, Y ]; c(e) = 3, if e ∈ E[X, Y ]. By construct, paths joining any vertex of X to any vertex of Y through u are rainbow.
Rainbow paths ⟨x, u, y, x′

⟩ join any two vertices x, x′
∈ X , where y is a neighbor of x′ in F , and similarly there are rainbow

paths of length 3 joining any two vertices in Y . �

Let X1, X2, . . . , Xk be pairwise disjoint vertex subsets of G. Notation X1 ∼ X2 ∼ · · · ∼ Xk means that there exists some
desired rainbow path ⟨x1, x2, . . . , xk⟩, where xi ∈ Xi for each i ∈ {1, . . . , k}.

Lemma 4. If G is a 2-connected graph with diameter 2, then rc(G) ≤ 5.
Proof. Pick a vertex v in V (G) arbitrarily. Let

B = {u ∈ N2
G(v) : there exists a vertex w in N2

G(v) such that uw ∈ E(G)}.

We consider the following two cases distinguishing either B ≠ ∅ or B = ∅.
Case 1. B ≠ ∅.

In this case, the subgraph G[B] of G induced by B has no isolated vertices. Let F be a spanning forest F of G[B], and let
(B1, B2) be one of the bipartitions defined by F . Now we divide NG(v) as follows. Set X = ∅ and Y = ∅. For each u in NG(v),
if u ∈ NG(B1), then we put u into X . If u ∈ NG(B2), then we put u into Y . If u ∈ NG(B1) and u ∈ NG(B2), then we put u into
X . By the argument above, we know that for each x in X (y in Y ), there exists a vertex y in Y (x in X) such that x and y are
connected by a path P with length 3 satisfying (V (P) − {x, y}) ⊆ B.

We have the following claim for each u in NG(v) − (X ∪ Y ).

Claim 1. For each u in NG(v) − (X ∪ Y ), either u has a neighbor w in X, or u has a neighbor w in Y .
Proof of Claim 1. Let u be a vertex inNG(v)−(X∪Y ). Note that B1 is nonempty. If z ∈ B1, then u and z are nonadjacent since
u ∉ X ∪ Y . Moreover, diam(G) = 2 implies that u and z have a common neighbor w. We see that w ∉ N2

G(v), otherwise,
w ∈ B and u ∈ X ∪Y , a contradiction. Similarly, we have thatw ∉ NG(v)− (X ∪Y ). Thusw must be contained in X ∪Y . �

By the claim above, for each u in NG(v) − (X ∪ Y ), either we can put u into X such that u ∈ NG(Y ), or we can put u into Y
such that u ∈ NG(X). Now X and Y form a partition of NG(v).

For N2
G(v) − B, let

A = {u ∈ N2
G(v) : u ∈ NG(X) ∩ NG(Y )};

D1 = {u ∈ N2
G(v) : u ∈ NG(X) − NG(Y )};

D2 = {u ∈ N2
G(v) : u ∈ NG(Y ) − NG(X)}.

We see that at least one of D1 and D2 is empty. Otherwise, there exist u ∈ D1 and v ∈ D2 such that dG(u, v) ≥ 3, a
contradiction. Without loss of generality, suppose D2 = ∅.

First, we provide a 5-edge-coloring c : E(G) − EG[D1, X] → {1, 2, . . . , 5} defined by

c(e) =


1, if e ∈ EG[v, X];

2, if e ∈ EG[v, Y ];

3, if e ∈ EG[X, Y ] ∪ EG[Y , A] ∪ EG[B1, B2];

4, if e ∈ EG[X, A] ∪ EG[X, B1];

5, if e ∈ EG[Y , B2], or otherwise.
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Next, we color the edges in EG[X,D1] as follows. For each u in D1, color one edge incident with u by 5 (solid lines) and the
other edges incident with u by 4 (dotted lines). See Fig. 1.

We have the following claim for the coloring above.

Claim 2. (i) For each x in X, there exists a vertex y in Y such that x and y are connected by a {3, 4, 5}-rainbow path in G − v.
(ii) For each y in Y , there exists a vertex x in X such that x and y are connected by a {3, 4, 5}-rainbow path in G − v.
(iii) For any two vertices u and u′ in D1, there exists a rainbow path connecting u and u′.
(iv) For each u in D1 and each u′ in X, there exists a rainbow path connecting u and u′.

Proof of Claim 2. First, we show that (i) and (ii) hold. We only prove part (i), since part (ii) can be proved by a similar
argument. By the procedure of constructing X and Y , we know that for any x ∈ X , either there exists a vertex y ∈ Y
such that xy ∈ E(G), or there exists a vertex y ∈ Y such that x and y are connected by a path P with length 3 satisfying
(V (P) − {x, y}) ⊆ B. Clearly, this path is a {3, 4, 5}-rainbow path.

Next, we show that (iii) holds. The vertices u and v have a common neighbor w in X since diam(G) = 2. Furthermore,
without loss of generality, suppose that uw is a 5-color edge. Therefore ⟨u, w, y, v, w′, u′

⟩ is a rainbow path connecting u
and u′, where u′ is adjacent to w′ by a 4-color edge u′w′.

Finally, we show that (iv) holds. Pick a vertex y in Y . The vertices u and y have a common neighbor w in X since
diam(G) = 2. Therefore ⟨u, w, y, v, u′

⟩ is a rainbow path connecting u and u′. We complete the proof of Claim 2. �

It is easy to see that the edge-coloring above is rainbow in this case by Fig. 1 and Table 1.
Case 2. B = ∅.

In this case, clearly,NG(u) ⊆ NG(v) for each u inN2
G(v). To show a rainbow coloring ofG, we need to construct a newgraph

H . The vertex set ofH isNG(v), and the edge set is {xy : x, y ∈ NG(v), x and y are connected by a path P of length at most 2 in
G − v, and V (P) ∩ NG(v) = {x, y}}.

Claim 3. The graph H is connected.

Proof of Claim 3. Let x and y be any two distinct vertices of H . Since G is 2-connected, the vertices x and y are connected by
a path in G − v. Let ⟨v0, v1, . . . , vk⟩ be a shortest path joining x and y in G − v, where x = v0 and vk = y.

If k = 1, then by the definition of H , the vertices x and y are adjacent in H . Otherwise, k ≥ 2. Since diam(G) = 2, the
vertex vi is adjacent to v, or vi and v have a common neighbor ui if dG(v, vi) = 2. For each integer i with 0 ≤ i ≤ k − 1, if
dG(v, vi) = 1 and dG(v, vi+1) = 1, then vi and vi+1 are contained in V (H), and they are adjacent in H . If dG(v, vi) = 1 and
dG(v, vi+1) = 2, then vi and ui+1 are contained in V (H), and they are adjacent inH . If dG(v, vi) = 2 and dG(v, vi+1) = 1, then
ui and vi+1 are contained in V (H), and they are adjacent in H . If dG(v, vi) = 2 and dG(v, vi+1) = 2, then ui and ui+1 should
be contained in B, which contradicts the fact that B = ∅. Therefore there exists a path joining x and y in H . We complete the
proof of Claim 3. �

Let T be a spanning tree of H , and let (X, Y ) be the bipartition defined by T . Now divide N2
G(v) as follows. For N2

G(v),

let A = {u ∈ N2
G(v) : u ∈ NG(X) ∩ NG(Y )}.

For N2
G(v) − A,

let D1 = {u ∈ N2
G(v) : u ∈ NG(X) − NG(Y )},

D2 = {u ∈ N2
G(v) : u ∈ NG(Y ) − NG(X)}.

We see that at least one of D1 and D2 is empty. Otherwise, there exist u ∈ D1 and v ∈ D2 such that dG(u, v) ≥ 3, a
contradiction. Without loss of generality, suppose D2 = ∅. Therefore A and D1 form a partition of N2

G(v). See Fig. 2.
First, we provide a 4-edge-coloring c : E(G) − EG[D1, X] → {1, 2, . . . , 4} defined by

c(e) =


1, if e ∈ EG[v, X];

2, if e ∈ EG[v, Y ];

3, if e ∈ EG[X, Y ] ∪ EG[Y , A];

4, if e ∈ EG[X, A], or otherwise.

Next, we color the edges in EG[X,D1] as follows. For each u in D1, color one edge incident with u by 5 (solid lines), the
other edges incident with u by 4 (dotted lines). See Fig. 2.

It is easy to check that the edge-coloring above is rainbow in this case by Fig. 2 and Table 2.
By this both possibilities have been exhausted and the proof is thus complete. �

Combining Proposition 2 with Lemmas 3 and 4, we have the following theorem.

Theorem 5. If G is a bridgeless graph with diameter 2, then rc(G) ≤ 5.
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Fig. 1.

Fig. 2.

Table 1
Rainbow paths in G.

v X Y A B1 B2 D1

v · · · v ∼ X v ∼ Y v ∼ X ∼ A v ∼ X ∼ B1 v ∼ X ∼ B1 ∼ B2 v ∼ X ∼ D1
X · · · Claim 2 and

Y ∼ v ∼ X
X ∼ v ∼ Y X ∼ v ∼ Y ∼ A X ∼ v ∼ Y ∼ B2 ∼ B1 X ∼ v ∼ Y ∼ B2 Claim 2

Y · · · · · · Claim 2 and
X ∼ v ∼ Y

Y ∼ v ∼ X ∼ A Y ∼ v ∼ X ∼ B1 Y ∼ v ∼ X ∼ B1 ∼ B2 Y ∼ v ∼ X ∼ D1

A · · · · · · · · · A ∼ X ∼ v ∼ Y ∼ A A ∼ Y ∼ v ∼ X ∼ B1 A ∼ X ∼ v ∼ Y ∼ B2 A ∼ Y ∼ v ∼ X ∼ D1
B1 · · · · · · · · · · · · B1 ∼ X ∼ v ∼ Y ∼

B2 ∼ B1

B1 ∼ X ∼ v ∼ Y ∼ B2 B1 ∼ B2 ∼ Y ∼ v ∼
X ∼ D1

B2 · · · · · · · · · · · · · · · B2 ∼ B1 ∼ X ∼ v ∼
Y ∼ B2

B2 ∼ Y ∼ v ∼ X ∼ D1

D1 · · · · · · · · · · · · · · · · · · Claim 2

Table 2
Rainbow paths in G.

v X Y A D1

v · · · v ∼ X v ∼ Y v ∼ X ∼ A v ∼ X ∼ D1
X · · · Claim 2 and Y ∼ v ∼ X X ∼ v ∼ Y X ∼ v ∼ Y ∼ A Claim 2
Y · · · · · · Claim 2 and X ∼ v ∼ Y Y ∼ v ∼ X ∼ A Y ∼ v ∼ X ∼ D1
A · · · · · · · · · A ∼ X ∼ v ∼ Y ∼ A A ∼ Y ∼ v ∼ X ∼ D1
D1 · · · · · · · · · · · · D1 ∼ A ∼ Y ∼ v ∼ X ∼ D1

Remark 1. Recently, Dong and Li [7] have given a class of graphs with diameter 2 that achieve equality for this bound.

For graphs containing bridges, the following proposition holds.

Proposition 6. If G be a connected graph with diameter 2 and has k bridges, where k ≥ 1, then rc(G) ≤ k + 2.

Proof. Since diam(G) = 2, all bridges have a common endpoint u. Moreover, the vertex u is adjacent to all other vertices.
For all bridges, we color them with different colors. The remaining edges can be colored similar to Lemma 3 with two new
colors and one old color. It is easy to check that the coloring above is a rainbow-coloring of G with k + 2 colors. �
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Tight examples. The upper bound in Proposition 6 is tight. The graph (kK1 ∪ rK2) ∨ v has a rainbow connection number
achieving this upper bound, where k ≥ 1, r ≥ 2.
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