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We consider the Monge–Ampère equation det(D2u) = Ψ (x, u, Du) in R
n , n � 3, where Ψ

is a positive function in C2(Rn × R × R
n). We prove the existence of convex solutions,

provided there exist a subsolution of the form u = a|x|2 and a superharmonic bounded
positive function ϕ satisfying: Ψ > (2a + �ϕ

n )n .
© 2009 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we study the existence of convex solutions to the Monge–Ampère equation

det
(

D2u
) = Ψ (x, u, Du) in R

n, (1)

where Ψ (x, z, p) is a positive function in C2(Rn × R × R
n), Du = (u1, . . . , un) denotes the gradient of u and D2u = {uij}

denotes the hessian of u (ui = ∂u
∂xi

, uij = ∂2u
∂xi∂x j

).

The Monge–Ampère equation on bounded domains has been studied by many authors (see for instance [1–5,8,9,11]) but
very little is known when the domain is unbounded (see for instance [2,6,7]). When Ψ depends only on x, the problem
was solved by K.S. Chou and X.J. Wang [6]. Here we generalize the latter work and prove an existence result of entire
convex solutions provided there exist a subsolution of the form u = a|x|2 and a superharmonic bounded positive function ϕ

satisfying: Ψ > (2a + �ϕ
n )n . Since no entire bounded positive superharmonic function exists for n � 2 (see [12]), we assume

that n � 3 in all this note. For n � 4, ϕ(x) = 1
1+|x|n−2 is an example of superharmonic bounded positive function given in [10].

So let

ψ
1
n = e

2
Π

�ϕ
n arctg(u2+|p|2),

then we can easily verify that the assumptions above on ψ are all satisfied with a = 1.
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2. Main result

Using the C2 estimates of the solution up to the boundary (see [1,7]) we prove the following theorem.

Theorem 2.1. Suppose that the function u = a|x|2 is a subsolution of (1), that is

det D2u � Ψ (x, u, Du) (2)

with a a positive large constant, and assume that Ψ is a C2 function satisfying:

Ψ >

(
2a + �ϕ

n

)n

, Ψu � 0,
|DΨ | + |D2Ψ |

Ψ
< ∞, (3)

where ϕ is a superharmonic bounded positive function. Then Eq. (1) admits at least one convex solution u satisfying:

a|x|2 � u � a|x|2 + ϕ, u ∈ C2,α(K ); ∀K � R
n, ∀0 < α < 1. (4)

To prove Theorem 2.1 we shall proceed as follows. Suppose there exists a subsolution u = a|x|2. For k � 1, denote by
Bn(0,k) the ball in R

n of center the origin and radius k. We know that (see [1,4]), for any k � 0, the Dirichlet problem:{
det

(
D2uk) = Ψ

(
x, uk, Duk) in Bn(0,k),

uk = u on ∂ Bn(0,k)
(5)

has a unique solution uk ∈ C2,α(Bn(0,k)), ∀0 < α < 1. Using the barrier constructions (see [1,7]) for estimating the second
tangential and mixed derivatives at the boundary, we prove that bounds of the second derivatives of uk are independent of
k in all compact set of R

n . Finally, standard Calabi’s interior estimates for the third derivatives (see [4]) yield local uniform
bounds of D3uk . Using a diagonal sequence argument, we get a subsequence {uki }i�1, that converges locally in C2,α norm
to a strictly convex solution of our original problem.

In Section 3 we shall give some technical lemmas. In Section 4, we give the proof of Theorem 2.1.

3. Some technical lemmas

To prove uniform bound of the second derivative of u we shall return to work of L.A. Caffarelli, L. Niremberg and J. Spruck
in [4], Bo Guan in [1], F. Finster and O.C. Schnürer in [7] and adapt to the situation of the theorem above that we prove in
the next paragraph. By c we denote a constant independent of k which may change its value from line to line throughout
the text.

Lemma 3.1. Let k � 1. For any x ∈ ∂ Bn(0,k), set νk(x) the inner unit normal to ∂ Bn(0,k) at x and write any y ∈ R
n as

y − x = yννk(x) + y′, (yν, y′) ∈ R × νk(x)⊥,

then ∂ Bn(0,k) ∩ Bn(x, 1
2 ) is given explicitly by an equation of the type

yν = ρk(y′), (6)

where ρk ∈ C∞(Bn(0, 1
2 ) ∩ νk(x)⊥) and satisfies

ρk(0) = 0, Dρk(0) = 0,
∣∣D2ρk(0)

∣∣ � c

k
,

∣∣D3ρk
∣∣
0,1,Bn−1(0, 1

2 )
� c

k2
(7)

with c a positive constant independent of k.

Proof. Let x ∈ ∂ Bn(0,k). Without loss of generality we may suppose that x = (0, . . . ,0,−k) and then νk(x) = − x
|x| = en =

(0, . . . ,0,1), and νk(x)⊥ = R
n−1. We write any y ∈ R

n as

y − x = yn,ken + y′.
Set

ρ(y′) = 1 −
√

1 − |y′|2, y′ ∈ Bn−1(0,1),

and

ρk(y′) = kρ

(
y′ )

,

k
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where Bn−1(0,1) is the unit open ball of R
n−1. For k � 1, we have Bn(x, 1

2 ) ∩ ∂ Bn(0,k) is given by

yn,k = ρk(y′), y′ ∈ Bn

(
0,

1

2

)
∩ R

n−1 = Bn−1

(
0,

1

2

)
.

We have

ρk(0) = 0, Dρk(0) = 0, D2ρk(0) =
{

δi j

k

}

and since

Diρk(y′) = 1

ki−1
Diρ

(
y′

k

)
, ∀i � 1,

it follows that∣∣D2ρk(0)
∣∣ � c

k
,

∣∣D3ρk
∣∣
0,1,Bn−1(0, 1

2 )
� c

k2

with c is uniform in k. This completes the proof of Lemma 3.2. �
We shall use, in addition, the following lemmas. Let uk be a solution of the Dirichlet problem (5).

Lemma 3.2 (Estimation of uk). Set u(x) = a|x|2 + ϕ . As k → ∞, the function uk converges locally uniformly to a convex function u.
Moreover,

u � uk � u in Bn(0,k), ∀k � 1.

Proof. Applying the arithmetic–geometric mean to the convex function uk we deduce that

�uk � nΨ
1
n > �u,

and then using the maximum principle we obtain

u � uk � u in Bn(0,k).

Hence for k1 < k2,

uk1 � uk2 on ∂ Bn(0,k1),

and again from the maximum principle,

uk1 � uk2 in Bn(0,k1).

We conclude that the sequence {uk}k�1 is monotone. Its pointwise limit is convex and thus continuous. So it converges
locally uniformly according to Dini’s theorem. �

From now on we omit the index k and assume that u is a solution of (5).

Lemma 3.3 (Estimation of Duk in Bn(0,k)). Let u ∈ C2(Bn(0,k)) be a locally convex solution to the Dirichlet problem (5). Then

|Du|0,Bn(0,k)
� ck, (8)

with c is uniform in k, and in all compact subset K of R
n, we have |Du|0,K is uniformly bounded in k for k sufficiently large.

Moreover, for k2 − 1
4 � |x|2 � k2 , let ν = x

|x| and τ be a unit vector orthogonal to x then∣∣uν(x) − uν(x)
∣∣ � c, (9)∣∣uτ (x)

∣∣ � c. (10)

Proof. Since u is locally strictly convex, |Du| takes its maximum on the boundary. It suffices then to estimate |Du| at the
boundary. Tangential derivatives vanish there in view of Dirichlet boundary conditions. It suffices then to estimate uν the
exterior normal derivative of u on ∂ Bn(0,k). Letting x ∈ ∂ Bn(0,k) we have

uν(x) = lim−
u(x + tν) − u(x)

.

t→0 t
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As u(x) = u(x), we have

∀t < 0,
u(x + tν) − u(x)

t
� u(x + tν) − u(x)

t
.

Then

uν(x) � uν(x) on ∂ Bn(0,k). (11)

To estimate uν(x) from below we simply make use of the convexity of u. The exterior unit normal to ∂ Bn(0,k) at x being
ν = x

|x| . Using the convexity of u as well as the fact that u lies below u and u(x = kν) = u(x = kν), u(y = −kν) = u(y = −kν)

we obtain

−u−ν(y) � −u−ν(y) = uν(y) � uν(x) � uν(x),

we deduce that∣∣uν(x)
∣∣ � 2ak.

Now, for θ > 0, denote

Ũθ = {
x/u(x) < θ

}
, Uθ = {

x/u(x) < θ
}
, U θ = {

x/u(x) < θ
}
.

These domains are all open, bounded and Uθ , U θ are convex subsets of R
n . Moreover, according to the C0 estimates in

Lemma 3.2, there exists a sufficiently large k forthwith they satisfy

Ũθ ⊂ Uθ ⊂ U θ ⊂ Bn(0,k).

Let K be a compact subset of R
n . We can find θ > 0 and k � 1 such that K ⊂ Ũθ and U 2θ ⊂ Bn(0,k). As

Ũθ ⊂ Uθ � U 2θ ,

and u is convex, it is not difficult to deduce, using C0 estimates in Lemma 3.2, that

max
K

|Du| � max
∂Uθ

|Du| � max
∂U 2θ

u − θ

d(∂U θ , ∂U 2θ )
� c.

Now, let k2 − 1
4 � |x|2 � k2 and ν = x

|x| . Using the convexity of u we have

(
u(x) − a|x|2) − (

u
((|x| − 1

)
ν
) − a

∣∣(|x| − 1
)
ν
∣∣2) � uν(x) − 2a|x| + a

= uν(x) − uν(x) + a

� uν(kν) − 2a

(
k − 1

2

)
+ a = 2a.

The C0 estimates of Lemma 3.2 imply that |u(y) − a|y|2| < |ϕ|0 in Bn(0,k) and then∣∣uν(x) − uν(x)
∣∣ � 2a + |ϕ|0.

In order to derive (10), we consider u along the line segment x + λτ parametrized by λ ∈ [−λ0, λ0], λ0 = √
k2 − |x|2. The

boundary values of u are u(±λ0) = u(±λ0). Thus using that u lies above u and is convex, we obtain the estimate

u′(−λ0) � u′(−λ0) � u′(λ = 0) � u′(λ0) � u′(λ0),

and thus∣∣uτ (x)
∣∣ = ∣∣u′(λ = 0)

∣∣ � max
{∣∣u′(−λ0)

∣∣, ∣∣u′(λ0)
∣∣}.

As λ0 = √
k2 − |x|2 � 1

2 we obtain∣∣u′(±λ0)
∣∣ = ∣∣2(x ± λ0τ ).τ

∣∣ = 2λ0 � 1

and the proof of Lemma 3.3 is complete. �
Let x be a point on ∂ Bn(0,k), set νk(x) the inner unit normal to ∂ Bn(0,k) at x and write any y ∈ R

n as

y − x = yννk(x) + y′, (yν, y′) ∈ R × νk(x)⊥.



600 L. Bel Kenani Toukabri, S. Kallel-Jallouli / J. Math. Anal. Appl. 363 (2010) 596–605
Using Lemma 3.1, choosing (τ1, . . . , τn−1) an orthonormal basis in νk(x)⊥ and writing y′ = ∑n−1
α=1 yατα , we get that

∂ Bn(0,k) ∩ Bn(x, 1
2 ) is given explicitly by an equation of the type

yν = ρk(y′) = 1

2

∑
1�α,β�n−1

Bαβ yα yβ + cubic of y′ + O
(|y′|4), (12)

where O (|y′|4) � c
k3 with c uniform in k.

Lemma 3.4 (Tangential strict convexity of uk). Let u ∈ C2(Bn(0,k)) be a locally convex solution to (5). Then for k sufficiently large we
have

c0 �
n−1∑

α,β=1

uαβ(x)ξαξβ � c, (13)

for any unit vector ξ = (ξ1, . . . , ξn−1) ∈ R
n−1 . Where c0 and c are positive constants uniform in k.

Proof. Since u = u on ∂ Bn(0,k) we have for 1 � α,β � n − 1:

uαβ(x) = uαβ(x) + (uν − uν)(x)ραβ(x). (14)

Using Lemma 3.1, (9) in Lemma 3.3 and |D2u| = |2a{δi j}| � c, we obtain |uαβ(x)| � c with c a positive constant uniform
in k.

Next we shall establish:∑
α,β<n

uαβ(x)ξαξβ � c0,

for any unit vector ξ = (ξ1, . . . , ξn−1) ∈ R
n−1. Since

(u − u)αβ(x) + (u − u)ν(x)ραβ(x) = 0,

and according to (9) as well as

D2u = 2a{δi j}, ραβ(x) = δαβ

k
,

we obtain for k sufficiently large∑
α,β<n

uαβ(x)ξαξβ � 2a − c

k
� 2a − 1,

for any unit vector ξ = (ξ1, . . . , ξn−1) ∈ R
n−1. The proof of Lemma 3.4 is then complete. �

Lemma 3.5 (Estimates of the mixed second derivatives of uk on ∂ Bn(0,k)). If u ∈ C2(Bn(0,k)) is the locally strictly convex solution
of (5), then for x ∈ ∂ Bn(0,k),∣∣uαν(x)

∣∣ � c, 1 � α � n − 1,

where the constant c is uniform in k.

Proof. Rewrite Eq. (1) in the form

log det
(

D2u
) = logΨ (y, u, Du) ≡ f (y, u, Du),

and let L denote the linear operator defined by

Lω = uijωi j − f pi (y, u, Du)ωi for ω ∈ C2(Bn(0,k)
)
,

where {uij} is the inverse matrix of {uij} and f pi (y, z, p) = ∂ f
∂ pi

(y, z, p). For a fixed α < n, consider the differential operator

T = ∂α +
∑

Bαβ(yβ∂ν − yν∂β).
β<n
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On ∂ Bn(0,k) ∩ Bn(x, σ ), σ < k −
√

k2 − 1
4 , we have

∣∣T (u − u)
∣∣ �

∣∣∣∣(u − u)α +
(∑

β<n

Bαβ yβ

)
(u − u)ν

∣∣∣∣ +
∣∣∣∣yν

∑
β<n

Bαβ(u − u)β

∣∣∣∣.
To estimate the first term of the last inequality we use

(u − u)α +
(∑

β<n

Bαβ yβ

)
(u − u)ν = (u − u)α + ρα(y′)(u − u)ν + O

(|y′|2)(u − u)ν,

where, by (7), O (|y′|2) � c
k2 |y′|2.

Since (u − u)α + ρα(y′)(u − u)ν = 0 on ∂ Bn(0,k) ∩ Bn(x, σ ), and according to (9), (10) it follows∣∣∣∣(u − u)α +
(∑

β<n

Bαβ yβ

)
(u − u)ν

∣∣∣∣ � c

k
|y′|2.

By Lemma 3.3, the second term verifies∣∣∣∣yν

∑
β<n

Bαβ(u − u)β

∣∣∣∣ =
∣∣∣∣ρ(y′)

∑
β<n

Bαβ(u − u)β

∣∣∣∣ � c|y′|2.

Consequently, we have∣∣T (u − u)
∣∣ � c|y|2 on ∂ Bn(0,k) ∩ Bn(x,σ ).

Following [4], we shall prove that∣∣LT (u − u)
∣∣ � c

(
1 +

∑
uii

)
in Bn(0,k) ∩ Bn(x,σ ).

Let (ξ1, . . . , ξn−1, ξn = ν) be an orthonormal basis in R
n , then we have, using Einstein summation convention

L(T u) = uij(T u)i j − f pi (T u)i

= T
[
log det

(
D2u

)] − f pi

[
uαi +

∑
β<n

Bαβ(δβ iuν + yβuνi − δiνuβ − yνuβ i)

]

= T
[

f (y, u, Du)
] −

[
f pi uαi +

∑
β<n

Bαβ(yβ f pi uνi − yν f pi uβ i)

]

+ δiν f pi

∑
β<n

Bαβuβ − uν f pi

∑
β<n

Bαβδβ i

= fα +
∑
β<n

Bαβ(yβ fν − yν fβ) + f zuα +
∑
β<n

Bαβ(yβ f zuν − yν f zuβ)

+ f pn

∑
β<n

Bαβuβ − uν

∑
1�i<n

Bαi f pi .

As

|uν | � ck, Bαβ = δαβ

k
, |y − x| = y2

ν +
n−1∑
α=1

y2
α <

1

2
,

and using (9), (10) we obtain∣∣L(T u)
∣∣ � c.

In another hand, we have∣∣LT (u − u)
∣∣ � |LT u| + |LT u| � c + |LT u|.

Since T u = uα = 2ayα ,

LT u = −2af pα .



602 L. Bel Kenani Toukabri, S. Kallel-Jallouli / J. Math. Anal. Appl. 363 (2010) 596–605
Thus

|LT u| � c.

So, ∣∣LT (u − u)
∣∣ � c in Bn(0,k) ∩ Bn(x,σ ).

We shall employ a barrier function of the form

v = (u − u) + td − Nd2,

where d is the distance function to ∂ Bn(0,k), and t , N are positive constants to be determined. We have d(y) = k − |y| is
C∞ smooth in Bn(0,k) ∩ Bn(x, σ ).

The key ingredient is the following:

Lemma 3.6. For N sufficiently large and t sufficiently small,

Lv � −a

2

(
1 +

∑
uii

)
in Bn(0,k) ∩ Bn(x,σ ),

v � 0 on ∂
(

Bn(0,k) ∩ Bn(x,σ )
)
. (15)

Proof. We have

uij(uij − uij) = tr
({δi j}

) − 2auijδi j = n − 2a
n∑

i=1

uii .

Using (9), (10) it follows that

L(u − u) = uij(uij − uij) − f pi (x, u, Du)(ui − ui) � c − 2a
∑

uii,

where c is uniform in k.
Moreover it is easy to see that∣∣L(d)

∣∣ � c
(

1 +
∑

uii
)
,

for some c > 0 uniform in k. Thus

Lv � c + tc + (tc − 2a)
∑

uii − N
(

Ld2) in Bn(0,k) ∩ Bn(x,σ ).

Since

Ld2 = 2dLd + 2uijdid j

it follows, in Bn(0,k) ∩ Bn(x, σ )

Lv � c + tc + (tc − 2a)
∑

uii − 2N
(
dLd + uijdid j

)
. (16)

Furthermore, since {uij} is positive definite,

uijdid j =
n∑

i=1

uiid2
i + 2

∑
i< j

ui jdid j

= unnd2
n + 2

∑
β<n

unβdndβ +
∑

1�i�n−1

uijdid j

� unnd2
n + 2

∑
β<n

unβdndβ .

Since dν(x) = 1, dβ(x) = 0 for all β < n, we can find, for any δ > 0 a sufficiently small σ < δ such that 1 + 1√
2

� dν(y) � 1√
2

and |dβ(y)| < δ√
2

, ∀y ∈ Bn(0,k) ∩ Bn(x, σ ). Then∣∣∣∣∑ unβdndβ

∣∣∣∣ � δ√
2

∑
uii,
β<n
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and

uijdid j � unnd2
n + 2

∑
β<n

unβdndβ � unn

2
− cδ

∑
uii in Bn(0,k) ∩ Bn(x,σ ),

with c is uniform in k.
Now, letting λ1 � · · · � λn be the eigenvalues of {uij} we have

∑
uii = ∑

λ−1
i , unn � λ−1

n , and, by arithmetic–geometric
mean,

a

2

∑
uii + Nunn � a

2

(
n−1∑
i=1

λ−1
i + Nλ−1

n

)

� na

2

(
Nλ−1

1 · · ·λ−1
n

) 1
n

� na

2(|Ψ |
1
n
0,Rn)

N
1
n ≡ c1N

1
n .

Now, we fix t > 0 sufficiently small so that the constant tc in (16) satisfies: tc � a
2 and fix N so that c1N

1
n � c + 2a. We

obtain

Lv � c + a

2
− a

2

∑
uii − Nunn + 2N(cδ + dc)

∑
uii + 2Ndc − a

∑
uii

� c + a

2
− c1N

1
n + 2N(cδ + dc)

∑
uii + 2Ndc − a

∑
uii

� −3a

2
− a

∑
uii + 4Nδc

∑
uii + 2Nδc,

if we require δ to satisfy 4Ncδ � a
2 , we get

Lv � −a

2

(
1 +

∑
uii

)
in Bn(0,k) ∩ Bn(x,σ ).

It remains to examine the value of v on ∂(Bn(0,k) ∩ Bn(x, σ )).
On ∂ Bn(0,k) ∩ Bn(x, σ ) we have v = 0. If we require, in addition, Nσ � t , we get

v � td − Nd2 � (t − Nσ)d � 0 on Bn(0,k) ∩ ∂ Bn(x,σ ).

Now we fix σ sufficiently small and the proof of Lemma 3.6 is complete. �
We can now complete the proof of Lemma 3.5. Using Lemma 3.6, we have

L
(

Av + B|y|2 ± T (u − u)
) = AL(v) + 2B

∑
uii − 2 f pi yi ± L

(
T (u − u)

)
� −a

2
A + c − 2 f pi yi +

(
−a

2
A + 2B

)∑
uii .

Consequently,

L
(

Av + B|y|2 ± T (u − u)
)
� 0 in Bn(0,k) ∩ Bn(x,σ ),

for A sufficiently large (depending on c, B , |Ψ |1
Ψ0

).
Since v � 0 on ∂(Bn(0,k) ∩ Bn(x, σ )) and∣∣T (u − u)

∣∣ � c|y|2 on ∂
(

Bn(0,k) ∩ Bn(x,σ )
)
,

we can choose A 
 B 
 1 so that

Av + B|x|2 ± T (u − u) � 0 on ∂
(

Bn(0,k) ∩ Bn(x,σ )
)
.

It follows from the maximum principle that∣∣T (u − u)
∣∣ � Av + B|y|2 in Bn(0,k) ∩ Bn(x,σ ),

and according to (9)∣∣∂ν T (u − u)(x)
∣∣ � ∂ν

(
Av + B|y|2)(x) = A∂ν v(x) = A(u − u)ν(x) + t Adν(x) � Ac,
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with c is uniform in k. But

∂ν T (u − u)(x) = uνα(x) − uνα(x).

So, ∣∣uαν(x)
∣∣ � c.

This completes the proof of Lemma 3.5. �
Lemma 3.7 (Estimation of uk

νν on ∂ Bn(0,k)). Let x ∈ ∂ Bn(0,k) and ν = − x
|x| . We have

uνν(x) < c.

Proof. We choose an orthonormal basis such that the submatrix {uαβ} is diagonal. We expand the determinant,

Ψ (x, u, Du) = det
(

D2u(x)
) = uνν(x)

∏
1�α�n−1

uαα(x) −
∑

1�γ �n−1

u2
γ ν(x)

∏
α �=γ <n

uαα(x)

=
∏

1�α�n−1

uαα(x)

(
uνν(x) −

∑
1�γ �n−1

u2
γ ν(x)

1

uγ γ (x)

)
.

Now we substitute in the estimates of Lemmas 3.4 and 3.5 to obtain

0 � uνν(x) � 1∏
1�α�n−1 uαα

(
Ψ (x, u, Du) +

∑
1�γ �n−1

u2
γ ν(x)

uγ γ (x)

)
� c. �

4. Proof of Theorem 2.1

For each k � 1, we consider the Dirichlet problem (5). Using the fact that u is a locally strictly convex subsolution of (5),
the C∞ smoothness of boundary data in (5) allows us to deduce the existence of a unique solution to (5) satisfying

uk ∈ C2,α
(

Bn(0,k)
) ∀α ∈]0,1[

(see [1]). Furthermore, using Lemmas 3.2, 3.3, 3.4, 3.5 and 3.7 we deduce that:

∀k � 1,
∣∣D2uk

∣∣
0,Bn(0,k)

� c, (17)

with c a positive constant independent of k.
Using Calabi’s interior estimates for the third derivatives (see [4]) we deduce that

∣∣D3uk
∣∣ � c̃

d(x, ∂ B(0,k))
, k � 1, in B(0,k),

where c̃ is a positive constant depending only on the constant c given by (17).

Step 1. In Bn(0,1) we have

∣∣D3uk
∣∣ � c̃

d(∂ Bn(0,1), ∂ Bn(0,2))
, ∀k � 2,

where c̃ is a positive constant independent of k.
Then, according to the C0 and C1 estimates of u in Lemmas 3.2 and 3.3 and using Lemma 6.36 in [8] we deduce that

there exist a subsequent (uη1(k))k�1 of (uk)k�1 and v1 ∈ C2,α(Bn(0,1)) such that:

lim
k→+∞

|uη1(k) − v1|2,α,Bn(0,1) = 0.

Step 2. As previously, from the sequence (uη1(k))k�1 we can extract a subsequent (uη2(k))k�1 such that uη2(k) converges to
v2 in C2,α(Bn(0,2)).

By uniqueness of the limit we have

v1 = v2 in Bn(0,1).
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So we construct iteratively a sequence (uηs(k))k�1 for all s � 1 such that

uηs(k) → vs in C2,α
(

Bn(0, s)
)
,

and

∀s � 1, vs = vk, ∀1 � k � s, in Bn(0,k).

We consider the sequence (uηk(k))k�1 obtained from (uηs(k))s,k�1 by the diagonal process. (uηk(k))k�1 is a subsequent of
(uηs(k))k�1 for all s � 1. Therefore,

uηk(k) → vs when k → ∞, in C2,α
(

Bn(0, s)
)
, ∀s � 1. (18)

Thus uηk(k) converges locally to u in C2,α norm, with u = vs in Bn(0, s) for s � 1. Since Ψ , det are continuous then when
passing to the limit we obtain u satisfies

det
(

D2u
) = Ψ (x, u, Du) in R

n, (19)

that is u is a solution in R
n of (1). Moreover, from the fact that D2uηk(k) is positive on Bn(0, s), ∀k � s, when passing to the

limit we deduce that D2u = D2 vs is nonnegative in Bn(0, s), ∀s � 1. Using (19) and Ψ > 0 we conclude that D2u is positive
in R

n . Thus u is strictly convex in R
n . In another hand, since ∀s � 1, ∀k � s, u � uηk(k) � u on Bn(0, s), we deduce

u � u � u in R
n. (20)

That completes the proof of Theorem 2.1.
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