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Abstract

The basin of attraction of an asymptotically stable fixed point of the discrete dynamical system given by
the iteration xn+1 = g(xn) can be determined through sublevel sets of a Lyapunov function. In Giesl [On
the determination of the basin of attraction of discrete dynamical systems. J. Difference Equ. Appl. 13(6)
(2007) 523–546] a Lyapunov function is constructed by approximating the solution of a difference equation
using radial basis functions. However, the resulting Lyapunov function is non-local, i.e. it has no negative
discrete orbital derivative in a neighborhood of the fixed point. In this paper we modify the construction
method by using the Taylor polynomial and thus obtain a Lyapunov function with negative discrete orbital
derivative both locally and globally.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we study the basin of attraction of a fixed point of the general discrete dynamical
system given by the iteration xn+1 = g(xn), where g ∈ C�(Rd , Rd), ��1 and d ∈ N. While
existence and exponential asymptotic stability of a fixed point x can be checked straightforward,
the determination of its basin of attraction A(x) consisting of all initial points such that their
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iterates converge to x, is a difficult problem, since it involves global information as opposed to
local information for the stability. A common way to analyze the basin of attraction is the method
of a Lyapunov function.

A Lyapunov function L ∈ C0(Rd , R) is a function with negative discrete orbital derivative
L′(x) < 0 for all x ∈ B\{x}, where B is an open neighborhood of the fixed point. The discrete
orbital derivative is defined by L′(x) := L(g(x)) − L(x). Then connected and bounded sublevel
sets OR , i.e. L(x) < R for all x ∈ OR and L(x) = R for all x ∈ �OR , are subsets of the basin of
attraction of x supposed that L′(x) < 0 holds for all x ∈ OR\{x}.

The existence of Lyapunov functions has been established by converse theorems which, how-
ever, offer no construction method for Lyapunov functions. One of these converse theorems proves
the existence of the Lyapunov function V ∈ C�(A(x), R) satisfying V ′(x) = −‖x − x‖2, cf.
[11,4, Theorem 2.8]. In [4], this function V was approximated as the solution of a linear difference
equation using radial basis functions. For the approximation v one chooses the coefficients of a
certain ansatz function such that the difference equation is satisfied for all points of a grid XN ,
i.e. v′(xj ) = −‖xj − x‖2 for all xj ∈ XN . The approximation then satisfies the error estimate
|V ′(x) − v′(x)|��2, i.e. v′(x)� − ‖x − x‖2 + �2, where � depends on the density of the grid.
This ensures v′(x) < 0 if x /∈ B�(x), i.e. we obtain a non-local Lyapunov function. The local
part was solved in [4] by using a local Lyapunov function, which can be obtained by a Lyapunov
function of the linearized equation xn+1 = Dg(x)xn, where Dg denotes the Jacobian matrix of
first derivatives.

Other methods for the construction of Lyapunov functions for discrete and continuous dynam-
ical systems consider special Lyapunov functions like quadratic, polynomial, piecewise linear,
piecewise quadratic or polyhedral. Julián [13] approximated the differential equation by a piece-
wise linear right-hand side and constructed a piecewise linear Lyapunov function using linear
programming (linear optimization). Hafstein [9], improved this ansatz and constructed a piece-
wise linear Lyapunov function for the original nonlinear system also using linear programming.
The resulting Lyapunov functions are not smooth since they are piecewise linear or quadratic, on
the other hand they require less smoothness than our approach and can also be used for control
problems. For these methods a triangulation of the space is necessary which gets more complicated
for higher dimensions. Johansen [12] used a family of smooth basis functions and determines the
parameters by convex optimization.

A different method deals with the Zubov equation and computes a solution of this partial dif-
ferential equation. In a similar approach to Zubov’s method, Vannelli and Vidyasagar [17] use a
rational function as Lyapunov function candidate and present an algorithm to obtain a maximal
Lyapunov function in the case that f is analytic. In Camilli et al. [2], Zubov’s method was extended
to control problems in order to determine the robust domain of attraction. The corresponding gen-
eralized Zubov equation is a Hamilton–Jacobi–Bellmann equation. This equation has a viscosity
solution which can be approximated using standard techniques after regularization at the equi-
librium, e.g. one can use piecewise affine approximating functions and adaptive grid techniques,
cf. Grüne [7]. The error estimate here is given in terms of |V (x) − v(x)|, where V denotes the
regularized Lyapunov function and v its approximation, and not in terms of the orbital derivative
as in our approach. In [8] an ISDS Lyapunov function for control problems is approximated via
set orientated methods.

We use radial basis functions to solve the difference equation V ′(x) = −‖x − x‖2. The
main advantage of this method is that it is meshless, i.e. no triangulation of the space Rd is
needed. Other methods first generate a triangulation of the space, use functions on each part of
the triangulation, e.g. affine functions as in some examples discussed above, and then patch them
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together obtaining a global function. The resulting function is not very smooth and the method
is not very effective in higher space dimensions. Moreover, the interpolation problem stated by
radial basis functions is always uniquely solvable and we can choose scattered grid points. Radial
basis functions give smooth approximations, but at the same time require smooth functions that are
approximated.

In this paper, we seek to construct a Lyapunov function v which has negative discrete orbital
derivative also near x and thus is local and global. To achieve this goal, we calculate a Taylor
polynomial-like function n(x) of V, such that the function W(x) := V (x)

n(x)
for x ∈ A(x)\{x}

and W(x) := 1 is a smooth function. Then we approximate the function W(x) satisfying the
linear difference equation n′(x)W(x)+n(x)W ′(x) = −‖x − x‖2 by an approximation w, which
satisfies this equation for all points of a grid and, additionally, w(x) = 1. The radial basis
function chosen for this mixed approximation will be of the class of Wendland’s compactly
supported radial basis functions. Local and global error estimates of the approximation ensure
that v(x) = n(x)w(x) has negative discrete orbital derivative in particular near x, i.e. v is a local
and global Lyapunov function. Hence, connected sublevel sets of v are subsets of the basin of
attraction of x. We prove in this paper that each open, bounded and connected subset of the basin
of attraction can be covered by a sublevel set of v, when choosing the grid points properly. The
method can be extended to more complicated attractors such as periodic orbits x1, . . . , xm using
the local information given by Dg(x1), . . . , Dg(xm).

For continuous dynamical systems given by an autonomous ordinary differential equation
ẋ = f (x) a similar method of constructing Lyapunov functions was established in [3]; improved
error estimates were obtained in [6]. The construction of a global and local Lyapunov function
similar to this paper was presented in [5].

The paper is organized as follows: in Section 2 we recall the properties of the Lyapunov function
V and prove properties of its Taylor polynomial-like function n(x) and the function W(x) = V (x)

n(x)
.

Section 3 deals with the approximation w of W using radial basis functions. In Section 4 we derive
local and global error estimates for w, which are used in Section 5 to prove the main results: setting
v(x) = n(x)w(x), the function v is a local and global Lyapunov function, i.e. v′(x) < 0 holds
for all x ∈ B\{x}, cf. Theorem 5.1, and each open, bounded and connected subset of the basin
of attraction can be covered by a sublevel set of v, cf. Theorem 5.2. In Section 6 we give two
examples: a comparison with the method in [4] (two-dimensional example) and a model for the
demand for education, cf. [15] (three-dimensional example).

2. The Lyapunov function V and its Taylor polynomial

Throughout the paper we consider the discrete dynamical system given by the iteration

xn+1 = g(xn),

where g ∈ C�(Rd , Rd), ��1 and n ∈ N. The flow of the dynamical system is denoted by
Snx0 := xn, n ∈ N0. Denote B�(y) = {x ∈ Rd | ‖x − y‖ < �} for � > 0 and y ∈ Rd .

Let us recall some basic definitions from dynamical systems: A point x ∈ Rd is called a fixed
point if g(x) = x. A fixed point x is called

• stable if for all � > 0 there is a � > 0 such that Snx ∈ B�(x) holds for all n ∈ N0 and for all
x ∈ B�(x).

• attractive if there is a �′ > 0 such that limn→∞ ‖Snx − x‖ = 0 holds for all x ∈ B�′(x).
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• exponentially attractive if there is a �′ > 0 and a � > 0 such that limn→∞ ‖Snx −
x‖ exp(�n) = 0 holds for all x ∈ B�′(x).

• (exponentially) asymptotically stable, if it is both stable and (exponentially) attractive.

If all eigenvalues � of the Jacobian matrix of the first derivatives Dg(x) satisfy |�| < 1, then x

is exponentially asymptotically stable.
A set O ⊂ Rd is called positively invariant if Snx ∈ O holds for all n ∈ N0 and all x ∈ O.
We assume throughout the paper that x ∈ Rd is a fixed point and that all eigenvalues � of Dg(x)

satisfy |�| < 1.
In the following theorem a sufficient condition for the determination of a subset of the basin of

attraction is given through the Lyapunov function L, cf. [10,11,4, Theorem 2.2].

Theorem 2.1. Let x be an asymptotically stable fixed point of the discrete dynamical system
xn+1 = g(xn), let x ∈ O ⊂ Rd be an open, bounded and connected set. Let L ∈ C0(Rd , R) be a
function and R∗ ∈ R such that

1. L(x) < R∗ holds for all x ∈ O and L(x) = R∗ holds for all x ∈ �O.
2. L′(x) < 0 holds for all x ∈ O\{x}, where L′(x) := L(g(x)) − L(x) denotes the discrete

orbital derivative.

Then O is positively invariant and O ⊂ A(x) holds.

The following theorem ensures the existence and smoothness of a special Lyapunov function,
cf. [11, Theorem 49.3] for the existence and [4, Theorem 2.8] with p(x) = −‖x − x‖2 for the
smoothness. The theorem holds true for other right-hand sides p(x), but for the Taylor polynomial,
cf. Definition 2.3, and its calculation, cf. Remark 2.5, we need a quadratic form. Hence, instead
of −‖x − x‖2 we could choose −(x − x)T C(x − x) with any positive definite matrix C, but for
simplicity we restrict ourselves to C = I .

Theorem 2.2 (Existence of V). Let x be a fixed point of xn+1 = g(xn), where g ∈ C�(Rd , Rd),
��1. Let |�| < 1 hold for all eigenvalues of Dg(x).

Then there exists a function V ∈ C�(A(x), R) with V (x) = 0 such that

V ′(x) = −‖x − x‖2

holds for all x ∈ A(x). The set KR := {x ∈ A(x)|V (x)�R} is compact in Rd for all R�0.

In the following Definition 2.3 we define the function h which turns out to be the Taylor
polynomial of V of order P, cf. Lemma 2.4.

Definition 2.3 (Definition of h). Let ��P �2. Let h be the function

h(x) :=
∑

2� |�|�P

c�(x − x)� (2.1)

such that h′(x) = h(g(x)) − h(x) = −‖x − x‖2 + o(‖x − x‖P ). (2.2)

Lemma 2.4. There is one and only one function h of the form (2.1) which satisfies (2.2). The
function h is the Taylor polynomial of V, cf. Theorem 2.2, of order P.
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The proof of the lemma can be found in Appendix B. Let us explain how to calculate the
function h.

Remark 2.5. Eq. (2.2) can be solved by plugging the ansatz (2.1) into (2.2) and replacing g by
its Taylor polynomial of order P − 1. Then (2.2) becomes

∑
2� |�|�P

c�

⎡
⎣
⎛
⎝Dg(x)(x − x) +

∑
2� |�|�P−1

��
g(x)

�! (x − x)�

⎞
⎠�

− (x − x)�

⎤
⎦

= −‖x − x‖2 + o(‖x − x‖P ). (2.3)

The difference of g to its Taylor polynomial is of order o(‖x − x‖P−1) and thus the difference of
the whole left-hand side of (2.3) to h′(x) is of order o(‖x − x‖P ).

We add a high order polynomial M‖x − x‖2H to h in order to obtain a function n for which
n(x) > 0 holds for all x 	= x.

Definition 2.6 (Definition of n). Let ��P �2 and let h be as in Definition 2.3. Let H := ⌊
P
2

⌋+1
and M �0 and define

n(x) = h(x) + M‖x − x‖2H

=
∑

2� |�|�P

c�(x − x)� + M‖x − x‖2H . (2.4)

Choose the constant M so large that n(x) > 0 holds for all x 	= x. Note that n ∈ C∞(Rd , R).

This is possible since for x → x the leading term is h2(x) = (x − x)T B(x − x) which is a
positive definite quadratic form, and for x → ∞ the leading term is M‖x − x‖2H ; for details cf.
[3, Definition 2.56].

In Proposition 2.7 we summarize some properties of n(x) and W(x) := V (x)
n(x)

.

Proposition 2.7. Let ��P �2 and let n be as in Definition 2.6. Then

1. n(x) > 0 holds for all x 	= x.
2. For each compact set K, there is a constant C > 0 such that n(x)�C‖x − x‖2 holds for all

x ∈ K .
3. W(x) = V (x)

n(x)
∈ CP−2(A(x), R), where W(x) = 1, and ��

xW(x) = 0 for all 1� |�|�P − 2.

Proof. The proposition can be proved as in the continuous case, cf. [3, Proposition 2.58]. �

Example 2.8. Consider the difference equation{
xn+1 = 1

2xn + x2
n − y2

n,

yn+1 = − 1
2yn + x2

n

(2.5)

with fixed point x = (0, 0). This is Example 1 of [4] and will serve as an example in Section 6.1. We
calculate the polynomial h(x, y) and start with the terms h2(x, y) of second order. By the proof of

Lemma 2.4, h2(x, y) = (x, y)B

(
x

y

)
, where B is the solution of Dg(0, 0)T BDg(0, 0)−B = −I .

In our case B =
( 4

3 0
0 4

3

)
, i.e. h2(x, y) = 4

3x2 + 4
3y2, cf. [4].
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For the terms of order three, h3(x, y) = ax3 + bx2y + cxy2 + dy3, we consider (2.2) with
P = 3

−x2 − y2 + o(‖(x, y)‖3)

= (h2 ◦ g)(x, y) + (h3 ◦ g)(x, y) − h2(x, y) − h3(x, y)

= 4
3

(
1
2x + x2 − y2

)2 + 4
3

(
− 1

2y + x2
)2 + a

(
1
2x + x2 − y2

)3

+b
(

1
2x + x2 − y2

)2 (− 1
2y + x2

)
+ c

(
1
2x + x2 − y2

) (
− 1

2y + x2
)2

+d
(
− 1

2y + x2
)3 − 4

3x2 − 4
3y2 − ax3 − bx2y − cxy2 − dy3

= −x2 − y2 + x3
(

4
3 + 1

8a − a
)

+ x2y
(
− 4

3 − 1
8b − b

)
+ xy2

(
− 4

3 + 1
8c − c

)
+y3

(
− 1

8d − d
)

+ o(‖(x, y)‖3),

i.e. a = 32
21 , b = − 32

27 , c = − 32
21 and d = 0. Thus, h3(x, y) = 32

21x3 − 32
27x2y − 32

21xy2.

In a similar way we calculate the terms of order 4 and 5 and obtain for P = 5

h(x, y) = 4
3x2 + 4

3y2 + 32
21x3 − 32

27x2y − 32
21xy2

+ 10 624
2835 x4 + 4096

3213x3y − 1408
315 x2y2 − 256

459xy3 + 64
35y4

+ 3 657 728
874 045 x5 + 1 416 704

530 145 x4y − 65 536
9639 x3y2 − 1 581 056

530 145 x2y3 + 34 304
9765 xy4 + 2560

5049y5.

(2.6)

A function n such that n(x, y) > 0 holds for all (x, y) 	= (0, 0) is given by
n(x, y) = h(x, y) + 2(x2 + y2)3. (2.7)

3. Approximation of W using radial basis functions

In this section we describe the approximation of the functionW by w using radial basis functions.
For an overview on radial basis function, cf. [19,1].

Since the 1970s radial basis functions have been used to interpolate scattered data. Given
points XN = {x1, . . . , xN } ⊂ Rd and values f1, . . . , fN the goal is to find a smooth function
f : Rd → R interpolating the data, i.e. f (xj ) = fj for all j = 1, . . . , N . Using the following
ansatz for the interpolating function f (x) = ∑N

k=1 �k�(x − xk), where � is a fixed radial basis
function, the interpolating conditions become the system of linear equations A� = �, where
� = (f1, . . . , fN) and A = (ajk)j,k=1,...,N with ajk = �(xj − xk). The choice of the radial basis
function �(x) = 	(‖x‖) is such that the matrix A is positive definite for a general choice of the
grid points. In this article we use Wendland’s compactly supported radial basis functions.

Radial basis functions can also be used to interpolate the values of general linear operators,
e.g. linear differential operators; in the above example of the interpolation of function values the
linear operator was the identity. Hence, they can be used to solve partial differential equations,
also with boundary conditions, cf. [6]. In this article, however, we will use the linear operator Dn
defined in (3.1) at the points x1, . . . , xN and the identity at x0.

Recall that the Lyapunov function V (x) = n(x)W(x) satisfies V ′(x) = −‖x −x‖2. Hence, the
function W satisfies the equation n(g(x))W(g(x)) − n(x)W(x) = −‖x − x‖2, or in other words

DnW(x) = −‖x − x‖2 (3.1)

for all x ∈ A(x), where DnW(x) := n(g(x))W(g(x)) − n(x)W(x) is a linear operator.
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For the approximating function w: Rd → R we choose a radial basis function �(x) := 	(‖x‖)
and a grid XN = {x1, . . . , xN } ⊂ Rd , and we make the following ansatz:

w(x) = �0�(x − x) +
N∑

k=1

�k(�xk
◦ Dn)

y�(x − y), (3.2)

where �k ∈ R and � denotes Dirac’s �-distribution, i.e. �x∗f (x) = f (x∗). The ansatz is a mixed
approximation including the linear operator Dn for the grid points x1, . . . , xN and the linear
operator D0 = id for the grid point x.

The coefficients �k are determined by the claim that

w(x) = W(x) = 1 (3.3)

and (�xj
◦ Dn)

xw(x) = (�xj
◦ Dn)

xW(x) (3.4)

holds for all j = 1, . . . , N , i.e. DnW(xj ) = Dnw(xj ). Plugging the ansatz (3.2) into (3.3) and
(3.4) one obtains with (3.1)

1 = �0�(0) +
N∑

k=1

�k(�xk
◦ Dn)

y�(x − y) and

−‖xj − x‖2 = (�xj
◦ Dn)

xW(x)

= (�xj
◦ Dn)

xw(x)

= (�xj
◦ Dn)

x�(x − x)�0 +
N∑

k=1

(�xj
◦ Dn)

x(�xk
◦ Dn)

y�(x − y)�k

for all j = 1, . . . , N , since Dn is a linear operator. This is equivalent to the following system of
linear equations with interpolation matrix A = (ajk)j,k=0,...,N and vector � = (�j )j=0,...,N , cf.
also Proposition 3.5:

A� = �,

where ajk = (�xj
◦ Dn)

x(�xk
◦ Dn)

y�(x − y) for j, k�1, (3.5)

a0k = ak0 = (�xk
◦ Dn)

y�(x − y) for k�1, (3.6)

a00 = �(0) (3.7)

and �j = −‖xj − x‖2 for j �1,

�0 = 1.

A clearly is a symmetric matrix. For existence and uniqueness of the solution �, the interpolation
matrix A must have full rank. We will even obtain a positive definite matrix A for grids which
include no fixed or periodic point, cf. Proposition 3.4.

The radial basis functions � used in this paper will be from the class of Wendland functions
which were introduced by Wendland [18]. They have compact support and are polynomials on
their support.

Definition 3.1 (Wendland functions [18]). Let l ∈ N, k ∈ N0. We define by recursion 	l,0(r) =
(1 − r)l+ and 	l,k+1(r) = ∫ 1

r
t	l,k(t) dt for r ∈ R+

0 . Here we set x+ = x for x�0 and x+ = 0
for x < 0.
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For the rest of the paper we define � by a Wendland function 	l,k with k�1.

Assumptions. We define the radial basis function � by

�(x) := 	l,k(c‖x‖),
where 	l,k is a Wendland function, k ∈ N, l := ⌊

d
2

⌋+k +1 and c > 0. Denote 	(r) := 	l,k(cr).
Note that the support of � is given by supp � = {x ∈ Rd | ‖x‖� 1

c
}.

In Proposition 3.2 we summarize important properties of 	l,k(r) and �(x). For a proof,
cf. [18,3].

Proposition 3.2. Let k ∈ N and l := ⌊
d
2

⌋ + k + 1. Let 	(r) := 	l,k(cr) with c > 0 and

�(x) := 	(‖x‖). Moreover, define 	1(r) := d
dr

	(r)

r
for r > 0 and 	2(r) := d

dr
	1(r)

r
for r > 0

and set 	2(0) = 0. Set

F∗ = H
−
(

d+1
2 +k

)
(Rd) and (3.8)

F = H
d+1

2 +k(Rd), (3.9)

where H denotes the Sobolev space. Then

1. � ∈ C2k(Rd , R) and � has compact support.
2. For 	(r) := 	l,k(cr) we have the following asymptotics for the functions 	1 and 	2,

respectively:

• d
dr

	(r) = O(r) for r → 0.

• 	1(r) = O(1) for r → 0 and limr→0 	1(r) =: 	1(0) exists.

• d
dr

	1(r) = O(1) for r → 0.

• 	2(r) = O
(

1
r

)
for r → 0.

3. For the Fourier transform �̂(
) = ∫
Rd �(x)e−ixT 
 dx we have

C1

(
1 + ‖
‖2

)−((d+1)/2+k)

��̂(
)�C2

(
1 + ‖
‖2

)−((d+1)/2+k)

(3.10)

with positive constants C1, C2.
4. Let � ∈ F∗ ⊂ S ′(Rd), where S ′(Rd) denotes the dual of the Schwartz space S(Rd) of rapidly

decreasing functions. Then we define the norm ‖�‖2
F∗ = (2�)−d

∫
Rd | ˆ̌�(
)|2�̂(
) d
, which

is equivalent to the usual Sobolev norm in F∗ = H−((d+1)/2+k)(Rd). Moreover, ‖�‖2
F∗ =

�x�y�(x − y).
5. If � ∈ F∗, then � ∗ � ∈ F .

In the following lemma we show that several operators are in F∗ and, moreover, the approxi-
mating function w is an element of the function space F .

Lemma 3.3. Let the linear operator Dn be given byDnw(x) := n(g(x))w(g(x))−n(x)w(x)and
let the linear operator D of the discrete orbital derivative be given by Dw(x) := w(g(x))−w(x).
Denote by E ′(Rd) the distributions with compact support.
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For all x ∈ Rd we have �x, �x ◦ D, �x ◦ Dn ∈ F∗ ∩ E ′(Rd). Moreover, for each grid XN

and any �0, �1, . . . , �N ∈ R the ansatz function w of (3.2) satisfies w(x) = �0�(x − x) +∑N
k=1 �k(�xk

◦ Dn)
y�(x − y) ∈ F .

Proof. To prove that a linear operator � belongs to F∗ we show that
∫

Rd | ˆ̌�(
)|2�̂(
) d
 < ∞,

cf. 4 of Proposition 3.2. Note that �̂(
)�C2
(
1 + ‖
‖2

)−((d+1)/2+k)
by (3.10).

Since �x has compact support, ˆ̌�x(
) = �xe
ixT 
 = eixT 
. Thus,∫

Rd
| ˆ̌�x(
)|2�̂(
) d
�C2

∫
Rd

(
1 + ‖
‖2

)−((d+1)/2+k)

d
 < ∞.

Since �x ◦ D has compact support, (�x ◦ D)ˆ̌(
) = (�x ◦ D)eixT 
 = eig(x)T 
 − eixT 
. Thus,∫
Rd

|(�x ◦ D)ˆ̌(
)|2�̂(
) d
�4C2

∫
Rd

(
1 + ‖
‖2

)−((d+1)/2+k)

d
 < ∞.

Since �x ◦ Dn has compact support, (�x ◦ Dn)ˆ̌ (
) = (�x ◦ Dn)e
ixT 
 = n(g(x))eig(x)T 
 −

n(x)eixT 
. Thus,∫
Rd

|(�x ◦ Dn)ˆ̌(
)|2�̂(
) d


�4C2 max(n(g(x)), n(x))2
∫

Rd

(
1 + ‖
‖2

)−((d+1)/2+k)

d


< ∞.

Let � = �0�x +∑N
j=1 �j (�xj

◦ Dn). Since � ∈ S ′(Rn) has the compact support supp(�) =⋃N
j=1 {xj } ∪ ⋃N

j=1 {g(xj )} ∪ {x} =: K , we have (� ∗ �)(x) = �y�(x − y) = w(x). We

conclude � ∈ F∗ ∩ E ′(Rd) in a similar way as above. This implies w = � ∗ � ∈ F by 5 of
Proposition 3.2. �

Now we show that the collocation matrix A is positive definite.

Proposition 3.4. Let �(x) be as in the Assumptions and let XN = {x1, x2, . . . , xN } be a set
of pairwise distinct points, which are no fixed or periodic points. Then the matrix A defined in
(3.5)–(3.7) is positive definite.

Proof. For � = �0�x + ∑N
j=1 �j (�xj

◦ Dn) ∈ F∗ ∩ E ′(Rd), cf. Lemma 3.3, we have with

4 of Proposition 3.2 �T A� = �x�
y
�(x − y) = ‖�‖2

F∗ = (2�)−d
∫

Rd | ˆ̌�(
)|2�̂(
) d
. Since

�̂(
) > 0 holds for all 
 ∈ Rd , the matrix A is positive semidefinite.

Now we show that �T A� = 0 implies � = 0. We assume that �T A� = (2�)−d
∫

Rd | ˆ̌�(
)|2
�̂(
) d
 = 0. Then the analytic function satisfies ˆ̌�(
) = 0 for all 
 ∈ Rd . By Fourier transfor-
mation in S ′(Rd) we have S ′(Rd)  � = 0, i.e.

�(h) = �0h(x) +
N∑

j=1

�j

[
n(g(xj ))h(g(xj )) − n(xj )h(xj )

] = 0 (3.11)

for all test functions h ∈ S(Rd).
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We show that �0 = 0. The points xj , j = 1, . . . , N are distinct from the fixed point x. Denote
I := {j ∈ {1, . . . , N}|g(xj ) 	= x}. There is a neighborhood B�(x) such that xj /∈ B�(x) holds
for all j = 1, . . . , N and g(xi) /∈ B�(x) holds for all i ∈ I . Define the function h(x) = 1 for
x ∈ B�/2(x) and h(x) = 0 for x /∈ B�(x), and extend it smoothly such that h ∈ S(Rd). Then
(3.11) yields 0 = �(h) = �0 since for i /∈ I we have n(g(xi))h(g(xi)) = n(x)h(x) = 0.

Now we show �i = 0 for i = 1, . . . , N . We use the notation g◦k for g ◦ g ◦ · · · ◦ g︸ ︷︷ ︸
k times

. Fix an

i ∈ {1, . . . , N}. Denote J := {j ∈ {1, . . . , N}\{i}|∃k ∈ N : g◦kxj = xi and ∀l ∈ {1, . . . , k−1} :
g◦lxj ∈ XN }. Note that g(xk) ∈ {xj |j ∈ J ∪ {i}} for all k ∈ J by definition of J and g(xi) /∈
{xj |j ∈ J ∪ {i}}, since xi is no fixed point and no periodic point. Moreover, by definition of J we
have

g(xk) /∈ {xj |j ∈ J ∪ {i}} for all k ∈ {1, . . . , N}\(J ∪ {i}). (3.12)

Define the function h ∈ S(Rd) in the following way:

h(xj ) =
{

1/n(xj ) for j ∈ J ∪ {i},
0 for j ∈ {1, . . . , N}\(J ∪ {i}),

h(g(xj )) = 0 for j ∈ {1, . . . , N}\J,

h(x) = 0.

Note that n(x) 	= 0 for x 	= x. Extend the function smoothly and prolongate it by zero such that
h ∈ S(Rd). Note that this is possible by (3.12).

Then (3.11) yields

0 = �(h) = 0 +
∑
j∈J

�j [1 − 1] + �i[0 − 1] +
∑

k∈{1,...,N}\(J∪{i})
�k[0 − 0] = −�i .

This argumentation holds for all i = 1, . . . , N and thus � = 0. Hence, A is positive definite. �

In the following proposition we calculate the matrix elements of the collocation matrix A, cf.
(3.5)–(3.7).

Proposition 3.5. Let XN = {x1, . . . , xN } be a set of pairwise distinct points, which are no fixed
or periodic points. Let �(x) := 	(‖x‖) be defined by a Wendland function as in the Assumptions.

The matrix elements ajk of the collocation matrix A are then given by

ajk = n(g(xj ))n(g(xk))	(‖g(xj ) − g(xk)‖) − n(g(xj ))n(xk)	(‖g(xj ) − xk‖)
−n(xj )n(g(xk))	(‖xj − g(xk)‖) + n(xj )n(xk)	(‖xj − xk‖), (3.13)

ak0 = a0k = n(g(xk))	(‖x − g(xk)‖) − n(xk)	(‖x − xk‖), (3.14)

a00 = 	(0) (3.15)

for j, k = 1, . . . , N .
The vector � is given by

�j = −‖xj − x‖2 for j �1,

�0 = 1.
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Let the vector � = (�0, �1, . . . , �N)T be the unique solution of the system of linear equations
A� = �.

Then the approximant w ∈ C2k(Rd , R) is given by

w(x) = �0	(‖x − x‖) +
N∑

k=1

�k

[
n(g(xk))	(‖x − g(xk)‖) − n(xk)	(‖x − xk‖)

]
.

Proof. By (3.5) we have for j, k�1

ajk = (�xj
◦ Dn)

x(�xk
◦ Dn)

y	(‖x − y‖)
= (�xj

◦ Dn)
x
[
n(g(xk))	(‖x − g(xk)‖) − n(xk)	(‖x − xk‖)

]
= n(g(xj ))n(g(xk))	(‖g(xj ) − g(xk)‖) − n(g(xj ))n(xk)	(‖g(xj ) − xk‖)

−n(xj )n(g(xk))	(‖xj − g(xk)‖) + n(xj )n(xk)	(‖xj − xk‖).
The formulas for j = 0, k = 0 and w(x) follow by similar calculations, cf. also (3.2). �

The following proposition is the minimality property of the approximation w; it can be proved
in a similar way as e.g. [3, Proposition 3.34].

Proposition 3.6. Let �(x) be defined as in the Assumptions. Let XN = {x1, x2, . . . , xN } be a set
of pairwise distinct points, which are no fixed or periodic points. Let W ∈ F and let w ∈ F , cf.
Lemma 3.3, be the approximation of W with respect to the grid XN in the sense of Proposition 3.5.
Then

‖W − w‖F �‖W‖F .

4. Error estimates

In this section we prove three error estimates. More precisely, we estimate |W ′(x) − w′(x)|
(Proposition 4.1) and |W(x) − w(x)| (Proposition 4.2) in a neighborhood of x. Moreover, we
estimate |DnW(x) − Dnw(x)| for all points in the area where the grid points XN are set, cf.
Theorem 4.4.

Proposition 4.1. Let �(x) be defined as in the Assumptions. Let g ∈ C1(Rd , Rd) and let W ∈ F .
For all � > 0 there is a � > 0 such that∣∣W ′(x) − w′(x)

∣∣ �� for x ∈ B�(x) (4.1)

holds for all approximations w of W with respect to any grid XN in the sense of Proposition 3.5.

Proof. There is a constant c1 such that ‖Dg(x) − I‖�c1 holds for all x ∈ B1(x). There is a
constant c2 such that |	1(‖g(x)−x‖)|�c2 holds for all x ∈ B1(x), since 	1 and g are continuous
functions; for the definition of 	1 cf. Proposition 3.2. Set

� := min

(
1,

�

c1‖W‖F
√

2c2

)
. (4.2)
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Denote the linear operator of the discrete orbital derivative by Dw(x) := w(g(x)) − w(x).
Let x∗ ∈ B�(x), and set � = �x∗ ◦ D ∈ F∗ and � = �x ◦ D ∈ F∗, cf. Lemma 3.3. We have
�(W − w) = 0, since W ′(x) = 0 = w′(x) due to g(x) = x.

Hence,

|�(W) − �(w)| = |(� − �)(W − w)|�‖� − �‖F∗ · ‖W − w‖F
� ‖� − �‖F∗ · ‖W‖F (4.3)

by Proposition 3.6. Then we have with a similar calculation as in [4]—note that g(x) = x:

‖� − �‖2
F∗ = (� − �)x(� − �)y�(x − y)

= (�x∗ ◦ D − �x ◦ D)x(�x∗ ◦ D − �x ◦ D)y�(x − y)

= 2	(0) − 2	(‖g(x∗) − x∗‖).
Note that by Taylor’s Theorem there is a � = x∗ + (1 − )x where  ∈ [0, 1] such that

	(‖g(x∗) − x∗‖) = 	(0) + 	1(‖g(�) − �‖)(g(�) − �)T (Dg(�) − I )(x∗ − x).

Again by Taylor’s Theorem there is a �′ = ′� + (1 − ′)x where ′ ∈ [0, 1] such that

g(�) − � = g(x) + Dg(�′)(� − x) − �

= (Dg(�′) − I )(� − x).

Altogether, we obtain

‖� − �‖2
F∗ � 2|	1(‖g(�) − �‖)| · ‖g(�) − �‖ · ‖Dg(�) − I‖ · ‖x∗ − x‖

� 2c2 · ‖Dg(�′) − I‖ · ‖Dg(�) − I‖‖x∗ − x‖2

� 2c2
1c2�

2

� �2

‖W‖2
F

by (4.2) since ‖x∗ − x‖��. Hence, we have ‖� − �‖F∗ � �
‖W‖F and the proposition follows

by (4.3). �

Proposition 4.2. Let �(x) be defined as in the Assumptions. Let g ∈ C0(Rd , Rd) and let W ∈ F .
For all � > 0 there is a � > 0 such that

|W(x) − w(x)| �� for x ∈ B�(x) (4.4)

holds for all approximations w of W with respect to any grid XN in the sense of Proposition 3.5.

Proof. Let m := maxr∈[0,1]
∣∣ d
dr

	(r)
∣∣ which exists by Proposition 3.2. Define

� := min

(
1,

�2

2m‖W‖2
F

)
. (4.5)

Let x∗ ∈ B�(x), and set � = �x∗ ∈ F∗ and � = �x ∈ F∗, cf. Lemma 3.3. We have �(W −w) =
0, since W(x) = 1 = w(x) by construction of w, cf. (3.3). Hence,

|�(W) − �(w)| = |(� − �)(W − w)|�‖� − �‖F∗ · ‖W − w‖F
� ‖� − �‖F∗ · ‖W‖F (4.6)
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by Proposition 3.6. Denoting r := ‖x∗ − x‖�� and using Taylor’s Theorem there is a r̃ ∈ [0, r]
such that

‖� − �‖2
F∗ = (� − �)x(� − �)y�(x − y)

= (�x∗ − �x)
x(�x∗ − �x)

y�(x − y)

= 2	(0) − 2	(r)

= −2
d

dr
	(r̃)r

� 2m�

� �2

‖W‖2
F

holds by (4.5). Hence, we have by (4.6) |�(W) − �(w)|��, which shows the proposition. �

For Theorem 4.4 we define the fill distance of a grid.

Definition 4.3 (Fill distance). LetK ⊂ Rd be a compact set. Furthermore, letXN :={x1, . . . , xN }
⊂ K be a grid (set of pairwise distinct points). The positive real number

h := hK,XN
= max

y∈K
min
x∈XN

‖x − y‖

is called the fill distance of XN in K. In particular, for all y ∈ K there is a grid point xk ∈ XN

such that ‖y − xk‖�h.

Theorem 4.4. Let �(x) be defined as in the Assumptions. Let g ∈ C�(Rd , Rd), ��1 and let
W ∈ F .

Let K be a compact set. For all H > 0 there is a constant C∗=C∗(K) such that: Let XN :=
{x1, . . . , xN } ⊂ K be a grid with pairwise distinct points which are no fixed or periodic points
and with fill distance 0<h�H in K, and let w ∈ C2k(Rd , R) be the approximation of W in the
sense of Proposition 3.5.

Then

|DnW(x) − Dnw(x)| �C∗h holds for all x ∈ K. (4.7)

Proof. Let x∗ ∈ K and choose a grid point x̃ ∈ XN such that r := ‖x∗ − x̃‖�h. Set � =
�x∗ ◦ Dn ∈ F∗ and � = �x̃ ◦ Dn ∈ F∗, cf. Lemma 3.3. We have �(W − w) = 0 by definition of
w, cf. (3.4). Hence,

|�(W) − �(w)| = |(� − �)(W − w)|�‖� − �‖F∗ · ‖W − w‖F
� ‖� − �‖F∗ · ‖W‖F (4.8)

by Proposition 3.6. We obtain with a similar calculation as in Proposition 3.5

‖� − �‖2
F∗ = (� − �)x(� − �)y�(x − y)

= (�x∗ ◦ Dn − �x̃ ◦ Dn)
x(�x∗ ◦ Dn − �x̃ ◦ Dn)

y�(x − y)

= 	(0)[n(x̃)2 + n(x∗)2 + n(g(x̃))2 + n(g(x∗))2]
−2	(‖x∗ − x̃‖)n(x∗)n(x̃) − 2	(‖g(x∗) − g(x̃)‖)n(g(x∗))n(g(x̃))

+2	(‖g(x̃) − x∗‖)n(g(x̃))n(x∗) − 2	(‖g(x̃) − x̃‖)n(g(x̃))n(x̃)

+2	(‖g(x∗) − x̃‖)n(x̃)n(g(x∗)) − 2	(‖g(x∗) − x∗‖)n(x∗)n(g(x∗)).
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Due to the continuity of g, Dg, n, ∇n and Hess n, there are constants such that ‖g(x)‖�c0,
‖Dg(x)‖�c1, n(x)�c2, ‖∇n(x)‖�c3 and ‖Hess n(x)‖�c4 hold for all x ∈ conv(K ∪ g(K)).

Recall that we have denoted r := ‖x∗−x̃‖. Taylor’s Theorem implies the existence of r0 ∈ [0, r]
such that

	(0) − 	(‖x∗ − x̃‖) = − d

dr
	(r0)r.

Moreover, there is a � = x∗+(1−)x̃ where  ∈ [0, 1] such thatn(x∗)−n(x̃) = ∇n(�)T (x∗−x̃).
Hence,

	(0)[n(x̃)2 + n(x∗)2] − 2	(‖x∗ − x̃‖)n(x∗)n(x̃)

= 	(‖x∗ − x̃‖)[n(x∗) − n(x̃)]2 + [	(0) − 	(‖x∗ − x̃‖)][n(x∗)2 + n(x̃)2]
� |	(r)|c2

3r
2 + 2c2

2

∣∣∣∣ d

dr
	(r0)

∣∣∣∣ r
= O(r2) (4.9)

for r → 0 due to the properties of 	, cf. 2 of Proposition 3.2.
In a similar way, Taylor’s Theorem implies the existence of �1 = 1x

∗ + (1 − 1)x̃ where
1 ∈ [0, 1] such that

	(0) − 	(‖g(x∗) − g(x̃)‖) = −	1(‖�1‖)(g(�1) − g(x̃))T Dg(�1)(x
∗ − x̃).

Moreover, there are �2 = 2�1 + (1 − 2)x̃ and �3 = 3x
∗ + (1 − 3)x̃ where 2, 3 ∈ [0, 1]

such that g(�1) − g(x̃) = Dg(�2)(�1 − x̃) and n(g(x∗)) − n(g(x̃)) = ∇n(�3)
T Dg(�3)(x

∗ − x̃).
Hence,

	(0)[n(g(x̃))2 + n(g(x∗))2] − 2	(‖g(x∗) − g(x̃)‖)n(g(x∗))n(g(x̃))

= 	(‖g(x∗) − g(x̃)‖)[n(g(x∗)) − n(g(x̃))]2

+[	(0) − 	(‖g(x∗) − g(x̃)‖)][n(g(x∗))2 + n(g(x̃))2]
�c2

1c
2
3|	(‖g(x∗) − g(x̃)‖)|r2 + 2c2

1c
2
2|	1(‖�1‖)|r2

= O(r2) (4.10)

due to the properties of 	, cf. 2 of Proposition 3.2.
For h(x) = 	(‖x − g(x̃)‖)n(x) we have ∇h(x) = 	1(‖x − g(x̃)‖)n(x)(x − g(x̃)) + 	(‖x −

g(x̃)‖)∇n(x). Hence, Taylor’s Theorem implies the existence of a z1 = �1x
∗ + (1 − �1)x̃ where

�1 ∈ [0, 1] such that

[	(‖x̃ − g(x̃)‖)n(x̃) − 	(‖x∗ − g(x̃)‖)n(x∗)]n(g(x̃))

= [	1(‖z1 − g(x̃)‖)n(z1)(z1 − g(x̃))T

+	(‖z1 − g(x̃)‖)∇n(z1)
T ](x̃ − x∗)n(g(x̃)). (4.11)

In a similar way we obtain

[	(‖x̃ − g(x∗)‖)n(x̃) − 	(‖x∗ − g(x∗)‖)n(x∗)]n(g(x∗))
= [	1(‖z2 − g(x∗)‖)n(z2)(z2 − g(x∗))T

+	(‖z2 − g(x∗)‖)∇n(z2)
T ](x̃ − x∗)n(g(x∗)) (4.12)

with z2 = �2x
∗ + (1 − �2)x̃ where �2 ∈ [0, 1].
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Subtracting (4.11) from (4.12) we obtain

	(‖g(x̃) − x∗‖)n(g(x̃))n(x∗) − 	(‖g(x̃) − x̃‖)n(g(x̃))n(x̃)

+	(‖g(x∗) − x̃‖)n(x̃)n(g(x∗)) − 	(‖g(x∗) − x∗‖)n(x∗)n(g(x∗))
= n(z2)n(g(x∗))[	1(‖z2 − g(x∗)‖)(z2 − g(x∗))T

−	1(‖z1 − g(x̃)‖)(z1 − g(x̃))T ](x̃ − x∗)
+[n(z2)n(g(x∗)) − n(z1)n(g(x̃))]	1(‖z1 − g(x̃)‖)(z1 − g(x̃))T (x̃ − x∗)
+[	(‖z2 − g(x∗)‖)∇n(z2)

T − 	(‖z1 − g(x̃)‖)∇n(z1)
T ](x̃ − x∗)n(g(x∗))

+	(‖z1 − g(x̃)‖)∇n(z1)
T (x̃ − x∗)[n(g(x∗)) − n(g(x̃))]. (4.13)

We will discuss each term of (4.13). For the first term we consider with z3 = �3(z1 − g(x̃)) +
(1 − �3)(z2 − g(x∗)) where �3 ∈ [0, 1]

‖	1(‖z2 − g(x∗)‖)(z2 − g(x∗)) − 	1(‖z1 − g(x̃)‖)(z1 − g(x̃))‖
� |	1(‖z2 − g(x∗)‖)| · ‖(z2 − z1) + (g(x̃) − g(x∗))‖

+|	1(‖z1 − g(x̃)‖) − 	1(‖z2 − g(x∗)‖)| · ‖z1 − g(x̃)‖
= |	1(‖z2 − g(x∗)‖)|(1 + c1)r + |	2(‖z3‖)| · ‖z3‖(1 + c1)r‖z1 − g(x̃)‖.

This term is O(r) for r → 0 due to the properties of 	, cf. 2 of Proposition 3.2.
For the second term of (4.13) we consider

|n(z2)n(g(x∗)) − n(z1)n(g(x̃))|
�n(z2)|n(g(x∗)) − n(g(x̃))| + n(g(x̃))|n(z2) − n(z1)|
�c2c3(1 + c1)r

= O(r) for r → 0.

For the third term of (4.13) we have with z4 = �4(z2 − g(x∗)) + (1 − �4)(z1 − g(x̃)) where
�4 ∈ [0, 1]

‖	(‖z2 − g(x∗)‖)∇n(z2) − 	(‖z1 − g(x̃)‖)∇n(z1)‖
� |	(‖z2 − g(x∗)‖)| · ‖∇n(z2) − ∇n(z1)‖

+|	(‖z2 − g(x∗)‖) − 	(‖z1 − g(x̃)‖)| · ‖∇n(z1)‖
� |	(‖z2 − g(x∗)‖)|c4r + |	1(z4)| · ‖z4‖ · ‖z2 − z1 + g(x̃) − g(x∗)‖c3

� |	(‖z2 − g(x∗)‖)|c4r + |	1(z4)| · ‖z4‖(1 + c1)c3r

= O(r)

for r → 0 due to the properties of 	, cf. 2 of Proposition 3.2.
For the last term of (4.13) we have

|n(g(x∗)) − n(g(x̃))|�c3c1r = O(r).

Altogether, we obtain with (4.9), (4.10) and (4.13) ‖� − �‖2
F∗ = O(r2). Thus, (4.7) follows

by (4.8). �
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5. Main results

In order to show that the approximation v(x) = n(x)w(x) is a Lyapunov function, we show in
Theorem 5.1 that v′(x) < 0 holds for all x ∈ K\{x}. In Theorem 5.2 we show that each connected
and bounded subset of the basin of attraction can be covered by a sublevel set of the function
v. Hence, we can determine each connected subset of the basin of attraction with a calculated
Lyapunov function using the proposed method.

Theorem 5.1. Let x be a fixed point of xn+1 = g(xn), where g ∈ C�(Rd , Rd) such that |�| < 1
holds for all eigenvalues � of Dg(x).

We consider the radial basis function �(x) = 	l,k(c‖x‖) with c > 0, where 	l,k denotes the

Wendland function with k ∈ N and l := ⌊
d
2

⌋+ k + 1. Let ��P �2 + �∗, where �∗ := d+1
2 + k

and P ∈ N. Let K be a compact set such that x ∈ ◦
K and K ⊂ A(x).

Let V be the Lyapunov function of Theorem 2.2 with V ′(x) = −‖x − x‖2 and V (x) = 0, and
n(x) = ∑

2� |�|�P c�(x − x)� + M‖x − x‖2H as in Definition 2.6, and let W(x) = V (x)
n(x)

∈
CP−2(A(x), R) with W(x) = 1, cf. Proposition 2.7.

Then there is a constant h′, such that for all approximations w ∈ C2k(Rd , R) of W with respect
to a grid XN ⊂ K\{x} with fill distance h�h′ in the sense of Proposition 3.5

v′(x) < 0 holds for all x ∈ K\{x},
where v(x) = w(x)n(x).

Proof. Let B̃ be an open set with K ⊂ B̃ ⊂ B̃ ⊂ A(x). Choose � ∈ C∞
0 (Rd , [0, 1]) to be a

function satisfying �(x) = 1 for x ∈ K and �(x) = 0 for Rd\B̃. Thus, � ∈ C∞
0 (Rd) ⊂ F .

Set W0 = W · �; then W0 ∈ CP−2
0 (Rd , R) and W0(x) = W(x) holds for all x ∈ K . Since

P − 2��∗ = d+1
2 + k, we have W0 ∈ CP−2

0 (Rd , R) ⊂ HP−2(Rd) ⊂ H(d+1)/2+k(Rd) = F ;
note that W0 has compact support.

Set � = 1
8 . We choose � > 0 so small that B�(x) ⊂ K and

n(g(x)) � C‖x − x‖2, (5.1)

n′(x) � − 1
2‖x − x‖2, (5.2)

|W0(x) − W0(x)| � �, (5.3)

|W ′
0(x) − W ′

0(x)| � �

C
, (5.4)

|W0(x) − w(x)| � �, (5.5)

|W ′
0(x) − w′(x)| � �

C
(5.6)

hold for all x ∈ B�(x). This is possible due to Proposition 2.7 applied to g(B�(x)) for (5.1); for
(5.2) note that P > 2 and h′(x) = −‖x − x‖2 + o(‖x − x‖P ) implies n′(x) = −‖x − x‖2 +
o(‖x−x‖P ). Eqs. (5.3) and (5.4) can be established by the continuity of W0 and W ′

0 at x, and (5.5)
and (5.6) by Propositions 4.1 and 4.2. Define h′ := min(1, �2/C∗), where C∗ is as in Theorem
4.4 for W0, H = 1 and K.

We show now v′(x) < 0 for v(x) = n(x)w(x) and x ∈ K\{x}, and distinguish between the
two cases x ∈ B�(x)\{x} and x ∈ K\B�(x).
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Case 1: Let x ∈ B�(x)\{x}. Then, as W0(x)�0,

v′(x) = n(g(x))w(g(x)) − n(x)w(x)

= [w(g(x)) − w(x)]n(g(x)) + [n(g(x)) − n(x)]w(x)

= n(g(x))w′(x) + n′(x)w(x)

� C‖x − x‖2
(
|W ′

0(x)| + �

C

)
− 1

2
‖x − x‖2(W0(x) − �)

by (5.1), (5.6), (5.2) and (5.5)

� ‖x − x‖2
(

2� − 1

2
(1 − 2�)

)
by (5.3) and (5.4)—note that W ′

0(x) = 0 and W0(x) = 1

= −�‖x − x‖2

since � = 1
8 . This shows v′(x) < 0 for x ∈ B�(x)\{x}.

Case 2: Due to Theorem 4.4 and h�h′ we have |V ′(x)− v′(x)| = |DnW0(x)−Dnw(x)|��2

for all x ∈ K . Then

v′(x)�V ′(x) + �2 = −‖x − x‖2 + �2 < 0

for all x ∈ K\B�(x). This shows v′(x) < 0 and proves the theorem. �

A Lyapunov function gives information about the basin of attraction: if x is an asymptotically
stable fixed point and O is an open, bounded and connected neighborhood of x such that v′(x) < 0
holds for all O\{x}, v(x) < R∗ holds for all x ∈ O and v(x) = R∗ holds for all x ∈ �O, then
O is a subset of the basin of attraction A(x), cf. Theorem 2.1. Thus, the question arises whether
we can cover each connected subset of the basin of attraction with a sublevel set of the calculated
Lyapunov function v. The affirmative answer is given in Theorem 5.2.

Theorem 5.2. Let x be a fixed point of xn+1 = g(xn), where g ∈ C�(Rd , Rd) such that |�| < 1
holds for all eigenvalues � of Dg(x).

We consider the radial basis function �(x) = 	l,k(c‖x‖) with c > 0, where 	l,k denotes the

Wendland function with k ∈ N and l := ⌊
d
2

⌋+ k + 1. Let ��P �2 + �∗, where �∗ := d+1
2 + k

and P ∈ N. Let O0 be an open, bounded and connected set with x ∈ O0 ⊂ O0 ⊂ A(x).
Let V be the Lyapunov function of Theorem 2.2 with V ′(x) = −‖x − x‖2 and V (x) = 0, and

n(x) = ∑
2� |�|�P c�(x − x)� + M‖x − x‖2H as in Definition 2.6, and let W(x) = V (x)

n(x)
∈

CP−2(A(x), R) with W(x) = 1, cf. Proposition 2.7.
Then there is an open, bounded and connected set B ⊂ A(x) and an h∗ > 0, such that for

all approximations w ∈ C2k(Rd , R) of W with respect to a grid XN ⊂ B\{x} with fill distance
h < h∗ in the sense of Proposition 3.5 there is an open, bounded and connected set O with
O0 ⊂ O such that for v(x) = w(x)n(x) we have

• v(x) < R∗ holds for all x ∈ O and v(x) = R∗ holds for all x ∈ �O for an R∗ ∈ R+,
• v′(x) < 0 holds for all x ∈ O\{x}.

Proof. Set R := maxx∈O0
V (x) > 0 and define the sets K1 and K2 as the closure of the connected

components which include x of the following sets:
{x ∈ A(x)|V (x)�R} for K1,

{x ∈ A(x)|V (x)�R + 4} for K2,
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respectively. Denote by B the connected component which includes x of {x ∈ A(x)|V (x) <

R + 5}. Then obviously O0 ⊂ K1 ⊂ K2 ⊂ B ⊂ B ⊂ A(x) and B is open; recall that the sets K1,
K2 and B are compact, cf. Theorem 2.2. All these sets are positively invariant.

Let B̃ be an open set with B ⊂ B̃ ⊂ B̃ ⊂ A(x), e.g. B̃ = {x ∈ A(x)|V (x) < R + 6}. Choose
� ∈ C∞

0 (Rd , [0, 1]) to be a function satisfying �(x) = 1 for x ∈ B and �(x) = 0 for Rd\B̃. Thus,
� ∈ C∞

0 (Rd) ⊂ F . Set W0 = W · �; then W0 ∈ CP−2
0 (Rd , R) and W0(x) = W(x) holds for all

x ∈ B. Since P − 2��∗, W0 ∈ H(d+1)/2+k(Rd) = F .
For � = 1

2 choose 0 < ��1 with Proposition 4.2 for W0 such that both B�(x) ⊂ O0 holds and
we have for all x ∈ B�(x)

|W0(x) − w(x)|� �

C
, (5.7)

where C was defined in 2 of Proposition 2.7 for B1(x).
Choose 1�r0 > 0 so small that

U := {x ∈ A(x)|V (x) < r0} ⊂ B�(x) holds.

We define a function T : A(x) → N0 denoting the minimal number T (x) ∈ N0 such that
ST (x)x ∈ U . The function fulfills T (x) = 0 if and only if x ∈ U . Moreover, by definition
T ′(x)�0 holds. Since B ⊂ A(x) is a compact set, there is a 0 > 0 such that S0B ⊂ U . Thus,
0�T (x)�0 holds for all x ∈ B.

Let h′ > 0 be the constant from Theorem 5.1 for the set B and define h∗ := min(h′, (20C
∗)−1)

where C∗ was defined in Theorem 4.4 for the set B and H = h′. Thus,

v′(x) < 0 holds for all x ∈ B\{x}, (5.8)

and |V ′(x) − v′(x)| � 1

20
holds for all x ∈ B (5.9)

by Theorem 5.1 and Theorem 4.4.
Now let x ∈ U ⊂ B�(x). Hence, V (x) ∈ [0, r0). For v(x) = n(x)w(x) we have for all

x ∈ B�(x)

|V (x) − v(x)| = n(x)[W0(x) − w(x)]� max
x∈B�(x)

n(x)︸ ︷︷ ︸
�C·�2

|W0(x) − w(x)| � 1
2

by (5.7) since � = 1
2 and ��1. Thus, v(x)�V (x) + 1

2 < r0 + 1
2 and v(x)�V (x) − 1

2 � − 1
2 , i.e.

v(x) ∈
[
−1

2
, r0 + 1

2

)
for all x ∈ U. (5.10)

Now define O as the connected component including x of

{x ∈ B|v(x) < R + 2 =: R∗}.
We will show that K1 ⊂ O ⊂ K2 holds. Then O is bounded and O ⊂ K2 ⊂ B, i.e. v′(x) < 0

holds for all x ∈ O\{x}. Furthermore, v(x) < R∗ holds for all x ∈ O and v(x) = R∗ holds for
all x ∈ �O ⊂ K2. On the other hand, this shows O0 ⊂ K1 ⊂ O, i.e. O0 ⊂ O.
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To prove K1 ⊂ O we let x ∈ K1. Then we have in particular 0 �T (x)�0 and V (y) ∈ [0, r0)

for all y ∈ U . Hence, we obtain

v(x) = v(ST (x)x) −
T (x)−1∑

k=0

v′(Skx)

< r0 + 1

2
−

T (x)−1∑
k=0

(
V ′(Skx) − 1

20

)
by (5.10) and (5.9)

� V (ST (x)x) −
T (x)−1∑

k=0

V ′(Skx)

︸ ︷︷ ︸
= V (x)

+r0 + 1

2
+ T (x)

20

� V (x) + r0 + 1�R + 2 = R∗

since r0 �1. This shows x ∈ O.
For the inclusion O ⊂ K2 we show that for x ∈ �K2 we have v(x) > R∗. For x ∈ �K2 ⊂ B

we have V (x) = R + 4. With T (x)�0 and V (y) ∈ [0, r0) for all y ∈ U we have

v(x) = v(ST (x)x) −
T (x)−1∑

k=0

v′(Skx)

� −1

2
−

T (x)−1∑
k=0

(
V ′(Skx) + 1

20

)
by (5.10) and (5.9)

> V (ST (x)x) −
T (x)−1∑

k=0

V ′(Skx)

︸ ︷︷ ︸
= V (x)

−r0 − 1

2
− T (x)

20

� V (x) − 1 − 1

2
− 1

2
= R + 4 − 2 = R∗,

i.e. x /∈ O. This proves the theorem. �

6. Examples

6.1. A toy example

Consider the difference equation{
xn+1 = 1

2xn + x2
n − y2

n,

yn+1 = − 1
2yn + x2

n

(6.1)

with fixed point x = (0, 0). This is Example 1 of [4]. We have d = 2 and fix k = 1, thus �∗ = 5
2 .

A function n for P = 5 has been calculated in (2.6) and (2.7).
Now we approximate W(x) = V (x)

n(x)
, where V ′(x) = −‖x‖2, by w. We use a hexagonal

grid of the form 0.2
(
i + j

2 , j
√

3
2

)
with N = 118 points without the point x (i = j = 0).

Note that the grid used in Section 4.1 of [4] is of the form 0.2
(
i − j

2 , j
√

3
2

)
and consists of
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Fig. 1. All figures correspond to Example (6.1). The black point x = (0, 0) denotes the stable fixed point, whereas the
gray points mark two unstable fixed points. Left: the grid with N = 118 points (black diamonds) and the sign of v′(x)

(gray). Right: the sign of v′(x) (gray) and a sublevel set OR (black) of v for R = 1.05, which is a subset of the basin of
attraction A(0, 0).

Fig. 2. All figures correspond to Example (6.1). Left: graph of the function v(x) = n(x)w(x) near x = (0, 0). Right:
graph of the orbital derivative v′(x) = n(g(x))w(g(x)) − n(x)w(x) near x = (0, 0).

N = 119 points. The radial basis function is given by �(x) = 	3,1(0.6‖x‖). For the func-
tion v(x) = w(x) n(x) we show the sign of v′(x) (gray) in Fig. 1 as well as the sublevel set
OR = {x ∈ R2|v(x) < R} (black) with R = 1.05; note that OR is a subset of the basin of
attraction A(0, 0). This subset of the basin of attraction is of similar size as the one obtained in
[4, Section 4.1]. However, the discrete orbital derivative is now negative also in a neighborhood
of x in contrast to [4]. Fig. 2 shows the local structure of v(x) and v′(x) near the equilibrium
x = (0, 0).
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6.2. A model for the demand for education

As a second example we consider a model proposed in [15] to model the human decision for or
against higher education and the development of wages. We summarize the model here, for more
details cf. [15,14]. For the model it is assumed that in each time period n a continuum of agents of
mass one is born that lives for two periods. They decide in the first time unit of their life, whether
they invest into education. If they do so, they can work in the high-level sector, otherwise they
have to work in the low-level sector for all their life.

If the agent i invests into education, the wages will be 1 − ei in the first year and wn+1 in the
following; note that the wages are set 1 in the low-level sector and wn in the high-level sector at
time n. ei reflects the costs of education for agent i and the costs are equally distributed over the
continuum of agents. If the agent does not invest into education, his wages will be 1 in each year.
The result is calculated by a utility function U(1 − ei, wn+1), U(1, 1), respectively. The utility
function is given by the standard Cobb–Douglas utility function

U(a, b) = a�b1−�

with 0 < � < 1, and we set � := 1−�
� .

The agent i thus will invest into education, if U(1 − ei, w
e
n+1) > U(1, 1), where we

n+1 is
the expected wage in the following year; hence, all agents with ei < e(we

n+1) will invest into
education, where

e(we
n+1) = 1 − (we

n+1)
−�. (6.2)

We assume that there are two possibilities for the forecast of the expected wage of the following
year we

n+1: the adaptive agents have the wage forecast

we
n+1 = �wn + (1 − �)wn−1

with 0���1, using a weighted average of the past two year’s wages. The fixed-point forecasters
(or steady state forecasters) use the fixed point w∗ of the dynamical system as their forecast; we
assume that it costs the information cost Cs > 0 to find out this fixed point.

We denote the amount of agents following the fixed-point forecast by zn and the adaptive agents
by 1 − zn. The supply of high-skilled labor depending on the wage wn+1 at time n + 1 is thus

ls = (1 − zn)e(�wn + (1 − �)wn−1) + zne(w
∗). (6.3)

The demand for high-skilled labor depending on the wage is given by

ld (w) =
( �

w

)1/(1−�)

(6.4)

with productivity parameter � > 0 and � = �−1
� . The market clearing condition ld (wn+1) = ls

determines wn+1 as a function of wn, wn−1 and zn, i.e. cf. (6.3), (6.4) and (6.2)

wn+1 = �
[
(1 − zn)[1 − (�wn + (1 − �)wn−1)

−�] + zn(1 − (w∗)−�)
]−1/�

.

The amount of agents zn, 1 − zn, respectively, following the different strategies will depend on
how successful the respective strategies have been in the last year; this is called the generation
overspill. Agents who choose the fixed-point strategy will regret their decision of education if
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they had earned more without education, i.e. if e(wn+1)�e�e(w∗). The regret is the difference
between the possible utility U(1, 1) and the actual one U(1 − e, wn+1). Hence, considering the
accumulated regret Rf for the fixed-point forecasters we obtain

Rf (w∗, wn+1) =
∫ e(w∗)

e(wn+1)

R(e, wn+1) de,

where R(e, wn+1) = U(1, 1) − U(1 − e, wn+1).

Similarly we obtain the accumulated regret for the choice of the adaptive forecasters as

Ra(wn−1, wn, wn+1) =
∫ e(�wn+(1−�)wn−1)

e(wn+1)

R(e, wn+1) de.

We define the difference Rd = Ra − Rf = ∫ e(�wn+(1−�)wn−1)

e(w∗) (1 − (1 − e)�w
1−�
n+1) de. If Rd

is large, then the next generation prefers the fixed-point strategy f, if it is small or negative, the
next generation rather prefers the adaptive strategy a. The costs Cs of the fixed-point strategy
have a negative influence on the choice of the fixed-point strategy. Altogether zn+1 = H(�(Rd −
Cs)), where H(x) = 1

1+exp(−x)
. Note that the parameter � > 0 measures how sensible the next

generation is to the advice of the former one.
Altogether, we obtain the following model, where we set xn = w−�

n and yn = xn−1, cf. [14,
Eq. (10)]⎧⎨

⎩
xn+1 = Gs(xn, yn, zn),

yn+1 = xn,

zn+1 = H(�(Rd(xn, yn, Gs(xn, yn, zn)) − Cs))

(6.5)

with the functions, cf. [14, Eq. (11)]

Gs(x, y, z) = 1

��
(1 − z)

(
1 − (�x−1/� + (1 − �)y−1/�)−�

)
+ 1

1 + ��
z,

Rd(x, y, �) = x∗ − (�x−1/� + (1 − �)y−1/�)−� − 1 + �

2 + �
�−1/(1+�)

×
(
(x∗)(2+�)/(1+�) − (�x−1/� + (1 − �)y−1/�)−�((2+�)/(1+�))

)
,

H(x) = 1

1 + exp(−x)

and x∗ = (w∗)−� = 1
1+�� . By Proposition 7 of [14], x = y = x∗ and z = 1

1+exp(�Cs)
is a fixed

point.
We choose the constants � = 3

4 , � = 2, Cs = 1
4 , � = 0.4, and � = 10. Since � < 1 and

� < 1 − �� = 7
16 , 3 of Proposition 7 implies, since �Cs < ln

(
��

1−�−��

)
, that the fixed point

is locally stable. However, there exists also the following stable period-three cycle, which lies
outside the area of the model: x1 = (0.160, 1.236, 0.473), x2 = (0.845, 0.160, 0.101), x3 =
(1.236, 0.845, 0.194).

We are interested in the basin of attraction A(x, y, z). We have d = 3 and fix k = 1, thus
�∗ = 3. A function n for P = 5 is given in Appendix A. We use a hexagonal grid of the

form (x, y, z) + 0.08

(
i + j

2 + k
2 , j

√
3

2 + k

2
√

3
, k

√
2
3

)
with 99 points without the point i = j =

k = 0 and with one additional point to obtain the Lyapunov function v, so that N = 100.
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Fig. 3. We consider Example (6.5). The figure shows the stable fixed point (x, y, z) (black point), the grid with N = 100
points (black diamonds) and the level set v′(x, y, z) = 0 (gray); note that the sign of v′ is negative near the fixed point.

Fig. 4. All figures correspond to Example (6.5). The black point is the stable fixed point (x, y, z). We show the level set
v′(x, y, z) = 0 (gray) together with the sublevel set OR (brown) of v for R = 0.8, which is a subset of the basin of
attraction A(x, y, z). Left: the part with z ∈ [0, 0.4]; note that this is the relevant part since the model is valid only for
z�0. This part is also positively invariant, since zn+1 > 0 by (6.5). Right: the part with z ∈ [−0.2, 0.1].

We choose the radial basis function �(x) = 	3,1(
3
2‖x‖). The sign of v′(x) together with the

grid is shown in Fig. 3. In Fig. 4 we show the level set v′(x) = 0 (gray) as well as the sublevel
set OR = {(x, y, z)|v(x, y, z) < R} with R = 0.8 (brown) which is a subset of the basin of
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attraction A(x, y, z). Note that the set OR includes also points with negative z-values, whereas
the model only makes sense for z�0. The set OR ∩ {(x, y, z)|z�0} is shown in Fig. 4, left, and
is also a subset of A(x, y, z), since it is positively invariant; this can be seen from (6.5) since
zn+1 = H(�) = 1

1+exp(−�) > 0 for all � ∈ R.

Appendix A. A function n for Section 6.2

A function n for the example of Section 6.2, cf. (6.5) is given by

n(x, y, z)

= 810
(e5 + 2e5/2 + 1)(31e5/2 + 15)

−1525e15/2 + 21 201e5 + 24 705e5/2 + 6075
(x − x)2

+ 18 432(1 + e5/2)e5

−1525e15/2 + 21 201e5 + 24 705e5/2 + 6075
(x − x)(y − y)

+1

5

135 223e15/2 + 175 125e5 + 123 525e5/2 + 30 375

−1525e15/2 + 21 201e5 + 24 705e5/2 + 6075
(y − y)2 + (z − z)2

−111.8301485(x − x)3 − 318.2321415(x − x)2(y − y)

−37.36154017(x − x)2(z − z) + 25.35481402(x − x)(y − y)2

−167.3283992(x − x)(y − y)(z − z) − 166.9291335(y − y)2(z − z)

+34.80534914(y − y)3

−467.5966683(x − x)4 − 687.0022561(x − x)3(y − y)

+290.8657722(x − x)3(z − z) − 774.2211474(x − x)2(y − y)2

+481.594964(x − x)2(y − y)(z − z) + 40.14033576(x − x)2(z − z)2

−194.8335032(x − x)(y − y)3 − 182.5493215(x − x)(y − y)2(z − z)

+120.4210073(x − x)(y − y)(z − z)2 − 536.3814964(y − y)4

−191.2350810(y − y)3(z − z) + 90.3157554(y − y)2(z − z)2

+1138.088078(x − x)5 + 1115.953760(x − x)4(y − y)

+6.907579760(x − x)4(z − z) − 1569.068708(x − x)3(y − y)2

+1697.730028(x − x)3(y − y)(z − z) − 105.8818797(x − x)3(z − z)2

−4208.607644(x − x)2(y − y)3 + 2603.716790(x − x)2(y − y)2(z − z)

−9.294101910(x − x)2(y − y)(z − z)2 − 3963.856339(x − x)(y − y)4

+2286.60626(x − x)(y − y)3(z − z) + 418.695483(x − x)(y − y)2(z − z)2

−190.3537367(y − y)5 + 2287.846586(y − y)4(z − z)

+291.603610(y − y)3(z − z)2

+5000((x − x)2 + (y − y)2 + (z − z)2)3.

Appendix B.

Proof of Lemma 2.4. By Remark 2.5, (2.2) can be solved by considering (2.3), which is a system
of linear equations for c� when considering each order of (x − x). We will show that this system
has a unique solution.
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We will first transform the problem so that Dg(x) becomes an upper diagonal matrix. Indeed,
there is an invertible matrix S such that J = SDg(x)S−1 is the (complex) Jordan normal form of
Dg(x). In particular, J is an upper diagonal matrix. Note that S and J are complex-valued matrices.
However, if we can show that there is a unique solution h, it is obvious that all coefficients c�
are in fact real. Define y := S(x − x), then x = S−1y + x. The iteration xn+1 = g(xn) then is
equivalent to yn+1 = S(xn+1 − x) = S(g(xn) − x) = S(g(S−1yn + x) − x) =: f (yn), and we
have Df (y) = SDg(S−1y + x)S−1 and Df (0) = SDg(x)S−1 = J , which is an upper diagonal
matrix. We will show that the following eq. (B.1) has a unique solution h(y) = ∑

2� |�|�P c�y
�:

h(f (y)) − h(y) = −yT Cy + o(‖y‖P ), (B.1)

where C = (S−1)T S−1.
Note that h(y) = ∑

2� |�|�P c�y
� is a solution of (B.1) if and only if h̃(x) := h(S(x − x)) =∑

2� |�|�P c�(S(x − x))� = ∑
2� |�|�P c′

�(x − x)� is a solution of (2.2), since we have with
y = S(x − x)

h(f (yn)) − h(yn) = h(yn+1) − h(yn)

= h(S(xn+1 − x)) − h(S(xn − x))

= h̃(xn+1) − h̃(xn)

and − yT Cy + o(‖y‖P ) = −‖S−1y‖2 + o(‖S−1y‖P )

= −‖x − x‖2 + o(‖x − x‖P ).

Hence, we have to show that there exists a unique solution h(y) = ∑
2� |�|�P c�y

� of (B.1),
i.e. cf. Remark 2.5

∑
2� |�|�P

c�

⎡
⎣
⎛
⎝Jy +

∑
2� |�|�P−1

��
f (0)

�! y�

⎞
⎠�

− y�

⎤
⎦ = −yT Cy + o(‖y‖P ). (B.2)

Note that ��
f (0) = (��

f1(0), . . . , ��
fd(0))T is a vector, C is a symmetric matrix and P �2. We

consider the terms order by order in y. The lowest appearing order is two and the terms of this
order in y of both sides of (B.2) are∑

|�|=2

c�
[
(Jy)� − y�] = −yT Cy. (B.3)

Writing the terms of order two as
∑

|�|=2 c�y
� = yT By, (B.3) becomes J T BJ −B = −C. Since

the eigenvalues � of J are the eigenvalues of Dg(x) and thus satisfy |�| < 1, this equation has a
unique solution B; the proof for the complex-valued matrix J is the same as for the real case, cf.
[16,4, Lemma 2.5].

Now we show by induction with respect to k := |�|�P that the constants c� are uniquely
determined by (B.2): For |�| = 2 this has just been done. Now let P � |�| = k�3. Consider
(B.2): the terms of order �k − 1 satisfy the equation by induction. Now consider the terms of
order |�| = k: all terms of order k are contained in the following expression:

∑
2� |�|�k−1

c�

⎛
⎝Jy +

∑
2� |�|�P−1

��
f (0)

�! y�

⎞
⎠�

+
∑
|�|=k

c�
[
(Jy)� − y�] . (B.4)
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The constants c� with 2� |�|�k − 1 are fixed. We will show that there is a unique solution

for the constants c� with |�| = k such that
∑

2� |�|�k−1 c�

(
Jy +∑

2� |�|�P−1
��

f (0)

�! y�
)�

+∑
|�|=k c�

[
(Jy)� − y�] has no terms of order k. Since all c� in the left-hand term of (B.4) are

known and all c� in the right-hand term are unknown, this is equivalent to an inhomogeneous
system of linear equations. It has a unique solution, if and only if the corresponding homogeneous
system has only the zero solution. Therefore, we study the corresponding homogeneous problem∑

|�|=k

c�
[
(Jy)� − y�] = 0, (B.5)

and show that c� = 0 is its only solution.
J is an upper diagonal matrix such that all eigenvalues � satisfy |�| < 1 since J is the Jordan

Normal Form of Dg(x). The eigenvalues are on the diagonal and thus |Jii | < 1 holds for all
1� i�d. Hence,

Jy = (J11y1 + J12y2 + · · · + J1dyd, J22y2 + · · · + J2dyd, . . . , Jddyd)T . (B.6)

We prove by induction that all coefficients c� in (B.5) vanish. Note that |�| = k. We introduce an
order on Ã := {

� ∈ Nd
0 |�i ∈ {0, . . . , k} for all i ∈ {1, . . . , d}}. Note that {� ∈ Nd

0 ||�| = k} ⊂ Ã.
The order ‖�‖ on Ã is such that ‖�‖ is the (k + 1)-adic expansion of �, i.e.

N0  ‖�‖ =
d∑

l=1

�l (k + 1)l−1.

Now we start the induction with respect to ‖�‖. The minimal � with |�| = k is � = (k, 0, . . . , 0).
The coefficient of yk

1 in (B.5) is, due to (B.6), c(k,0,...,0)(J
k
11 − 1). Since |J k

11| = |J11|k < 1, we
have c(k,0,...,0) = 0.

Now we assume that all coefficients c� with |�| = k and ‖�‖�A∗ for some A∗ ∈ N are zero.
Let � ∈ Nd

0 be minimal with ‖�‖ > A∗ and |�| = k. We will show that c� = 0. Consider the

coefficient of y� in (B.5). Due to (B.6), only the terms
∑

|�|=k(Jy)� with

�1 � �1 (to obtain y
�1
1 )

�1 + �2 � �1 + �2 (to obtain y
�2
2 )

...
d−1∑
l=1

�l �
d−1∑
l=1

�l (to obtain y
�d−1
d−1 )

d∑
l=1

�l �
d∑

l=1

�l (to obtain y
�d

d )

contribute to terms with y�.
We will show that ‖�‖�‖�‖. The last inequality is k = k, since |�| = |�| = k. By subtracting

this last equation from the inequality before, we obtain �d ��d . If �d < �d , then ‖�‖ < ‖�‖. If
�d = �d , then

∑d−1
l=1 �l = ∑d−1

l=1 �l and we can proceed by subtracting this second-last equation
from the third-last inequality, and obtain �d−1 ��d−1, etc.
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Since c� = 0 holds for all ‖�‖ < ‖�‖ by induction, the only term left with y� is the one with
‖�‖ = ‖�‖, i.e.

c�[z�y� − y�] = 0,

where z = (J11, J22, . . . , Jdd)T . Since |Jii | < 1 for all i = 1, . . . , d, we have |z�| < maxi=1,...,d

|Jii ||�| < 1 and thus z� − 1 	= 0. Hence, we can conclude c� = 0.
We show that h is the Taylor polynomial of V of order P: Let V (x) = T (x) + �̃(x) with

�̃(x) = o(‖x − x‖P ), where T (x) = ∑
0� |�|�P d�(x − x)� is the Taylor polynomial of V of

order P. Then

−‖x − x‖2 = V ′(x)

= V (g(x)) − V (x)

= T (g(x)) − T (x) + �̃(g(x)) − �̃(x)

= T ′(x) + o(‖x − x‖P ) (B.7)

since �̃(x) = o(‖x − x‖P ) by definition and �̃(g(x)) = o(‖x − x‖P ) as we show now:
Set m := maxy∈B1(x) ‖Dg(y)‖. Let � > 0. Then there is a 0 < � < 1 such that∣∣∣∣ �̃(x)

‖x − x‖P

∣∣∣∣ <
�

mP
(B.8)

for all x ∈ B�(x)\{x}, since �̃(x) = o(‖x − x‖P ). Since g(x) − g(x) = g(x) − x = o(1)

by Taylor’s Theorem, for the above � > 0, there is a 0 < �′ < 1 such that ‖g(x) − x‖ <

�, i.e. g(x) ∈ B�(x) for all x ∈ B�′(x). On the other hand, the mean value theorem yields
‖g(x) − g(x)‖�m‖x − x‖, i.e.

1

‖x − x‖ � m

‖g(x) − x‖ (B.9)

for all x ∈ B�′(x)\{x}. With (B.8) and (B.9) we conclude that for all � > 0 there is a 0 < �′ < 1
such that∣∣∣∣ �̃(g(x))

‖x − x‖P

∣∣∣∣ � mP

∣∣∣∣ �̃(g(x))

‖g(x) − x‖P

∣∣∣∣ < �

for all x ∈ B�′(x)\{x}. This shows �̃(g(x)) = o(‖x − x‖P ).
Note that V (x) = 0, and hence d0 = 0. The terms of order one are also zero. Indeed, denote

di := cei for i = 1, . . . , d such that
∑

|�|=1 d�(x − x) = dT (x − x). Then (B.7) implies

dT Dg(x)(x − x)− dT (x − x) = 0, i.e. dT (Dg(x)− I ) = 0. Assume in contradiction that d 	= 0.
Then det(Dg(x) − I ) = 0, i.e. that � = 1 is an eigenvalue of Dg(x), which is a contradiction. By
the uniqueness of h, we have

∑
0� |�|�P d�(x − x)� = h(x), since it satisfies (2.2). �
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