
 Procedia Computer Science 96 (2016) 617 – 626

Available online at www.sciencedirect.com

1877-0509 © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of KES International
doi: 10.1016/j.procs.2016.08.243

ScienceDirect

The 20th International Conference on Knowledge Based and Intelligent Information and
Engineering Systems, York, United Kingdom

Modelling Functional Behavior of Event-Based Systems: A

Practical Knowledge-Based Approach

Fahim T. Imam∗, Thomas R. Dean

School of Computing, Queen’s University, Kingston, Ontario, K7L3N6, Canada

Abstract

Functional behavior is considered to be the most basic, yet a critical notion in order to determine the characteristics of a system.

However, how to reason about the functional behavior of a system in a systematic manner, is mostly limited by our cognitive

processing abilities. While the UML-based behavior models can support a visual conceptualization of the functional behavior, they

lack the rigorous, machine-processable reasoning capabilities. In this paper, we present a practical, knowledge-based approach

to model the functional behavior that incorporates the notions of Commonsense Reasoning and Functional Reasoning over its

core defining aspects. We demonstrate our approach with a detailed example, along with a set of use case scenarios. The main

motivation behind this work was to develop a rigorous, logic-based approach to verify the levels of functional consistencies between

cross-platform event-based systems. The focus of this paper, however, is to present the representational facility that can be utilized

for the consistency validation system. While we provide a brief overview of the consistency validation system in this paper, a

separate article will be dedicated for the comprehensive overview of the validation system itself.
c© 2016 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of KES International.

Keywords: Functional Reasoning; Systems Behaviour; Event-Driven Systems; Ontologies;

1. Introduction

Representing a system in terms of its functional behavior is a critical practice for any Engineering discipline. With-

out an effective formal representation, systematic reasoning about the behavior of a complex system would always be

limited by our cognitive processing abilities. While the UML-based behavior modeling can support a visual conceptu-

alization, they lack the automated reasoning capabilities, due to their semi-formal nature of representation. While the

significance of formal method based systems, e.g., model-checkers, is indisputable for developing reliable software

systems, their actual use within the software engineering community is still quite rare. While the reasoning mecha-

nisms of these formal systems are mostly automated, the process of modeling the practical application domains based

on these systems are often counter-intuitive and requires a considerable investment of time and expertise. Therefore,

in practice, the powerful notion of formal methods are barely utilized in software engineering projects.

∗ Corresponding author. Tel.: +1-613-331-4657.

E-mail address: fahim.imam@queensu.ca

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of KES International

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.08.243&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.08.243&domain=pdf

618 Fahim T. Imam and Thomas R. Dean / Procedia Computer Science 96 (2016) 617 – 626

In this paper, we present a practical, knowledge-based approach of functional behavior modeling that utilizes a

rigorous, ontological representation of event-based systems. The representational facility is mostly based on the

theory of action, events, and change, as understood in the studies of the AI-based Commonsense Reasoning10 2,

Functional Reasoning3, and the Event Calculus11. Our approach promotes an enhanced comprehension and control

over the following defining aspects of event-based systems: (a) the allowable set of events; (b) the allowable flow

of events; (c) event locations and interfaces; and, (d) the agents interacting with the interfaces. We have carefully

analyzed these latter aspects and handcrafted an effective ontological representation that can be utilized within the

context of functional behavior modelling. We have engineered the representation in such a way so that the ontology

can adequately utilize the existing inference engines for its required reasoning services.

The ontology that we developed facilitates us to model a system’s behavior using a set of intuitive natural language

expressions for human comprehension as supported by the ontology’s conceptual semantics. The systems modelled

based on the ontology can also promote a certain level of intelligence within the modeled entities themselves. When

invoked by an automated reasoner on its instances, the ontology can infer the implicit, logical consequences of the

explicitly specified functional aspects in a number different ways. These include, but are not limited to, automated

functional reasoning on the combination and permutation of the relevant functional aspects, discovering new inter-

relations between different events, agents, and interfaces, checking the functional consistencies between evolving

systems, and so forth. Our approach can be useful for those systems that require automated reasoning in order to

characterize, compare, and ultimately, comprehend the functional behavior of the systems at various levels of useful

abstractions. The rest of the paper is organized as follows. In Section 2, we provide the background, motivation,

and discuss the key notions relevant to the remaining sections of this paper. Section 3 provides an overview of our

representational facility. We will go through a demonstration of our functional modeling approach in Section 4. In

Section 5, we discuss the use case scenarios of our approach. Finally, we conclude this paper in Section 6.

2. Background and Related Work

2.1. The Key Motivation

The key motivation behind this work is to develop a rigourous, formal logic-based approach to verify the levels

of functional consistencies between cross-platform event-based systems. Supporting multiple, heterogeneous plat-

forms for the modern systems, e.g., the smart phones and tablet computing devices, is a common requirement for

any large-scale software engineering projects, e.g., airlines reservation systems, banking systems, social-networking

systems, and so forth. When dealing with the functional behavior of these systems, an effective software engineer-

ing approach must tackle the following key challenges: (a) validating the level of functional consistencies between

the cross-platform application systems; (b) maintaining a consistent co-evolution of the cross-platform functionalities

based on the evolving requirements of the system’s domain; and, (c) comprehending the functional changes that can

be both human comprehensible and machine processable. The main focus of this paper is to provide an adequate rep-

resentational facility that can promote a machine-processable, intelligent decision-support mechanism for the kinds

of functional reasoning that is required in order to mitigate or potentially overcome these latter challenges.

Despite the unavoidable heterogeneity issues with multiple platforms, the systems developed for those platforms

must confirm that their intended set of functionalities, are in fact, consistently implemented across the platforms.

The tasks of maintenance in these systems can be quite expensive and challenging. An effective maintenance for the

large-scale evolving systems must require a rigorous strategy for consistency management and change propagation

across the overall system components. While the importance of software testing cannot be denied as part of the

maintenance process, generating all possible test cases, and tracing the solution fragment for negative results, can

be quite overwhelming. Contrary to software testing, we considered a more systematic, formal approach for the

consistency management. However, our approach can help categorizing the set of test cases that must be executed in

order to validate the functional consistencies between the cross-platform and evolving systems.

The core idea of our approach is to utilize the powerful notion of ontologies in order to mitigate the heterogeneity

issues among the systems that are intended to have a set of identical functional goals. By characterizing the functional

behavior into an ontology, we can have an effective mechanism to validate the levels of functional consistency among

the systems. Since we are dealing with the event-based systems like mobile apps, the focus of the representation

should be the functionalities that can be observed from its User Interface (UI) elements. Since the events associated

619 Fahim T. Imam and Thomas R. Dean / Procedia Computer Science 96 (2016) 617 – 626

with the UI elements are indicative of the system’s behavior7, these elements should provide the key source of knowl-

edge regarding the functional models of the comparing systems. A set of such functional models should be captured

at a level of abstraction that is suitable for our purpose of validating cross-platform, event-based functional consis-

tencies between the comparing systems. This paper is about of the representational facility that we developed for our

consistency validation system. While we provide a brief, high-level overview of the validation system in Section 5,

a separate article will be dedicated in the future where we will present the actual validation system in a detailed,

systematic manner.

2.2. The Notion of Ontologies

The philosophical term ontology was first adapted to Computer science by Gruber5 as “a formal explicit specifica-

tion of a shared conceptualization” for the AI community. An ontology represents the concepts within a domain and

specifies how the concepts are related to each other through a set of logical axioms. An ontological knowledgebase,

K can be defined as the 4-tuple, K=(C,R, A, I), where, C represents the set of Concepts or Classes within a domain

of interest, R represents the set of binary relations between two classes, A represents the set of logical Axioms to fur-

ther specialize the classes, and, I represents the set instances of the Classes, i.e., the ground-level individual objects.

The logical axioms in an ontology are typically expressed in a formal language such as in Web Ontology Language

(OWL)8. Developed based on the fragments of First Order Logic (FOL), OWL Description Logic (OWL-DL) has

become the de-facto language for developing modern ontologies. An ontologically represented system can provide

intelligent decision support mechanisms for its formally expressed body of knowledge. One of the most powerful

features of an ontology is that it provides the logical means to express the explicit knowledge of a conceptual domain,

from which, the implicit, new knowledge can be inferred through the logical reasoners or inference engines12 1.

2.3. The Notion of Functional Reasoning

Functional reasoning refers to the theories and techniques to formalize the functional behavior of a system in terms

of the following key questions: (a) What are the set of functions that should exist on the desired system? (b) What

are the relations that exist between the functions? (c) How to explain the relationships between the functions and the

system’s artifacts? (d) How to derive the purpose of the artifacts in terms of their functionalities? According to Far et

al. 3, the notion of functional reasoning has the following constituent parts: (a) An ontology to describes the functional

entities of a system; (b) A representation formalism to model the interactions of the entities, and (c) A reasoning

mechanism to infer the implicit functions of the entities. As suggested by Far et al. 3 the ultimate goal of functional

reasoning is to achieve the commonsense reasoning about the functionality of the desired system. Commonsense

reasoning is one of the prominent goals of AI research which deals with the challenges of representing computing

systems in terms of our common, everyday knowledge10. We consider the notion of commonsense reasoning to be

the basis for our functional reasoning mechanism. Refer to Far et al. 3 for a detailed survey of different functional

reasoning theories, perspectives, and their targeted problem domains.

2.4. The Notion of Action, Events, and Change

The theory of action, events, and change is one of the critical areas of commonsense reasoning10. Based on the

understanding by Davis et al. 2, we consider the following constraints about the systems that involve the notions of

events and change: (1) Events are atomic, i.e., they are occurrents and do not travel through time; (2) Every change

in the world is caused by an event; (3) Events are deterministic; i.e., the state of the world at the end of an event can

be fully determined by the state of the world at the beginning; (4) In order to reason about events, a reasoner simply

needs to consider the state of the world at the beginning and the end of the event; the intermediate states should be

ignored; and, (5) The entire relevant state of the world at the beginning and all the exogenous events are knowable. The

formalisms such as the event calculus11 9 and situation calculus6 are solely dedicated into the concern of representing

actions and their effects on an environment using formal logic. The contributions mentioned in this section formed

the key logical basis of our proposed representational facility as presented in the next section.

620 Fahim T. Imam and Thomas R. Dean / Procedia Computer Science 96 (2016) 617 – 626

Fig. 1. The EFBO Ontology: Key Classes and Properties.

3. The Proposed Approach: An Overview

In this section, we discuss the concepts relevant to the notion of events, along with their logical relationships

within the context of functional reasoning on event-based systems. By the end of next section, we should have a solid

understanding of the ways we can model a series of interactions among a set of functional entities using our proposed

representational facility.

3.1. The Ontological Representation

In order to represent the functional behavior of event-based systems, we have developed the Event-Based Functional
Behavior Ontology (EFBO, http://cs.queensu.ca/~imam/efbo.html). The ontology is designed based on the
key notions of events in commonsense reasoning, event calculus, and functional reasoning, along with a series of ex-
periments. Figure 1 presents the key classes and properties (relations) of the EFBO ontology. On the left, we have the
logical is-a hierarchy of the key classes. On the right, we have a set of asserted relational properties, along with their
domain and range restrictions. The domain and range in blue fonts are inferred automatically by invoking a reasoner.
Most of the EFBO properties have their corresponding inverse properties which serve a critical role while describing
the property chains, as well as the instances of the EFBO ontology. The EFBO ontology can be represented in terms
of the following sets of classes and properties.

• A set of classes, C = {E,G, I}, where, E represents the set of Event instances, E={e1, e2, .., en}; G is the set of Agent
instances, G={g1, g2, .., gn}; and, I represents the set of Inter f ace instances, I={i1, i2, .., in}.

• A set of relations, R={R(e, g),R(e, i),R(e1, e2)}, where, R(e, g) represents the set of relations between an instance of an event,

Event(e) and an instance of an agent, Agent(g), e.g., isPer f ormedBy; R(e, i) represents the set of relations between an

Event(e) and an Inter f ace(i), e.g., hasInter f ace; and, R(e1, e2) represents the set of relations between two Event instances,

e1 and e2; e.g., hasNextEvent.

The EFBO is engineered in a way so that we can model the instances of the classes in C in terms of their associated
relations in R. The core classes in the EFBO are the Event, Agent, and the Inter f ace classes. All the other entities
within the EFBO are logically based on these three classes, either through direct assertions or through inference.

• Event. An event within a system is an occurrent - i.e., each of the events in a system must have a single time-point of

occurrence. We use the relational properties hasNextEvent and its inverse hasPreviousEvent between two events in order

to mark the occurrence of an event. These relations are defined as the non-transitive relations between two events; i.e., they

refer to the immediate next and the immediate previous event of an event’s occurrence. The properties hasFutureEvent and

its inverse hasPastEvent are specified as transitive. These transitive properties are defined as the super properties of the

621 Fahim T. Imam and Thomas R. Dean / Procedia Computer Science 96 (2016) 617 – 626

chain of hasNextEvent and the chain of hasPreviousEvent properties, respectively. If an event x has a next event y, and y
has a next event z, then we can infer the fact that z has a past event x. These properties allow an event to be reasoned based

on any set of past or future events including the actions and activities associated with those events. An event within the

EFBO must have an associated system or environment with a set of interfaces. The property isAlternateEventO f can be

used to specify the relation between two event instances that are mutually exclusive i.e., the instances that hold this property

must not occur in parallel. The symmetric properties isAlternateEventO f and hasParallalEvent are therefore specified as

disjoint with each other.

• Action. The concept of Action within the EFBO is specified as an event that is performed by an agent. However, the

action cannot be performed directly without invoking the interface of an event. Using the powerful notion of OWL property

chain, we have defined the relational property isPer f ormedBy as the super property of the following chain of properties:

hasInter f ace o interactsWith; i.e., if an Event(e) has an Inter f ace(i) and the interface i interacts with an Agent(g), then the

event e becomes an action which is performed by the agent g. The relation isInvokedBy refers to the super property of the

relation isPer f ormedBy. The former is a relation between an event and and agent, and the latter is between an action and

an agent. The set of instances that holds these two properties can only be inferred and must not be asserted directly.

• Activity. An Activity is understood to be an Action (i.e., an event performed by an agent) that is followed by a next,

successive event. In order to activate an event, the event must be triggered by an agent through the system’s interface. We

define the isTriggeredBy relation between an event and an agent as the super property of the following chain of properties:

hasPreviousEvent o isPer f ormedBy; i.e., if Event(e2) has a previous event Event(e1), and the event e1 is performed by

Agent(g), then the event e2 is triggered by the agent g.

It should be noted that an event within the EFBO represents an activity that occurs at a particular time. Unlike

activities, an event does not travel over time; instead, an event just occurs. Within the context of the EFBO, a useful

analogy to distinguish the differences between the concepts of activity and event is the following: we can think of the

concept of activity as an ongoing movie which has a beginning, followed by a series of scenes, and an ending. An

event, on the other hand, can be thought as a snapshot or a picture of a particular moment in that movie. Analogous

to the notion of a movie being nothing more than a series of pictures, the notion of activity can be thought as a series

of events. In this latter sense, the beginning of an activity can be an event, a completed sub-activity within an activity

can also be considered as an event. Essentially, this latter analogy makes the EFBO concepts of Event and Activity to

correspond to the very notions of SNAP and SPAN as endorsed by the Basic Formal Ontology (BFO)4.

3.2. The EFBO-Based Functional Modelling

The EFBO ontology can represent a system’s change of events along with their agents and interfaces in a rigorous,

logical manner. By definition, each event must have an associated point in time. The concept of time is understood

as the continued progression of events that occur in an irreversible succession from the past through the present to the

future1. This latter notion of time and event together forms the Event-Time continuum as depicted in Figure 2 (right).

The figure indicates that the event en at time tn is the future event of the event en−1 at time tn−1, and the past event

of the next event en+1 at time tn+1. The green and the blue arrows represent an event’s temporal connection with its

previous and the next events, respectively. While we do not explicitly specify the temporal dimensions of the events,

the EFBO has the mechanism to reason about the occurrence of an event through its extensive sup-properties of the

eventProperty in Figure 1. Using the EFBO, a series of event instances of a system can be modelled and reasoned

in terms of different event properties such as the activities of the triggering agents, the interfaces involved, change of

interfaces, the causalities, and so forth.

An interaction model among three instances of events is depicted in Figure 2 (left). The event instances are

specified as having hasNextEvent relations between them. Also, the event instances all have their corresponding

interfaces as specified by the hasInter f ace property. The agent instances are specified as having interaction with

their corresponding interfaces through the interactsWith relation. Note that, the interactsWith property is defined as

a symmetric property between an agent and an interface; i.,g., if Agent(g1) interacts with Inter f ace(i1) that would

also mean that the Inter f ace(i1) interacts with the Agent(g1). The relational properties with the dotted arrows in the

figure indicate the inferred relationships between two instances. As discussed already, these relations are not meant

1 We adapted the notion of time from the Oxford Dictionaries which is quite suitable for our purpose of using the existing OWL reasoners without

the need of an extensive temporal logic extension.

622 Fahim T. Imam and Thomas R. Dean / Procedia Computer Science 96 (2016) 617 – 626

Fig. 2. The Event(e)-Interface(i)-Agent(g) Interaction Model (left). The Event-Time Continuum (right).

to be asserted directly and must be inferred through automated reasoning. This latter strategy is incorporated in order

to model a system’s event-based functional behavior in a practical sense; i.e., the agents of such system must not

be able to invoke the system’s functionality without interacting with the system’s designed interfaces. This design

choice also promotes more automation for the logical deduction process, which can ultimately reduce the amount of

human-induced errors during the modelling process.

Within the perspective of the EFBO, the functionality of a system is understood to be the manifestation of Event
(i.e., a set of actions, events, and activities). When it comes to deriving the functional behavior of a system, we are

simply interested in knowing the following: (1) what are the kind of ‘things’ (ontologically) that we know are related

to the functionality, and (2) how do we formulate the functionality as a set of connections between the ‘things’ within

the ontology model. For example, the functionality of a login button may have three things to observe: (1) login

functionality involves some UI component like login button; (2) a login button is a clickable object for a user agent;

and, (3) by clicking the button the user agent triggers some new event to be activated by the client agent. We discuss

an example of the actual modelling process using the EFBO’s representation facility in the next section.

4. The EFBO-Based Functional Modelling: An Example Demonstration

As a demonstration, we observe the typical login functionality of a mobile application in terms of its EFBO rep-

resentation. While a login system sounds simple enough to follow, it has all the aspects that we need in order to

demonstrate the potentials of our representational facilities. Let us first observe the instantiation statements in Fig-

ure 3. We can think of the instantiation process as describing the behavior of a system on a storyboard. Based on

the EFBO interaction model illustrated in Figure 2, we first declare the sequence of events associated with our login

system using the hasNextEvent property between each of the events (Lines 5-15). After that, we declare the set of

interfaces for each of the declared events using hasInter f ace relation (Lines 18-37). We also declare the composite

UI interfaces using the hasElement relation. And finally, we declare the allowable interfaces for each of the agents

that need to interact with the system using the interactsWith property (Lines 40-48). While the storyboard seems quite

simple to follow with only three kinds of properties, all other complex relational properties among the functional

entities can be perfectly inferred through automated reasoning. The ideal goal of the storyboard is to state whatever is

explicitly known about each of the event entities that are involved within a desired system.

One of the powerful features of the EFBO is that it allows the functional entities to be described in a flexible,

intuitive manner. For example, we do not have to have direct instantiations for any of the EFBO classes as they can

all be perfectly inferred from the specified properties between the instances. The detailed functional activities of an

application can be expressed as a series of RDF-like statements of the form sub ject− predicate− ob ject, without any

restrictive order. As we can observe from the Figure 3, the EFBO allows us to encode the storyboard in the most natural

way possible. The terms prefixed with the underscores are meant to be instances; only exceptions are the predefined

EVENT START and EVENT END. It should be noted that the sequence of statements within the storyboard can exist

in any arbitrary order. No matter in what order they exist, as long as the domain and range constraints are satisfied for

each of the relational properties, the EFBO can automatically recognize the actual chain of entities after reasoning.

623 Fahim T. Imam and Thomas R. Dean / Procedia Computer Science 96 (2016) 617 – 626

Fig. 3. An example of instantiation statements for the EFBO ontology.

Fig. 4. A set of inferred instances for the example system.

Another powerful feature of the EFBO representation is that the entities with the partial or incomplete set of facts

can also lead to a certain inferred conclusions by the reasoner. For example, the instance tapLoginButton which has

an interface instance loginButton would be simply inferred as an instance of an Event. Once we add a new statement

that the userAgent interacts with loginButton, the tapLoginButton would be inferred as an instance of an Action at

that point. An additional statement such as tapLoginButton hasNextEvent sendUserIn f o, would lead the reasoner

to infer that the tapLoginButton is an instance of the class Activity.

If we have an interface instance Inter f ace(i) that interacts with an agent instance Agent(g) within the EFBO model,

the reasoner would infer the fact that Agent(g) has performed an action of an event associated with Inter f ace(i). It

should be noted that when stating the facts about veri f yUserIn f o we don’t capture how the exact verification process

is going to be implemented. Instead, we only capture the involved entities within the functional flow. However, the

EFBO can detect the fact that the veri f yUserIn f o is a decision point event i.e., an event with multiple alternative

next events that are mutually exclusive and must not occur in parallel.

624 Fahim T. Imam and Thomas R. Dean / Procedia Computer Science 96 (2016) 617 – 626

Fig. 5. A set of instance-based defined classes.

In order to classify different entities such as the entities specified in Figure 3 statements, we have asserted a set of

defined classes into the EFBO ontology. Currently, there are two types of defined classes that we have in the ontology.

The first type involves the core EFBO classes such as the Action, Activity, Event, Agent, Inter f ace, etc. The other

types of defined classes, which are defined under the Entity Classifier Class, are the application-specific defined

classes that involve the specific value of the instances. We distinguish the latter types of classes through their labels

prefixed with underscores. The class Entity Classifier Class serves as an interface class for the EFBO ontology so that

users can define their application-specific classes based on their own classification schema. We provide a subset of

our existing defined classes along with their logical axioms in Figure 5 as templates. Additional defined classes can be

asserted in order to further classify the instances in other desired ways. Once we pass the asserted statements in Figure

3 along with the EFBO into a reasoner, the reasoner would automatically infer the specific types of instances for each

of the entities. Figure 4 presents a set of key classification of instances as obtained by the automated reasoning on the

EFBO knowledge models.

5. Use Case Scenarios

The EFBO-based representation can significantly enhance the requirements specifications for the event-based sys-

tems. Compared to the traditional UML-based behavior modelling, the EFBO-based approach would provide a de-

tailed, and rigorous semantics. In addition to representing the generic behavioral model of a system, the EFBO

approach can also include the instances of specific source code artifacts such as the UI elements, as part of the be-

havioral model. Using the EFBO-based approach, the functional behavior models can be viewed, represented, and

reasoned over multiple different levels of abstractions. For example, we can ask the reasoner for a set of activities that

are associated to achieve a certain functional goal. We can also ask the reasoner about the UI elements involved in

those latter activities. Additionally, we can ask the reasoner about the interactions between the client and the server

agents within those activities. While the UML-based behavior modeling can provide visual supports for the developer,

their role as a machine processable artefact is quite limited. The UML-based approach is only limited to expressing

the models into XML-like shareable models, or generating source code structures. Using the UML models, we simply

can not ask any of the functional reasoning questions that we have observed in the previous section. Conversely, the

EFBO-based models can easily be used to generate the XML-based representation of the UML diagrams, if required.

5.1. The EFBO-Based Functional Reasoning Categories

Extending on the general reasoning categories in event calculus11 such as the deductive, abductive, and the induc-
tive reasoning, we list the following functional reasoning categories that can be supported by the EFBO representation.

• Flow of Activities. This kind of functional reasoning can be used to precisely determine the flow of activities between

two functional states. This is a ‘What Follows What’ (WFW) kind of reasoning question that can be reasoned through the

inferred range types of the hasNextActivity and hasPreviousActivity properties.

• Action by Action Agents. This kind of reasoning can be used to verify the exact distribution of activities among different

agents. This is a ‘Who does What’ (WDW) kind of reasoning question that can be asked against the EFBO models.

• Action by Action Interface. This kind of reasoning can be used to verify the exact distribution of actions within different

UI Interfaces. This is a ‘What Happens Where’ (WHW) kind of reasoning question that can be asked against the EFBO

knowledge models.

• Shared Activities between Agents. This kind reasoning can be used to determine the set of shared activities among multiple

different agents with a common set of goals. This is a ‘Who Shares What’ (WSW) kind of reasoning that can be useful to

detect any extra, unintended activities between the client and the server agents.

625 Fahim T. Imam and Thomas R. Dean / Procedia Computer Science 96 (2016) 617 – 626

Fig. 6. The EFBO-Base Functional Consistency Verification System.

• Decision Point Event. This kind of reasoning can be used to identify the set of events with multiple, alternative next events.

This is a ‘What Leads to a Decision’ (WLD) kind of reasoning question that can be asked against the EFBO knowledge

models. In our example, verifyUserInfo is inferred as a decision point since the activity is responded with two alternative

events presentTryAgainUI and presentWelcomeUserUI by the server agent. Determining the exact set of activities before

and after a decision point can be a critical functional requirement for any event-driven system.

For a system that is modelled based on the EFBO-representation, additional set of reasoning tasks can be composed

of the core functional reasoning categories listed above.

5.2. Validating Functional Consistencies between Systems

For the systems that are already developed, the EFBO-based representation can be used to annotate and instantiate

the program elements that can correspond to the core concepts of event, interface, and agent. For the Java-based

applications, we have developed an API called the EFBO-Java Annotator. The API can be used to add EFBO-specific

extra annotations within the Java source codes. Using these extra bit of annotations, the API can be used to process

the set of annotations at compile time to generate the EFBO-compatible storyboard facts in OWL. Once we have the

annotations, the annotated source code artifacts can be synchronized with the EFBO ontology. The future changes of

functionalities based on the source code can then have a detectable model for the EFBO ontology.

Figure 6 provides a high-level depiction of the EFBO-based functional consistency validation system along with

the set of core steps involved within the system. Just like the instantiated functionality model for the example login

interface, we can have a set of additional login interface models instantiated for the EFBO ontology. Once instantiated,

we can validate different kinds of functional consistencies between the source models. The mapping between the

instance entities will be constrained through the automated classification on the EFBO ontology. In other words,

the inferred classification of the ontology will have a clear indication of the mappable types of instances between

two sources. For example, all the instances of agents will be classified as the type of Agent for each of the sources.

Similarly, all the actions performed by each of the agents will be classified as the type of Action. We can use the

owl:sameAs property between a pair of mappable instances in order to declare the individual pairs to be treated as

identical for the ontology reasoner. Based on the set of reasoning categories in Section 5.1, we can then validate the

level of functional consistencies between the source models. This kind of consistency validation can be quite useful

for the cross-platform applications that are developed and evolved independently with the same set of functional goals.

626 Fahim T. Imam and Thomas R. Dean / Procedia Computer Science 96 (2016) 617 – 626

6. Conclusion

The contribution of this paper can be summarized as a systematization of the functional behavior modelling for

the event-based systems. We have presented a representation facility called the EFBO that can effectively specify

the functional entities of a system in such a way so that their existence in the system can be thoroughly reasoned in a

rigorous, conceptual manner. We have provided an example of the EFBO-based functional behavior modelling in order

to demonstrate the potentials of our representational approach. We have highlighted a number of useful functional

reasoning categories and use case scenarios where the EFBO-based representation can become quite effective.

Based on our experience, while there exist numerous ontologies for various application domains, when it comes

to actually modelling the real-life systems, only a handful of them can be considered as somewhat useful. While the

ontologies are not meant to incorporate instances within their formal knowledge structures, an ontology that lacks

the mechanisms to maximally instantiate the real-life data can be quite frustrating. Even with the advancements of

various automated reasoning supports, most of the ontologies, in this latter regard, exhibit the analogous limitations

of the formal method based approaches as mentioned in Section 1. Compared to most of the existing approaches

of representing functional behaviors, one of the distinguishing features of our approach is that we have considered

the notion of Commonsense Reasoning to be the core basis to handle the functional reasoning questions. We have

carefully engineered the EFBO ontology with a minimal set of required classes and properties so that the ontology

can serve the specific purpose of functional reasoning on the event-based system. As we wanted to have a natural way

to describe the functional behavior of a system, we have incorporated a number of useful properties and their inverses

within the EFBO ontology which provides a flexible linguistic support to describe the behavior of an intended system.

The EFBO-based instantiation process is therefore quite intuitive and flexible. This was one of our design choices in

order to achieve the maximum usability of the ontology without compromising the logical rigour that we needed to

achieve an effective functional reasoning mechanism.

For any artificial systems of knowledge, a set of functional goals can often be achieved in multiple different ways

on different environments. However, how to reason about the multiplicities of ways that leads to the same set of

functional achievements, or vice-versa, is mostly dependent on our cognitive processing abilities. This article has the

potential to address some of the key principles that can support the usual cognitive practice, and ultimately, enhance

our reasoning abilities in a systematic, more efficient, machine-assisted fashion. Our research will contribute to this

latter aspect of reasoning about the world, which is one of the almost never-ending quests of commonsense reasoning

in Artificial Intelligence.

Acknowledgement

This research is supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

References

1. Sunitha Abburu. A survey on ontology reasoners and comparison. International Journal of Computer Applications, 57, 2012.

2. Ernest Davis and Gary Marcus. Commonsense reasoning and commonsense knowledge in artificial intelligence. Communications of the
ACM, 58(9):92–103, 2015.

3. Behrouz Homayoun Far and A Halim Elamy. Functional reasoning theories: Problems and perspectives. AIE EDAM, 19(02):75–88, 2005.

4. Pierre Grenon and Barry Smith. Snap and span: Towards dynamic spatial ontology. Spatial cognition and computation, 4(1):69–104, 2004.

5. Thomas R Gruber. A translation approach to portable ontology specifications. Knowledge acquisition, 5(2):199–220, 1993.

6. Yilan Gu and Mikhail Soutchanski. A description logic based situation calculus. Annals of Mathematics and AI, 58(1-2):3–83, 2010.

7. David M Hilbert and David F Redmiles. Extracting usability information from user interface events. ACM Computing Surveys (CSUR),
32(4):384–421, 2000.

8. Deborah L McGuinness, Frank Van Harmelen, et al. Owl web ontology language overview. W3C recommendation, 10(2004-03):10, 2004.

9. Erik T Mueller. Automating commonsense reasoning using the event calculus. Comm. of the ACM, 52(1):113–117, 2009.

10. Kathy Panton, Cynthia Matuszek, Douglas Lenat, Dave Schneider, Michael Witbrock, Nick Siegel, and Blake Shepard. Common sense

reasoning–from cyc to intelligent assistant. In Ambient Intelligence in Everyday Life, pages 1–31. Springer, 2006.

11. Murray Shanahan. The event calculus explained. In Artificial intelligence today, pages 409–430. Springer, 1999.

12. Xiao Hang Wang, Da Qing Zhang, Tao Gu, and Hung Keng Pung. Ontology based context modeling and reasoning using OWL. In Pervasive
Computing and Communications Workshops, 2004. Proceedings of the Second IEEE Annual Conference on, pages 18–22. IEEE, 2004.

