ORE Metadata, citation and similar papers at core

ded by Elsevier - Publisher Connector

-

= TOPOLOGY
%&g AND ITS
5 APPLICATIONS

ELSEVIER Topology and its Applications 122 (2002) 77-86
www.elsevier.com/locate/topol

Sums and products of ultracomplete topological spaces

D. Buhagiar, I. Yoshioka

Department of Mathematics, Okayama University, Okayama 700-8530, Japan
Received 30 December 1999; received in revised form 17 March 2000

Abstract

In 1987 V.I. Ponomarev and V.V. Tkachuk characterized strongly complete topological spaces as
those spaces which have countable character in their Shmwi-compactification. On the other
hand, in 1998 S. Romaguera introduced the notion of cofinfbél;/n complete spaces and he showed
that a metrizable space admits a cofinally complete metric (otherwise, called ultracomplete metric),
a term introduced independently by N.R. Howes in 1971 and A. Cséaszér in 1975, if and only if it is
cofinally Cech complete. In a recent paper the authors showed that these two notions are equivalent
and in this way answered a question raised by Ponomarev and Tkachuk [Vestnik MGU 5 (1987)
16-19] about giving an internal characterization for strongly complete topological spaces (termed
ultracomplete by the authors). In this paper, sums and products of ultracomplete spaces are studied.
0 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Ultracomplete topological spaces were introduced independently by Ponomarev and
Tkachuk in 1987 [12] and by Romaguera in 1998 [13]. In [12] ultracomplete spaces
were calledstrongly complete and were defined by their external characterization (The-
orem 2.1(1)) while in [13] ultracomplete spaces were caliefinally Cech complete
and were defined by their internal characterization (Theorem 2.1(3)). In [2], the authors
proved that the two definitions are in fact equivalent and termed such spldiE®M-
plete.
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Ultracompleteness constitutes an interesting strong form of completeness as can be seen
from results obtained in [12,13,6,2]. It is proved in [13, Theorem 1] that a metrizable
space admits a cofinally complete metric if and only if it is ultracomplete (then termed
cofinallyéech complete). To define the teowfinally complete metric, a few words about
uniformities is in order. A filtetF on a uniform spacéX, U) is said to beveakly Cauchy
if for each cove/ € U there is a filterg containing# and aG € G such thatG c U for
someU e U [3]. In [8] Howes introduced the notion ofafinally complete uniform space
and proved that a uniform space is cofinally complete if and only if every weakly Cauchy
filter has a cluster point iY. Cofinally complete uniform spaces were call#tlacomplete
by Csaszar in [4]. In his paper, Csaszar showed that the Euclidean metric on the real line
R is cofinally complete and that there exists a complete metric space that is not cofinally
complete, where a metric spack, p) is said to be cofinally complete if the uniformity
U, generated by is cofinally complete. Howes [9] (see also [10]) later on showed that
the Hilbert spacé, of square summable sequences is complete but not cofinally complete
for its usual metric.

We refer the reader to [5] for undefined terms. We also use the terminology of [5] when
it comes to seperation axioms, in particulﬂ;% (= Tychonoff) implies T1. Throughoutthe
paper, byN we denote the set afatural numbers. By Xo we denote the cardinality d¥.

For a subseft of a spaceX, by A we denote the closure ef in X. Finally, all spaces are
assumed to be Tychonoff.

2. Preliminaries

Let us recall that two collections of setsandi/ mesh if every F € F intersects every
U €U. As in [5], we denote a compactification of a spacdy a pair(Y, ¢), whereY is a
compact Hausdorff space andX — Y is a homeomorphic embedding &finto Y such
thatc(X) = Y. Below, by a compactification ok we shall mean not only a pait, c)
but also the compact spade= cX. Also, in many situations, we shall identify with
¢(X) and soX = cX. The Stone€ech compactification of a spaéeis denoted by8X.
A collection B(A) of open subsets of a spadeis called abasefor aset A ¢ X in X if
all the elements of3(A) contain A and for any open sef containingA there exists a
U € B(A) such thatA c U c V. Thecharacter of A in X is defined to be the smallest
cardinal number of the forr3(A)|, whereB(A) is a base fo in X, and is denoted by
x (A, X). Below, for a collectior? of subsets of a set, by P we denote the collection
of all unions of finite subcollections frorR.

The following theorem was proved in [2].

Theorem 2.1. For every space X the following conditions are equivalent:
(1) X bhas countable character in one (equivalently, in all) of its Hausdorff compactifi-
cationscX, i.e, x (X, cX) < No.
(2) There exists a locally compact space Z and a homeomorphic embeddinge: X — Z
of X into Z satisfying x (e(X), Z) < Ro.
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(3) There exists a sequence {U,} of open covers of X such that, if F is a filter base
on X which meshes with some sequence {U,,: U, € U,}, then F clustersin X (the
sequence {U,: U, € U,} iscalled an ultracomplete sequence of open covers)

(4) There exists a sequence {U,: n € N} of open covers of X, such that for every open
cover V of X thereexistsan n € N satisfying U, < V¥

The following implications are thus evident:
locally compact— ultracomplete> Cech complete

Examples show that none of the above implications are reversible, even in the realm of
metrizable spaces (see [13,2]).

In[12] and [6] it is proved that ultracompleteness is invariant and inverse invariant under
perfect maps (in the realm of Tychonoff spaces). It is also proved in [6] that uGliloh
completeness, ultracompleteness is preserved by open maps (in the realm of Tychonoff
spaces). On the other hand, an example is given in [2] to show that ultracompleteness is
not an invariant of closed maps.

The following result, which is evident from the definition, is known.

Proposition 2.2. Ultracompleteness is hereditary with respect to closed subsets.

Itis known thatCech completeness is hereditary with respect §esubsets. Therefore,
one would expect that iX is ultracomplete and a subs&tc X has countable character in
the X, thenA is also ultracomplete. The following example shows that this is not true.

Example 2.3. Let X c BN be defined byX = BN\ {x;: i € N}, wherex; € BN\ N for
everyi € N. ThenX is a countably compact, ultracomplete, non-locally compact space.
From Corollary 4.14 we have that x 8X is also ultracomplete. No¥ x N is open and
dense inX x X and Theorem 4.1 shows th&tx N is not ultracomplete.

3. Sums of ultracomplete spaces

Let X be a space, if we denote the topologyXiy 7 (X) thent*(X) = t(X) \ {#}. The
subsetA C X is said to béoundedin X if every continuous real function ok is bounded
on A. This is equivalent to saying that the collectiBn = {U € B: U N A # 0} is finite
for every discrete subcollectidf C t*(X). The following result was given independently
in[12,6].

Proposition 3.1. Let X be an ultracomplete space and let X¢ = {x € X: X isnot locally
compact at the point x}. Then X¢ isboundedin X.
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It is not difficult to see that ifX andY are two ultracomplete spaces, then their sum
X @Y is also ultracomplete. We therefore have the following result.

Theorem 3.2. If Xy is ultracomplete for every k =1, ..., n, then their sum @} _; X is
also ultracomplete.

For infinite sums we have

Theorem 3.3. Let A be some infinite indexing set. The sum X = @, . 4 X is ultracom-
pleteif, and only if, there exists a finite subset .Ag C A such that X, islocally compact for
every o € A\ Ap and X, is ultracomplete for every « € Ap.

Proof. We only need to prove thenly if part. SinceX,, is clopen inX for everya € A
we have thatX, is ultracomplete for every € A.

Suppose that there exists a sequedte= {«(n): n € N} C A such thatXy,) is not
locally compact for alk € N. Therefore, for every € N, there exists, € X, such that
a, admits no compact neighbourhoodXy ). Let A = {a,: n € N}, then it is not difficult
to see thatd is not bounded inX and therefore, neither is the s€t. By Proposition 3.1
one concludes that is not ultracomplete. O

4. Productsof ultracomplete spaces

We begin this section by showing that the product of two ultracomplete spaces does not
have to be ultracomplete.

Theorem 4.1. Let X beanon-locally compact spaceand let Y be non-countably compact,
then the product X x Y isnot ultracomplete.

Proof. Since ultracompleteness is an invariant of open maps, if eixh@r Y is not
ultracomplete then neither is their productx Y. Therefore, assume that andY are
ultracomplete. Sincg is not locally compact, neither is the spacg= X x {n} for every
n € N. Thus, by Theorem 3.3, we have thatx N = P, _ X, is not ultracomplete. But
the spacer is not countably compact, and therefore there exists a closed sahsét
such thatA = N. ConsequentlyX x N =D, X, is a closed subset of x Y, and by
Proposition 2.2 one concludes théatx Y cannot be ultracomplete.

Let « be an infinite cardinal number and I®t(x) denote the discrete topological space
of cardinalityx. We will consider the Stoné&ech compactificatiog D (x) of D(x). Let
D) =BD()\ D(k). Our objective is to prove the following two theorems.

Theorem 4.2. Let X and Y be two ultracomplete, countably compact spaces. Then, their
product X x Y isalso ultracomplete, countably compact.
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Theorem4.3. Let X and Y betwo ultracomplete spaces such that X is countably compact,
locally compact while Y is non-countably compact, non-locally compact. Then, their
product X x Y isalso ultracomplete.

The proofs of the above theorems will be preceded by lemmas, the proofs of which
(unless given) are similar to the proofs of the corresponding results for the particular case
of k = Ng where one can consult [14].

Lemma 4.4. Every clopen subset of D(«)* is of the form W (M) = M N D(k)*, where
M C D(k).

Lemmad4.b. If My, M> C D(k), then W(M1) C W (M) if and only if M1\ M isfinite.
Lemmad4.6. Every Gs set A C D(x)* hasa non-empty interior.

Lemma 4.7. Let {x,} be a sequence of distinct points in BD(x). Then, there exists a
subsequence {x, )} of {x,} such that the subspace {x, )} is discrete and therefore, there
exist clopen sets Vi such that x, ) € Vx and Vi N V;, = ¢ whenever k # h.

Lemma 4.8. Let X be an ultracomplete space satisfying D(x) C X C BD(k). Let
{U,: n € N} be a countable base for X in X = B8D(x). If x,, € U, \ X for n € N, then
{x,} hascluster pointsin X.

Proof. Let F = {x,}. If {x,} does not have cluster points}i thenX c X \ F and there
does notexist € NsuchthatX cU, c X\ F. O

Lemma4.9. Let X bean ultracomplete space satisfying D (k) C X C BD (k). Let {x,,} be
asequencein S X. There exists a subsequence A = {x, )} of {x,} suchthat A = A = BN.

Proof. Using Lemma 4.7 one can go on to prove that every continuous fungtian— 1
can be extended to a functi@h: A — I, which proves our assertion (see, for example, [5,
Theorem 3.6.14]). O

Lemma 4.10. Let k1 and «2 be two infinite cardinal numbers, and let X and Y be two
ultracomplete, countably compact spaces satisfying D (k1) € X C BD (k1) and D (k2) C
Y C BD(k2). Then, their product X x Y isalso ultracomplete, countably compact.

Proof. That X x Y is countably compact follows from the fact that every ultracomplete
space is &-space.

Assume tha andY are not locally compact. There exist countable bdggs n € N}
of X in BX = BD (k1) and{V,,: ne N} of Y in BY = BD(k2). One can take both bases to
be monotonically decreasing. We will show tHat, x V,,: n € N} is a base foX x Y in
BX x BY.
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Assume the contrary, then there exists an opeMset X x Y suchthatX x Y c W
and (U, x V,) \ W # @ for everyn € N. Take arbitrary pointsx,, y,) € (U, x V,) \ W
for everyn e N. Without loss of generality, assume that there exists a subseq@gngce
of {y,} such thaty,x) € V&) \ Y for k € N (otherwise consider the sequenag}). By
Lemma 4.7 one can assume that bptfyx)} and{x,x} are discrete subspaces {(if, )}
is a stationary sequence then the proof would also follow easily).

Consider the sequence of poiffts, ), yuk))}. SinCe(xuw), ynk)) € (BX x BY)\ W
we should have that(x, ), yar))} N X x ¥ = @. We show that this does not hold and
thus arrive at a contradiction. By Lemma 4.8 we have= {y,x)} NY # @ and by
Lemma 4.9,K = W = BN. SinceA is a Gs-set inK* = K \ {y,@}, it has a non-
empty interior (see Lemma 4.6). In other words, there exists a subsequgncg} such
that{y,«, )} \ {vnw, j} C Y (see Lemma 4.4). Now, lé = {x,, j}. SinceX is countably
compact, one can take a pointe (H \ {x,«,j)}) N X. There exists a homeomorphism
h:H — K', where K’ = {y,«, )}, satisfyingh(x,« j)) = Yn, j)- Let y = h(x). Then
(x,y) € X xY and(x, y) is a cluster point of (x,,, j)» Ya(x, j»)}- This gives a contradiction.

Finally, if both X andY are locally compact theX x Y is locally compact (and so is
ultracomplete), while if only one ok andY is locally compact, the proof is analogous
(but simpler) to the above proof.0

Lemma 4.11. Let k1 and «2 be two infinite cardinal numbers, and let X and Y be two
ultracomplete spaces satisfying D (k1) C X € BD(k1) and D(k2) C Y C BD(k2) such
that X is countably compact, locally compact while Y is non-countably compact, non-
locally compact. Then, their product X x Y isalso ultracomplete.

Proof. SinceY is ultracomplete, there exists a monotonically decreasing countable base
{Vi: neN}ofYin BY = 8D(k2). We will show that{ X x V,,: n € N} isabase foX x Y
in BX x BY.

Assume the contrary, then there exists an opefifset X x Y suchthatX x Y c W
and(X x V) \ W # ¢ for everyn € N. Take arbitrary pointgx,, y,) € (X x V,) \ W
for everyn e N. By Lemma 4.7, there exists a subsequefgg} of {y,} such that the
subspacéy, )} is discrete.

Consider the sequence of poirfts, k), yuk))}. SincCe(xuw), ynk)) € (BX x BY)\ W
we should have tha(x,«), yak))} N X x ¥ = @. As in Lemma 4.10, one can show that
this does not hold and thus arrive at a contradiction.

Proof of Theorem 4.2. Let X andY be two ultracomplete, countably compact spaces.
ThenX x Y is also countably compact.

Denote by)N( (respectivelyi/v) the setX (respectivelyt’) with the discrete topology. The
continuous maps ig: X — X and idy : ¥ — Y allow perfect extensiongy : BX — X
andFy : BY — BY. Consider the perfect maps, : Fy(X) — X and F},: F; 2(Y) — Y.
The spaceF;l(X) X FY_1(Y) is ultracomplete by Lemma 4.10 and therefaXex Y =
(Fy x Fy)(Fy*(X) x F; 1Y) is also ultracomplete. 0
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Proof of Theorem 4.3. This is analogous to the proof of Theorem 4.2 but using
Lemma 4.11 instead of Lemma 4.100

Theorems 4.1, 4.2 and 4.3 can be combined to give the following result.

Theorem 4.12. Let X and Y be two ultracomplete spaces. Then X x Y is ultracomplete
if, and only if, one of the following conditions holds:
(i) both X and Y arelocally compact, or
(i) either X or Y iscountably compact, locally compact, or
(iif) both X and Y are countably compact.

As a corollary to Theorem 4.12 one can cite the following result obtained in [6].

Corollary 4.13. Let X and Y be two paracompact ultracomplete spaces. Then X x Y is
paracompact and ultracompleteif, and only if, one of the following conditions holds:

(i) both X and Y arelocally compact, or

(i) either X or Y iscompact.

The next result can also be given as a corollary.

Corollary 4.14. The Tychonoff product X x Y of an ultracomplete space X and a compact
space Y isultracomplete.

By induction we have that:

Corollary 4.15. Let X, be an ultracomplete, countably compact space for every k =
1,...,n,then [];_; Xk isalso ultracomplete, countably compact.

We now show that the above result can be extended to countable products.

Theorem 4.16. Let X,, be an ultracomplete, countably compact space for every n € N,
then X =[], X» isalso ultracomplete, countably compact.

Proof. We only need to show that is ultracomplete. LetU;’: k € N} be a countable base
for X, in BX,. Consider the following countable collection of open set[in. 8X,:

o0
Unlx s X U,’f X l_[ BXiik,neN¢g.
i=k+1
We show that this collection is a base #0in cX =[], BX». LetU be an open setinX
such thatX C U C cX. For everyx = {x,} € X there exists an elementary neighbourhood
V(X)) =[l,en Va(xn) CU. Letm(x) = min{i: V,(x,) = BX, for everyn > i}. Let Wy =
UV (x): m(x) =k} and letW = |, .y Wk. Then the seW is open incX andX c W C
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U. SinceX is countably compact, there exists some N such thatX c | J;_; Wk C U.
Denote by pr the projection pf{, .y BXk — [[¢—1 BXk. We therefore have

n n n
[T cUprowo c [ ] 8X:
k=1 k=1 k=1
and consequently, by Corollary 4.15, there exists som@l such that
n n n
[[xcc[]uf cJprowo.
k=1 k=1 k=1

But, for everyk < n we have prlpr(W;) = W and therefore,

X C pr‘1<l_[Xk> C pr‘l(nUi"> = (ﬂU{‘) x ( H ,BXk)
k=1 k=1 k=1 k=n+1
C pr‘1< U pr(Wk)) = U WecU. O
k=1

k=1

The following corollary follows from Proposition 2.2 and Theorem 4.16.

Corollary 4.17. If X is the limit of an inverse sequence of ultracomplete, countably
compact spaces, then it is also ultracompl ete, countably compact.

From the above results one can give the following result on countable products of
ultracomplete spaces.

Theorem 4.18. Let X,, be an ultracomplete space for every n € N, then X =[], . X» IS
ultracompleteif, and only if, either
(i) X, iscountably compact for everyn € N, or
(i) there exists np € N and a finite set Ng C N\ {no} such that X, is not locally
compact (or not countably compact), X,, islocally compact, countably compact for
all n e Ng and X, iscompact for all n € N\ {{rno} U Np}, or
(i) there exists a finite set Ng C N such that X, islocally compact for all n € Ng and
X, iscompact for all n € N\ No.

Remark 4.19. One can note that due to Archangeli&kiesult (see [1]) that the product
[Toca Xo, whereX, # @ for a € A, is of pointwise countable type if and only if all spaces

X, are of pointwise countable type and there exists a countablgset A such that

X is compact forr € A\ Ap, it is enough to study countable products of ultracomplete
spaces. One can also note that the countable product of locally compact spaces need not
be ultracomplete as the spdk¥ = ¢, shows, wher is the set of real numbers with the
standard topology an€ is the Hilbert space of square summable sequences.
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5. Ultracompleteness and countable compactness

The proof of Theorem 4.2 would be evident if one can prove that eﬁeqh complete,
countably compact space is ultracomplete. Unfortunately, we do not know the answer to
this question and we therefore have the following problem.

Problem 5.1. Is everyCech complete, countably compact space, ultracomplete?
We do have some partial results to Problem 5.1.
Theorem 5.2. Every Cech complete, countably compact GO-space is ultracompl ete.

Proof. Let X be aCech complete, countably compact GO-space. Consider the Dedekind
compactificationX* of X (see, for example, [11]) and l¢t/,: n € N} be a collection

of open subsets oX* satisfying (i) U,+1 C U, for everyn € N and (ii) X =),y Un-

We will prove that{U,,;: n € N} is in fact a base foX in X*. If not, there exists an open
setU in X* such thatl, \ U # ¢ for everyn € N. For eachn take a pointx, € U, \ U

and consider the sdt,: n € N}. One can assume that the poinfsare distinct. Since
countable compactness and sequential compactness are equivalent in GO-spaces, there
exists a convergentsubsequefiggy: k € N}. Letx = lim x, ), thenx € X*\ X. Without

loss of generality, one can assume that the poipts are monotonically increasing.

Let a,x) € X be such thatc,—1) < @) < xa@) for k =2,3,.... Then, sinceX is
sequentially compact, there existse X such thatz = lim a,,, ;) for some subsequence
{an, j} of {aniy}. Consequently, we get that

a=Iim Ap(k,j) = lim Xnk,j) =X,

while a € X andx € X*\ X, leading to a contradiction.

On the other hand, we have an example 6kgh complete, pseudocompact space which
is not ultracomplete.

Example5.3. Let {U;: i € N} be a collection of clopen infinite disjoint subsets5di. For
eachi € N choose a countably infinite discrefe c U; \ N and letA = | J{A;: i e N}. It
is clear thatA is a discrete subspace pN \ N and henced is homeomorphic t@N. Let
A*=A\ A andA} = A; \ 4. Itis immediate thatd} is open inA* and hence the set
F=A*\ (U{A}: i e N}) is compact. As a consequence, theBet F U A is o -compact
and henc& = BN\ H is Cech complete.

To prove thatX is pseudocompact, use a result of Hewitt [7] which says that a space
is pseudocompact if and only if the remaingkXx \ X does not contain non-emptys-
subsets 0BX. InourcasegsX \ X = H and if H contained a non-emptys-subset o8N,
then its interior inBN \ N would be non-empty, while it is clear th&f is nowhere dense
in AN\ N.

To prove thatX is not ultracomplete, observe first that for any opengi¥) setG > X
we haveA; \ G is finite for any:i € N and therefored; N G is infinite. Now if {W;: i € N}
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is an external base df in X = BN, thenA; N W; is infinite (and hence non-empty) for all
i € N, which makes it possible to choosesare A; N W;. Let S = {s;: i € N}. Remember
that A is homeomorphic t@N, apply a simple fact abogN: if P, Q c NandP N Q is
finite, thenP N QN (BN \ N) = (. SinceSN A; consists of one point, we hagé N A* = ¢,
whereS* = §\ S. Thus,S = S U S* is a closed subset ¢gfX which lies ingX \ X and
intersects everyv;, which is a contradiction.

Finally, X is not countably compact because if we take a poirt A} for alli € N then
the set{x;: i € N} is closed and discrete iX.

Acknowledgements

The authors would like to thank the referee for the simplified version of Example 5.3.

References

[1] A.V. Arhangel'ski, Bicompact sets and the topology of spaces, Trudy Moskov. Mat. Obshch. 13
(1965) 3-55; Trans. Moscow Math. Soc. (1965) 1-62.

[2] D. Buhagiar, I. Yoshioka, Ultracomplete topological spaces, Acta Math. Hungar., to appear.

[3] H.H. Corson, The determination of paracompactness by uniformities, Amer. J. Math. 80 (1958)
185-190.

[4] A. Csaszar, Strongly complete, supercomplete and ultracomplete spaces, in: Mathematical
Structures—Computational Mathematics—Mathematical Modelling, 1975, papers dedicated to
Prof. L. lliev’'s 60th Anniversary, Sofia.

[5] R. Engelking, General Topology, revised edn., Heldermann, Berlin, 1989.

[6] A. Garcia-Maynez, S. Romaguera, Perfect pre-images of cofinally complete metric spaces,
Comment. Math. Univ. Carolinae 40 (2) (1999) 335-342.

[7] E. Hewitt, Rings of real-valued continuous functions, |, Trans. Amer. Math. Soc. 64 (1948)
45-99.

[8] N.R. Howes, On completeness, Pacific J. Math. 38 (1971) 431-440.

[9] N.R. Howes, Paracompactifications, preparacompactness and some problems of K. Morita and
H. Tamano, Questions Answers Gen. Topology 10 (1992) 191-204.

[10] N.R. Howes, Modern Analysis and Topology, Springer, Berlin, 1995.
[11] J. Nagata, Modern General Topology, 2nd revised edn., Elsevier Science, Amsterdam, 1985.
[12] V.I. Ponomarev, V.V. Tkachuk, Countable characteXah X versus the countable character
of the diagonal inX x X, Vestnik MGU 5 (1987) 16—19 (in Russian).
[13] S. Romaguera, On cofinally complete metric spaces, Questions Answers Gen. Topology 16
(1998) 165-169.
[14] R.C. Walker, The Stonésech Compactification, Springer, Berlin, 1974.



