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Abstract: Csneral theorems concerning one-to-one continuous functior~s from connected li- 
nearly ordered spaces into Hausdorff continua are first obtained. Thefse results are applied to a 
study of %he structure of the arc components of chainable Hausdorff oontinua. 
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a=triodil: 
decomposable continuum 
half-ray curve 
half-ray triod 

irreducible continuum real curve 
linear order Stonetezh compactification 
monotone func tiori unicoherent continuum 
one-point compactirication 

--- 

I’he primary purpose of this paper is to determine information about 
the structure of the arc components of chainable Hausdorff continua 
(Section 4). The two main results about arc components of sur;h conti- 
nua are the following: 

(1) each arc component is a o;dle-to-one continuous image o Ir a connec- 
ted linearly or ered space (Theorem 4,, I), and 

(2) assuming such a continuum to be hereditarily decompo!;able, eat 
arc component is honx 3morpk cj is a connected linearly ordere 
(Theorem 4.3. 

Among other results, we shosv that if 
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brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82353496?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


64 C. R. Gbrdh, S& Nadler, Arc components of chainable Hausdwff continua 

nuum with exactly two arc r=omponents, then one such component is a 
he s$her is homeomorphic to a co netted linearlv or 

point and no last point (Coroll y 4.12). - 

he results in Section 4 alae proved with the aid of material develo 
one to-one continuous mappi 

linearly ord,e,*ed spaces. Aside from their usefulness i 
suits and techniques in Section 3 should be of independent interest, es- 

ecially in view of the fact that similar mapping techniques are current- 
in [3] to show that certain indecomposable 

tinua must ihave uncountably many composants. Some of 
Section 3 are generalizations of known theorems ccncernmg one-to-one 
continuous mappings of a half-ray (see [ 7; 12 1). Several of them yield I 

new proofs \;I previously established theore s (see ilemark 3.4). 
Excepr ~7~. ve it is explr’citly mentioned t the GOMW-y, the redts in 

this paper me mw for the case oJf mtm+if-- ~wCe~_ ._I_.. “Y U”r 

We mention one possible area of application. Recently, interest has 
been growin?; in curve theory. The theory of half-ray curves and real 
curves was developed in [9] and [ lo] (a half-ray curve, respectively real 
curve, is a metric continuum which is a one-to-one continuous ima,ge of 
[0, OQ), resptctively t f prime importance in both papers 
(as well as in the pro orem 61) is the structure of the arc 
component: of chainable metric continua with exactly two arc compo- 
nents (i.e., V, Theorem 1 I). This structure and the resulting embedding 
of half-ray curves done in [ 91, and revisited in [ E 01, were crucial to the 
development of the theory of real curves in [ lo]. There are obvious gen- 
eralizations ol” the notions of half-ray and real curves to Hausdorff con- 
tinua which a e a one-to-one continuous image of the appropriate type 
of connected inearly ordered space. The results in this paper, especially 
Corollary 4.12, will be useful in investigating these more general “curves”. 

linearly ordered sp 

least elements, respectively, of the order 

logy for X is identically 



r i~terse~~tio~ is one and only one point, t 

ponelad of a continuum we mean a maximal arcwise connected subset of 
the continuum (note that, for example, an arc component of 2 I heredi- 
tarily indecomposable continuum is a single point), The term rzon-Qegen- 
crate will be used to mean that a space has more than one point. 

The symbol cl(S) will mean the closure of S and the symbol int(S) 
will mean the interior of S. 

Let f be a one-to-one continuous function from a connecteld linearly 
ordered space L, into a continuum M. We define 

If L has no last element, then K+ u) is a subcontinuum of M; if L has a 
last element + 06, then K+Cf) = @ (since! for t = +=, we have (t, +-) = $4. 

Analogous statements are true for K._ oh. We point out that if E is the 
real line and f is a surjection, then K, (/) and K_ cf) are the “singular sets” 
described in [ IO]: 

A finite collection (C,, C,, ,.., C,} of sets is a c/z&z provided that 
Ci f\ Cj # @ if and only if 19 - i 1 < 1. A continuum M is chainable, (or 
snake-like’ ; F ,f lE and only if each open cover of X admits an open refine- 
ment which covers _M and is a chain, It is easy to see that each sukconti- 
nuum of a chainable continuum is chainable and tha 
continuum k a-triadic and h::reditarily unicoherent. 
red. to [6] for a more detailed discussiion of (non-metric) chai 
tinua and for a proof of the fact that an here 
tinuum is chainable if and only if it is a-triad 
rent. 

kt folio-ws from the above discussion a 



for each f E [a, b ]i ; also, -is irreducible be- 
tween any point off-l (a) and any point off -1 (b). 

he Stone-Oxh co actification of a completely regular T, -space 
is denoted by &L 

aces. 

.I. If A is ~8 collection of conndxted lineuly orderable subspa- 
ological space X and A is tomlly ordered by set inclusion, 
A is a one-to-one c~~tivl~ou~~ image of a connected lkiearly 

ordered space. 

roof. Assume that L is not a single point, Let LO be a fixed nonesdegen- 
erate el!ement of A with compatible linear order denoted by GO. 
For each L, E A, kt Gcu denote the compatible linear order for L, 
which agrees on L, CI L, with GO. We “induce” a linear order < for the 
set L as follows: fcx x and y in L, x < y if and only ifx Q, y for some _ 
L, in A which conlains both x and y. Since (L,, GLy) is connected for 
each L, E A and since A is totally ordered, (I,, <) is connected. Sin& 
the identity mapping of (L,, $J onto L, with the subspace topology is 
a homeomorphism, the identity mapping of (L, <) onto L with tline sub- 
space topology is one-to-one and continuous. 

3.2. If X is an arcwise connected topological sbace which con- 
tains no simple triad, then X is a one-to-orze c~~+Vmrotrs image of a CMP 
netted linearly ordered space. 

Assume X contains more than one oint and let x and y be points 
ofX with x # y. et A be an arc in-X wit noncut points x and y and 
let p E 64 \{x, y)). ltet < be a linear order for A such that < is compa- . 

for L.I *and assume x G y. 



clusio en t io 
is a one-to-one c:cmtinuous i 

linearly ordered space IV, and g-1 
f-l(p) withg-1(p),u3 can obtai (j space jl’ sqd a 
one-to-one continuous function from Y onto L U K (such a ffunctiort is 

ction which is f for points from Z and g for points from IV). :In 
view of this, it suffices to show that L w K = X. Suppose L LJ K +- 
choose & E X\(L U K’). Since X is arcwise connected, there is a;* a 
X with noncut points b and 13. Since x contains no simple tlriod and s&e 
b $!k (L W K), it follows that B n A = [p, y J or B f~ A = [x, JP]~. Whichever is 
the case, B can be used to contradict maximality of the apy:ropriate sup- 

_ posed maximal totally ordelred subset of A’ or of A” (for e:rample, if 
B n A = [p, y] then A u {B’) is a totally ordered subset of A’ properly 
containing the maximal totally ordered subset A of A’. The proof that 
A U {B) is totally ordered uses the fact that h $(L 1.~ K) a& that X’ eon- 
tains no simple triad). This completes the proof of the theorem. 

As a consequence of Theorem 3.2 and results in 1’91 and [ 161, we 

have the following corollary. For the definitions of half-ray curve, Ireal 
curve and singular set, the reader is referred to [ 103 (also see Section 1 
above). Note that a metrizable simple triodl is homeomorphre to a ICgure 
‘e T”. 

orolhy 3.3. 4A metric continuum X is arcwise connected and corzfains 
no simple triold if and only n’f X is one of the following: 

(1) a point, 
(2) s metric arc, 
(3) a circle, 
(4) a non-kxally connecte(d half-ray curve, or 
(5) a real curve neither of w?tose singular sets is a single- point. 

roof. Pf X is ar arcwise connected metric contin 
simple triad then, by Theorem 3.2, X is a one-to- 
of a point, r:he unit interval [O, 11 of real 
of real numbers, or the entire real line. 
lyzing some of the structure results in [9 I and 

ray iriod. 



a is essentially the observation that the 

]\I contaim mo cofinal sequences then @[a, 6) is homeonmphic 

) contains no coinitial sequence and no cofinal sequence, 
eomorphic to [u, b]. 

et i Qencjfe the identity mapping of [la, b) into ia, b j, and 
6) + [a, !I] denote t continuous extension of i to P[a,, b) 
eorem 6, p, 861). S ose i* is not one-to-one Then, by a 

simple continuity argument usi _ nets: there exist distinct points r” and s 
in P[a, bj such that i*(r) = b = i*(s). Let U and V be open sets in PI& b) 
such that r E U, s E I’, and cl(U) CI cl(V) = 9). Let A = i* (‘cl( I/)) n [(a, b) 
and let B = i* (cl(Y)) n [a, b). Then ,4 and B are disjoint closed colfinal 
subsets of [a, b) (cofinal because neither Y nor s is in [a, b)), Choose an 
increasing sequence (t, };= 1 in [n, SUC at t, E A if yt iS even and 
t,, E B if y2 is odd. Since [a, b) con ns no cofinal sequence and sirIce 

r 3 I’, ;p= 1 is increasing, ( $ >,-= l converges to a point t in [a, b). Since A and 
osed, f E (A n B), which is a contradiction. Hence, i* is 

e, is a hcmeomQrphism. This proves (i). 
in a similar way. Part (ii) can also be considered 

as a conse 

e If f is a one-to-op;e covatinuous function ~“rom a connected 
ordered space L with 41 fimt point into an hereditmily unico)Pe=- 

L)) = intqf(l )) = $3, then M is 

3ers. 

re rnas 



“9 \ ifa<binL,andf(a)andf(b)arei S, then I~( [a, b ] ) C 7. 

Consequently, f-1 (S) is a connected subset of L. 
If f”(S) is bounded above, then choose r E E such that each point ‘of 

f-l (S) is strictly less than I- (such a choice is possible for, if 
have a last dlement and K+(f’)> hence S, would be empty). 
chfk + +)I n f(( -00, r]) = S U u(r)). Hence, cP[f([r, W))i f7 f((-=, P]) 
is not connected. But then, from the arcwise connectivity of f((-=I, r]l), 
we can easily obtain a contradiction to the hereditary unicoherence of 
M. Thus, f--l(S) is llot bounded above. Hence, using (*), it follows that 
there exists so E L such that S =f([so, +-)). 

Next we show that L contains an increasing cofinal sequence. §up 
not. Let p: (3L + M denote the continuous extension off to f3L (see 
Theorem 6.5, p. W]). Since we are supposing that L contains no cofina 
sequence, we can now apply 1,emma 3.5 to conclude that K+(j) consist 
of at most one point. This contradicts the fact that J”“(S) is not bound 
above and completes the proof that I, contains an increasing cofinal se- 
quence { t,>y= 1. We: assume, without loss of generality, that t, > so. 
A = cl(f([s,, 1-m))). 

The rest of the proof is similar to the latter part of the proof of f7, 
Lemma 21 but we include it for com:pieteness. For each IZ =: 1,2, . . . . 
f( [so, t, ] ) is nowhere dense in A. 
gory in A. Therefore, by 2 theorem 
WI), the interior of f([sO, +=)) relative 
3.6, A 1s indecom;iosable. This is a contradiction. 
pro’ real 

n a< >e t 

f n 



is not connected, which contradicts the hereclitary unicohe 
T!ks completes the proof of Theorem 3.7. 

e following corollary is an extension of [7, Lemma 31, 

_ If f is a one-to-one conti,cwtis function from Q connected 
lirrearly ordered space L into an hereditarily &coherent, hereditarily de? 
corn&&able cwktinwm M, then f is a homeomorphism opzto f(L). 

of. Let (x, y ) be a open subinterval of L. %t follows from Theorem 
that 

f'(k VI) =fW \ cl[f(L \ (x9 YNI. 

‘Thus f(.(..., y)) is open elative to f(L). If L bas a f’irst point a, the same 
iargument shows that f( [a, y)j is open relative to -f(L); an analogous com- 
ment hoids if i has a last point. The resuY follows. 

onents of chainable continua 

.I. IfM is a chuirzable coutiutrcrm, theu each arc component 
ufA4 is a one-to-one cxmtintrous image of some connected linearly order- 
ed space. 

ocf. Each are component ofM is an arcwise co nnccted topological 
ace which contain; no (simple) triod. Theorem 3.2 now applies to give! 

desired conclusion. 

. _ff M is ala hereditarily decomp osabr’e (chainable cun tinturn, 
thea? each NC c’wnpcveilt o,f M k’s a cwnected linearly orderable space. 

,et 4 denote an arc component of M. By Theorem 4.1, there is a 
o;rre-to-one con tin uous function f from some connected linearl:, ordered 

nuum is h credi tari1.y un icoheren t 
and since v ‘e are rily decompssable, Corollary 3.8 

ence A is a connected linearly or- 



. Let M bz an hereditarily decomposable chainable cor!tinwm 
which is not arl arc or a point. Then there exists a proper sub~ontinuum 
N of M such that N Contains more than one point tind any arc in M is C~WI- 
tained in N or in M\N. 

By [4, Theorem 5.21 (see the discussion near the end of Section 2) 
there exists an arc [a, b] and a continuous monotone function f from M 
onto [a, b ] such that intCf’1 (t)) = $9 for each t E [a, b ] ; also, M is irred uc- 
ible between any point of f-l(a) and any point of f-l(b). Since M is ncjt 
an arc, f”(d) is not a sing:le point for some d E [a, b]. We consider tw2 
cases. 

Case 1: a < d < b. Since f maps M onto [a, b] and is monotone, 
f’r([a, 4) and f’l(M bl) are each non-degenerate proper subclontinuz 
of M. We show that at least one of f’l([a, G]) and f-Y(Ld, b]) has the de- 
sired property for N. Suppose that neither f -1 ([a, d])~ nor f -1 ([d, b]) has 
the desired property. Then - +h~re are arcs q and clvz such that 
q c f-l([a, d]), a2 c f-l([d, b]), and ai n f-l(d) is precisely one of the 
noncut points of ai, i = 1, 2. Let ei denote the noncut point of Qi not in 
CQ n f -‘cd), i = 1 f 2. Since 3; is irreducible between any point off -1 (a) 
and any point of f-l(b), 

il4 = f*“([a, f(q)]) rJ al U f-1(d) U 9 U fWf@z), H). 

Therefore, it f’ohows that 

f’l(d)Uf-l(~a, fCel)l) u q u cy2 u f’?[f(e2), bl)l 

is a nonempty open subset of M ( the nonemptiness is a consequence o 
the fact that f-l(d) consists of more than two points ;2,nd ~1 
a single point for each i = 1) 2). However, this contradicts t 
int(f’l(t)) = 8 for each i’ E [a, b] and completes the proof of Case 1. 

Gase2:d=aord=bSVeshowthar;f_l(d)hasth 
for N. Assume d = 

en there is an arc 7 in II4 such that ‘y 61 f-l(d) is precisely one of t 
. 
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n f -1 (d), a contradicti to the l‘act that ;f-r (d) is not a single 
n analogous argument = b. This WmpleteS the proof of Case 

2 and of the lemma. 

he major resu t in 173 is that if a chainable metric continuum has ex- 
actly two arc components, then one of them is an arc and the othe:r is a 

ay. A large portion of the proof of that result is devoted to showing 
for such a chainable metric continuum, one of the arc s >mponents 

must be compact. Most of the results below represent extensions of these 
facts in two directions - the condition of being metric is relaxed to that 

ausdorff and, where appropria the conclition of having ex- 
rc camponents is replaced by of being hereditarily de- 

f;omposable (kemma 4.8 shows that the latter condition is weaker than 
aving exactly two arc components even for the Hausdorff setting) 

Tkxxrsrn 4.5. _rJfM is an hcwditariiy decomposable chaimzble contiwum, 
then Tome arc component o,f M is compack ln particular, some arc com- 
ponent of A4 is an UYC or a poiW. 

roof. Let K’ = {H: N is a subcontinuum of .M and no arc in M intersects 
both N and MW). Partially ordtzr K’ by set inch_lsion. Let K be a maximal 
totally ordered subset of K’ and let S = n K. Then S iis a subcontinuum of 
M and S E K’ (if S $ K’, then then*e is an arc y in M such that y intersects 
both S and MW; consideration of an open subset of/U which contains S 
but not all of y leads, by standard results, ti, a contradiction). If S is not 
an arc or a point then, applying Lemma 4 4 to 3, we obtain a contradic- 
tic):1 to the maximality of K. Hence S is an arc or a point, which, since 
S E K’, implies that Sis an arc component of M. The theorem now follows. 

Theorem 4.5 is SE: if we delete the condition “(hereditarily 
ent. There ate well-known exaimples of 
dhat no arc co1 

urn cun be a single 
‘7 ] and to [ 61 to see how 



i~ab~e ~o~ti~t4~~ with at mtost cm 
osab ih?. 

continuum of M. Since M is 
most countably many arc components (use the pigeo&hole prjin- 

e a one-to-one con inuous function from it connected lin~~ar~y 
.L onto an arc co onent A of C. There are several case:; t 

consider. 
First assume that L is of the form [a, b). If [a, b) contains no cof’i:lal se- 

quence, then, by Lemma 3.5,fcan be extended to a continuous function p 
from [a, b ] into C. Clearly, A =p( [a, b]); hence, A is a 1ocall:y connected sub- 
continuum of C. If [a, 9) contains a cofinal sequence {r,}z= 1, then A = 

;=I f( [a, t, ] ). Thus A is the union of at most countably many locally 
connected subcontinua of C. 

A similar argujnent is valid in case L is of the form (a, b). Consequent- 
ly, each a::c component of C is the union of at most countably manyrio- 
tally connected subcontinua of C. Since C has at moslt countably many 
arc components, G is the union of at most countably many locally con- 
nected subcontinua. By a theorem of Baire (see [ 5, Theorem 2-77, p. 
87]), at least one of these locally connecte subcontinua ilas nonelnp t y 
interior relative t+a C. Conslequently, C is decomposable by [ 5, Theorern 
3-41, p. 2391. 

The next theorem extends [ 8, Theorem 5 j to the Hausdorff setting. 
The theorem has added significance in view of the fact that it does not 
seem to be known (in the Nausdorff setting) whether OJ* not an arcwise 
connected contnnwum must be decomposable. Compare the proof for 
the metric case in [ 1 ] with that in [ 81; ah see the “Added in proof’ 
statement at the .:nd of [S]). 

4.9. A non-degenenlte arcwise connected chainable coti t~~~l~l 
is an arc. 

roof. By Lemma 4.8, M is hereditarily decomposable. 
rem 4.2, /lI must be an arc. 

. If M is a non-degenerate ch 
finitely many arc co 



orollary 4J9 it suffices to show th.at no 
e prove this by induction on t 

le continuum for which pz = I , then Theore 

me inductively that any nsn-degenerate chainable! continuum 
= k arc comporents has no arc component lwhich 
let M 5e a chainable continuum which is not a 

single point, such that M has exactly IZ = k + 1 arc components. By 
Lemma 4.8, M is hereditarily ~xomposable. Let ,/’ 3 iM + [a, b I b’e a 
moonstone function of the ty used in the proof of hemma 4.4 above. 

ote that khe proper su’bcontinu.um of M guaranteed by Lemma 4.4 has 
the following properties: 

(1) it contains more than ow point, 
(2) each arc component of it is an arc component of M, and 
(3) it has at most M - 1 arc components. 
Suppose there is ;A paint p E M such that {p) is an arc component of 

M; From th& proof of’ Lemma 4.4 and the induction hypothesis, we can 
conclude that ~-l(f(ts)) = {p) c(otherwise, jQ) would be a choice for “d” 
in the prooi of 1Lemm.a 4.4). If,z <f(p) < b, then (under the assumption 
that (p) is an arc compsnen o!F M) f-l ([f(p), b ] ) would be a proper sub- 
continuum oFM satisfying ( 3, (2) and (3); by the inducticn hypothesis, 
this would corn lete the proof. Therefore we may assume, without loss 

nerality, that f(p) = a. 

xt we prove: 

( 1 * 
I there are at most pz - 1 points i E [ti, G] such that f-'(lt) is 

not a single point. 

Suppase there were yt points I, < t2 < . . . < t, such that f-r&), 
’ < PZ. is not a single point. ?Jste that a C t, because f-l (a) == {p). 

e induction hypothesis and the proof iof Lemma 4.4, we may assume 
at each of the continua f-l(F t-, b]) satisfies (l), (2) am! (3). Thus, since 

nt c E [II, b] such thal’ G > a and 



exan !ple of such a con- 

interval ( l/2”, 112” -- 1 ] of reals. 

1 

Fig. 1. 

The following corollary is an extension to th.e Hausdorff setting of [ 7, 

Theorem 11. - 

oroMary 4.12. IfM is Q chainable continuum with precisely two arc 
component& then one of the(m is an arc and the other is homeomorphic 
to a connected linearly orderled space with a first point and no last point. 

aoof. L:t A 1 and A, be the arc components of M. By Theorx.m 4.9, we 
can assume that A, is an arc. Suppose AZ is not homeomorphii: to a con- 
nected linearly ordered space! with a first point and no last point. Then, 
by Lemma 4.8 and Theorem 4.2, A, is homeomorphic to a co 
linearly ordered space L with no first point and no last point. 
note a homeomorphism of L, onto A,. Accclrding to Theorem 3. ) 
and K_(f) are disjoint subcontinua of A,. Consequently, A 1! i\ 

not connected, which contradicts the hereditary unicoherel-nce o 

cte that not every 
a first point and IIO last point can be an arc co 
continuum with zxactl 



ausc$orff (:ompacti”‘kation, such a connected limxarIy ordered s 
must have a cofinal sequence. 

esti . IS every chainable continu M irreducible between so 
pair of goints? 

ees 
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