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1. Introduction

‘The primary purpose of this paper is to determine information about
the structure of the arc components of chainable Hausdorff continua
(Section 4). The two main results about arc components of such conti-
nua are the following:

(1) each arc component is a cue-to-one continuous image o a corinec-
ted linearly ordered space (Theorem 4.1), and

(2) assuming such a continuu.n {o be hereditarily decomposable, each
arc component is homéomorph;. {o a connected linearly ordered space
(Theorem 4.2).

Among other results, we show that if M is a chainable Hausdorff conti-
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nuum with exactly two arc components, then one such component is an
arc and the cther is homeoriorphic to a connected linearly ordered space
with a first point and no last point (Corollary 4.12).

The results in Section 4 are proved with the aid of material developed
in Section 3 concerning one to-one continuous mappings of connected
linearly orderad spaces. Aside from their usefulness in Section 4, the re-
sults and techniques in Section 3 should be of independent interest, es-
pecially in view of the fact that similar mapping techniques are current-
ly being used in [3] to show that certain indecomposable Hausdorff con-
tinua must have uncountably many composants. Some of the results in
Section 3 are generalizations of known theorems ccncerning one-to-one
continucus mappings of a half-ray (see [7; 12]). Several of them yield -
new proofs 3t previously established theorems (see inemark 3.4).

Except w. =re it is explicitly mentioned to the contrary, the results in
this paper are new for the case of metric spaces.

We mention one possible area of application. Receritly, interest has
been growing in curve theory. The theory of half-ray curves and real
curves was developed in [9] and [10] (a half-ray curve, respectively real
curve, is a metric continuum which is a one-to-one continuzous image of
[0, =), respectively the real line). Of prime importance in both papers
(as well as ir: the proof of [8, Theorem 6]) is the structure of the arc
component: of chainable metric continua with exactly two arc compo-
nents (i.e., 77, Theorem 1]). This structure and the resulting embedding
of half-ray curves done in [9], and revisited in [10], were crucial to the
development of the theory of real curves in [10]. There are obvious gen-
eralizations of the notions of half-ray and real curves to Hausdorff con-
tinua which are a one-to-one continuous image of the appropriate type
of connected linearly ordered space. The results in this paper, especially
Corollary 4.12, will be useful in irvestigating these more general *“curves”.

2. Definitions and preliminary remarks

A linearly ordered space is a linzarly ordered sei endowed with the
naiural order topology. If L is a linearly ordered space, then +e< and
—oo will denote the greatest and least elements, respectively, of the order
completion of L. A linear order for a set X is said to be computible with
a topology T for X if and only if the order topology for X is identically
the same as 7. A topological space for which there is a compatible linear
order is called lineariy orderab... If X is a non-degenerate connected li-
nearly orderable topological space, then it is easy to verify that there are
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precisely two compatible linear crders for X.

A continuum is 2 nonempty compact connected Hausdorff space. An
arc (not necessarily rietrizable) is a continuum with precisely two non-
cut points. It is well known tha. an arc is a linzarly orderable space. We
shall use the standard notation [a, b] to denote an arc with noncut points
a and b. A simple triod is a continuum which is the union of two arcs
such that their intersection is one and only one point, that point being
a noncut of one of the arcs and a cut point of the other. By an arc com-
ponent of a continuum we mean a maximal arcwise connected subset of
the continuum (note that, for example, an arc component of 2 1 heredi-
tarily indecomposable continuum is a single point). The term ron-degen-
erate will be used to mean that a space has more than one point.

The symbol cl(S) will mean the closure of & and the symbol int(S)
will mean the interior of §.

Let f be a one-to-one continuous function from a connected linearly
ordered space L into a continuum M. We define

K,(N= 0 cllf((, +=))],

teL

K ()= N cl{f((—e, 1)].
tel
Tf L has no last element, then K_(f) is a subcontinuum of M;ii L hasa
last element +o0, then K_(f) = @ (since, for ¢ =+, we have (1, +) =0,
Analogous statements are true for K _ {f). We point out that if L is the
real line and f is a surjection, then K, (f) and K_ (f) are the “singularsets”
described in [10]:

A finite collection {C, C,, ..., C,} of sets is a chain provided that
GnCi# @ if and only if |i — j| < 1. A continuum M is chainable (or
snake-like) if and only if each open cover of *{ admits an open refine-
ment which covers M and is 2 chain. It is easy to see that each subconti-
nuum of a chainable continuum is chainable and that every chainable
continuum 's a-triodic and h=reditarily unicoherent. The reader is refer-
red to [6] for a more detailed discussion of (non-metric) chainable con-
tinua and for a proof of the fact that an hereditarily decomposable con-
tinuum is chainable if and only if it is a-triodic and hereditarily unicohe-
rent.

It follows from the above discussion and [4, Theorem 5.2] that given
an hereditarily decomposable chainable continuum M, there exists an
arc [a, b] and a coatinuous monotone function f from M onto {a, b}
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such that int(f~! (¢)) = 0 for eact r € [a, b]; also, M-is irreducible be-
tween any point of f~1(a) and any point of f~1(b).

The Stone-Cech compactification of a completely regular T, -space X
is denoted by SA. :

3. One-to-one continucus mappings of connected linearly ordered spaces.

Lemma 3.1. If A is a collection of conn:cted linegrly orderable subspa-
ces of a topological space X and A is toially ordered by set inclusion,
then L = U A is a one-to-one continuous image of a connected linearly
ordered space.

Proof. Assume that L is not a single poiat. Let L be a fixed non-degen-
erate elensent of A with compatible linear order denoted by <,,.

For each L, € A, 12t <, denote the compatible linear order for L,
which agrees on L, N L with <,. We “induce” a linear ¢rder < for the
set L as follows: fcrx and y in L, x < y if and only if x < y for some
L, in A which contains both x and y. Since (L, <) is comnected for
each L, € A and since A is totally ordered, (L, <) is connected. Sincé
the 1dent1ty mapping of (L, <,) onto L, with the subspace topology is
a homeomorphism, the identity mapping of (L, <) onto L with the sub-
space topology is one-to-one and continuous.

Theorem 3.2. If X is an arcwise connected topological space which con-
tains no simple triod, then X is a one-to-one continuous image of a con-
nected linearly ordered space.

Proof. Assume X contains more than one point and let x and y be points
of X with x # y. Let 4 be an arc in"X with noncut points x and y and
let p € (A\{x, y}). Let < be a linear order for 4 such that < is compa-
tible with the subspace topology for A and assume x < y. Let A’ denote
the coliection of all connected linearly orderable st.ospaces of X such
that L' N A4 = [p, y] for each L' € A'. Partially order A’ by set inclusion.
Let A be a maximal totally ordered subset of A’ and let L = U A. Then,
by Lemma 3.1, there is a connected linzarly ordered space Z and a one-
to-one continuous function f from Z onto L. Since X contains no simple
triod, it follows that the point f~!(p) is « noncut point of Z. Similarly,
let A" denote the collection of all conriected linearly orderable subspaces
of X such that L n 4 =[x, p] for each L" € A", and partially order A"
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by set inclusion. Then the union K of a maximal totaily ordered subset

of A" is a one-to-one continuous image under a function g of a connected
linearly ordered space W, and g™1(p) is a noncut point of W. By identifying
f~1(p) withg™1(p), we can obtain a connected linearly ordered space ¥ 2nd a
one-to-one continuous function from Y onto L U X (such a function is
the function which is f for points from Z and g for points from W). In
view of this, it suffices to show that L U K = X. Suppose L U K # X and
choose b € X\(L U K). Since X is arcwise connected, there is ai" arc B in
X with noncut points b and p. Since x contains no simple triod and since
b ¢ (L U K), it follows that BN A = [p, yl or BN A = [x, p]. Whichever is
the case, B can be used to contradict maximality of the appropriate sup-
posed maximal totally ordered subset of A’ or of A" (for example, if

BN A=[p,y]l then AU {B}is a totally ordered subset of A' properly
containing the maximal totally ordered subset A nf A'. The proof that

A U {B} is totally ordered uses the fact that » ¢ (L. U K) and that X con-
tains no simple triod). This completes the proof of the theorem.

As a consequence of Theorem 3.2 and results in [9] and [104, we
have the following coroliary. For the definitions of half-ray curve, real
curve and singular set, the reader is referred to [10] (also see Section 1
above). Note that a metrizable simple triod is homeomorphic to a tigure
(11 T”.

Corollary 3.3. A metric continuum X is arcwise connected and coniains
no simple triod if and only if X is one of the following:

(1) a point,

(2) a metric arc,

(3) a circle,

(4) a non-locally connected haif-ray curve, or

(5) a real curve neither of whose singular sets is a single point.

Proof. If X is an arcwise connected metric continuum wkich contains no
simple triod then, by Theorem 3.2, X is a one-to-one continuous image
of a point, the unit interval [0, 1] of real numbers, the interval [, +o0)
of real numbers, or the entire real line. The corollary now follows by aua-
lyzing some of the structure results in {91 and [10].

Remark 3.4. Using results in [9] and [10], Corollary 3.3 can be applied
to give a somewhat different proof of [ 11, Theorem 2] which determines
those metric continua which are arcwise connected and contain no half-
ray iriod.
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The following important lemma is essentially the observation that the
Stone-Cech compactification of the ordinals less than the first uncount-
able ordinal, with the order topology, is the one-point compactification
(see [2, p. 751). To clarify terminology we point out that we use the term
sequence to muan a function whose domain is the set of natural numbers.

Lemma 3.5.

() if [a, b) contains no cofinal sequence, then §la, b) is homeomorphic
to la, b].

(ii) , f (a, b) contains no coinitial sequence and no cofinal sequence,
then 3(a, b) is homeomorphic to [a, b].

Proof. (i). Let i denote the identity mapping of [a, b) into (g, b], and
let i*: Bla, b) » [a, b] denote the continuous extension of i to Bla, b)
(see [2..Theorem 6, p. 86]}). Suppose i* is not one-to-one Then, by a
simple continuity argument using nets, there exist distinct points 7 and s
in Bla, b) such that i*(r) = b = i*(s). Let U and ¥ be open sets in Bla, b)
suchthatre U, s€ V,and cl(U) N cl(¥V)=0. Let A =i* (cl(U)) N [a, b)
and let B =i* (ci(V)) N {a, b). Then 4 and B are disjoint closed cofinal
subsets of [a, b) (cofinal because neither r nor s is in [a, b)). Choose an
increasing sequence {f,, };‘::1 in [a, b) such that ¢, € A if n is even and
t, € B if n is odd. Since [a, b) contains no cofinal sequence and since
{z, ,f: 1 is ﬁncreasing,{tn };°=1 converges to a point ¢ in [q, b). Since 4 and
B are each closed, t € (4 N B), which is a contradiction. Hence, i* is
one-to-one and, ther:fore, is a homeomorphism. This proves (i).

(ii) This can be dome in a similar way. Part (ii) can also be considered
as a consequer:ce of (i).

Lemma 3.6. If f is a one-to-ore continuous function jrom: a connected
linearly ordered space L with a first point into an herzditarily unicohe-
rent continuum M such that ¢l (f(L)) =M and int(f(L)) = Q, then M is
indecomposable.

Proof. The proof is analogous to that given in [12] for the case when Z
is a half-open interval of real numbers.

The next theorem and its corollary are gencralizations of [7, Lemmas
2. 3].
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Theorem 3.7. If f is a one-to-one coitinuous funciion from a connected
linearly ordered space L into an hereditarily unicoherent, hereditarily de-
composable continuum M, then
() K, (HNAL) =,
(i) K_(f) n ALY =4,
(iii) K, () 0 K_() = 0.

Froof. (i) Let S = K_(f) N f(L). Suppose that § # (. It follows from the
hereditary unicoherence of M and the arcwise connectivity of f(L) that

(%) ifa < bin L, and f(a) and f(b) are in S, then ({a, &]) C S.

Consequently, f~1(S) is a connected subset of L.

If ~1(S) is bounded above, then choose r € L such that each point of
f~1(S) is strictly less than r (such a choice is possible for, if not, L would
have a last zlement and K_(f), hence S, would be empty). It follows that
clif(r, +o0))] N f({—oo, r]) = S U {f(r)}. Hence, cl[f([r, +2))} O f((—o°, r])
is not connected. But then, from the arcwise connectivity of f((—e, r]},
we can easily obtain a contradiction to the hereditary unicoherence of
M. Thus, f~1(S) is not bounded above. Hence, using (*), it follows that
there exists sy € L such that S = f([sq, +°0)).

Next we show that L contains an increasing cofinal sequence. Suppose
not. Let f*: BL - M denote the continuous extension of f to L (see {2,
Theorem 6.5, p. 86];. Since we are supposing that L contains no cofinal
sequence, we can now apply L.emma 3.5 to conclude that K_(f) consists
of at most one point. This contradicts the fact that j~1(S) is not bounded
above and completes the proof that L contains an increasing cofinal se-
quence {t,}7_,. We assume, without loss of generality, that ¢; > s4. Let
A = cl(f([sg, +=°))).

The rest of the proof is similar to the latter part of the proof of {7,
Lemma 2] but we include it for completeness. Foreach n =1, 2, ..,
fllsg, t,1) is nowhere dense in A. Hence f([sg, +=)) is of the first cate-
gory in A. Therefore, by 2 theorem of Baire (see [5, Theorem 2-77, p.
871), the interior of f([s,, +°°)) relative to 4 is empty. Thus by Lemma
3.6, A is indecomposable. This is a contradiction. Thus § = @ and (i) is
prove:t

(ii) This is similar.

(iii) Suppose K, () N K_(f) # 0. Let g < b be two points of L. Then
using (i) and (ii),

f(a, b1) 0 [el(f([b, +o=))) U cl(f((-—=, a]))]
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is not connected, which contradicts the hereclitary unicoherence of M.
This completes the proof of Theorem 3.7.

The following corollary is an extension of {7, Lemma 3].

Corollary 3.8. If f is a one-to-one continuous function from a connected
linearly ordered space L into an hereditarily unicoherent, hereditarily de-
composable continuum M, then f is a homeomorphism onto f(L).

Proof. Let (x, ) be an open subinterval of L. It follows from Theorem
3.7 that

(O, y)=AL)N Alf(L N\ (x, y)].

Thus f((x, y)) is open relative to f(L). If L has a first point a, the same
argument shows that f([a, )) is open relative to f(L); an analogous com-
ment holds if L has a last point. The resuit follows.

4. Arc components of chainable continua

Theorem 4.1. [f M is a chainable continuum, then each arc component
of M is a one-to-one continuous image of some connected linearly order-
ed space.

Procf. Each arc component of M is an arcwise connected topological
space which contains no (simple) triod. Theorem 3.2 now applies to give
the desired conclusion.

Theorem 4.2. If M is an hereditarily decomposabie chainable continuum,
then each vre compcrent of M is a connected linearly orderable space.

Proof. et 4 denote an arc component of M. By Theorem 4.1, there is a
oae-to-one continuous function f from some connected linearly ordered
space L on'o 4. Since a chainable continuum is hereditarily unicoherent
and since v'¢ are assuming M is hereditarily decomposable, Corollary 3.8
implies tha: f is a homeomorphism. Hence 4 is a connected linearly or-
derable spa:e. This proves the theorem.

The following corollary shows that there are only four possible topo-

Ingical types of arc components of an hereditarily decomposable metric
continuum.
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Corollary 4.3. If M is an hereditarily decomposable chainable metric cc n-
tinuum, then an arc component of M must be either a point, a (metric)

arc, a haif-ray of reals (i.e. homeomorphic to the interval [0, =) of real
numbers), or the real line.

Lemma 4.4. Let M be an hereditarily decomposable chainable costinuvm
which is not an arc or a point. Then there exists a proper subcontinuur
N of M such that N contains more than one point and any arc in M is con-
tained in N or in M\N.

Proof. By [4, Theorem 5.2] (see the discussion near the end of Section 2)
there exists an arc [a, b] and a continuous monotone function f from M
onto [a, b] such that int(f~1(¢)) = @ for each ¢ € [a, b]; also, M is irrecuc-
ible between any point of f~1(a) and any point of f~1(b). Since M is nut
an arc, f~1(d) is not a single point for some d € [a, b]. We consider two
cases.

Case 1: a < d < b. Since f maps M onto la, b] and is monotone,
f1(la, d1) and f~1([d, b]) are each non-dcgenerate proper subcontinuz
of M. We show that at least one of f~1([a, ¢]) and f~!(ld, b]) has the de-
sired property for N. Suppose that neither f~1([a, d]) nor f~1({d, b]) has
the desired property. Thien there are arcs a; and a, such that
a; C f1(la, d), ay C f1(d, b)), and a; N f71(d) is precisely one of the
noncut points of o;, i = 1, 2. Let e; denote the noncut point of «, not i
a; N (), i =1, 2. Since M is irreducible between any point of f~1(a)
and any point of f~1(b),

M=f"([a fle, )V a; U Hd) U ay U f1([fey), b]).
Therefore, it follows that

SN Wa, fle))D U ay U ay U f7L([f(ey), bD]

is a nonempty open subset of M ( the nonemptiness is a consequence of
the fact that f~1(d) consists of more than two points and o; N f~1(d) is
a single point for each i = 1, 2). However, this contradicts the fact that
int(f~1(¢)) = @ for each ¢ € [a, b] and completes the proof of Case 1.
Case 2: d =a ord = b. We show tha: f~1(d) has the desired >roperty
for N. Assume d = a. Suppose f~1(d) does not have the desired property.
Then there is an arc vy in M such that ¥ N f71(d) is precisely one of the
noncut points of . Let e denote the noncut point of oy not in y N f71(d).
Since M is irreducible between any point of f~!(a¢) and any point of
ey, M =~yu f1{{f(e), b]). Hence f 1 (d) must be the single point in
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v 0 f~1(d), a contradiction to the fact that f~1(d) is nct a single point.
An analogous argument holds for ¢ = b. This completes the proof of Case
2 and of the lemma.

The major result in {7] is that if a chainable metric continuum has ex-
actly two arc components, then one of them is an arc and the other is a
half-ray. A large portion of the proof of that result is devoted to showing
that, for such a chainable metric continuum, one of the arc - ymponents
must be compact. Most of the results below represent extensions of these
facts in two directions — the condition of being metric is relaxed to that
of being Hausdorff and, where appropriate, the condition of having ex-
actly two arc components is replaced by that of being hereditarily de-
vomposable (Lemma 4.8 shows that the latter condition is weaker than
having exactly two arc components even for the Hausdorff setting).

Thecrem 4.5. If M is an hereditariiy decomposable chainable continuum,
then some arc component of M is compact. In particular, some arc com-
ponent of M is an arc or a point.

Proof. Let ' ={H: H is a subcontinuum of M and no arc in M intersects
both H and M\H}. Partially order &' by set inclusion. Let k be a maximal
totally ordered subset of k' and let S =N k. Then S is a subcontinuum of
Mand S € k' (if S ¢ &', then there is an arc y in M such that +y intersects
both § and M\S; consideration of an open subset of M which contains S
but not all of vy leads, by standard results, to a contradiction). If S is not
an arc or a point then, applying l.emma 4 4 to S, we obtain a contradic-
ticn to the maximality of k. Hence S is an arc or a point, which, since

S € «', implies that Sis an arc cornponent of M. The theorem now follows.

Remark 4.6. Theorem 4.5 is false if we delete the condition ‘“hereditarily
decomposable” from: its statement. There aie well-known examples of
chainable metric continua such that no arc component is ccmpact (see,
for example, [5, Fig. 8—6]). We also point out that each arc component
of an hereditarily decomposable chainable continuum can be a single
point. Finally, we refer the reader to [7, Fig. 7] and to [6] to see how
importaat a-triodicity is in Theorem 4.5.

Corollary 4.7. If M is an hereditarily decomposable chainable continuum
such that each arc component of'M is non-degenerate, then some crc
componesit of M is an arc.
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Lemma 4.8. [f M is a chainable coniinuum with at most countably many
arc components, then M is hereditarily decomposable.

Proof. Let C be a subcontinuum of M. Since M is hereditarily unicoherznt,
C has at most countably many arc components (use the pigeon-hole prin-
ciple). Let f be a one-to-one continuous function from a connected linearly
ordered space L onto an arc component A of C. There are several cases to
consider.

First assume that L is of the form [a, b). If [q, b) contains no cofial se-
quence, then, by Lemma 3.5, f can be extended to a continuous function f*
from {a, b] into C. Clearly, A=f*([a, b]); hence, 4 is alocally connected sub-
continuum of C. If [a, b) contains a cofinal sequence {¢,, };‘;1, then 4 =
U, ., flla, t,]). Thus 4 is the union of at most countably many locally
connected subcontinua of C.

A similar arguiaent is valid in case L is of the form (a, b). Consequent-
ly, each arc component of C is the union of at most countably many lo-
cally connected subcontinua of C. Since C has at most countably many
arc components, C is the union of at most countably many locally con-
nected subcontinua. By a theorem of Baire (see [5, Theorem 2-77, p.

871), at least one of these locally connected subcontinua nas nonempty
interior relative to C. Consequently, C is decomposable by [S, Theoremn
341, p. 139].

The next theorem ex:ends [8, Theorem 5] to the Hausdorff setting.
The theorem has added significance in view of the fact that it does not
seem to be known (in the Hausdorff setting) whether or not an arcwise
connected continuum must be decomposable. Compare the proof for
the metric case in [1] with that in [8]; also see the “Added in proof™
statement at the :nd of [8]).

Theorem 4.9. A non-degenerate arcwise connected chainable continuum
is an arc.

Proof. By Lemma 4.8, M is hereditarily decomposable. Hence by Theo-
rem 4.2, /M must be an arc.

Theorem 4.10. If M is a non-degenerate chainable continuum with only
finitely many arc components, then no arc component of M is a single
point and some arc component of M is an arc.
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Proof. From Lemma 4.8 and Corollary 4.7, it suffices to show that no
arc cornponent of M is a single point. We nrove this by induction on the
number n of arc componen's.

If we have a chainable continuum for which » = 1, then Theorem 4.9
completes the proof.

Assume inductively that any non-degenerate chainable continuum
with no more than n = k arc comporents has no arc component which
is a single point. Now let M be a chainable continuum which is not a
single point, such that M has exactly n =k + 1 arc components. By
Lemma 4.8, M is hereditarily decomposable. Let f: M — [a, bl be a
monotone function of the type used in the proof of Lemma 4.4 above.
Note that the proper suvcontinuum of M guaranteed by Lemma 4.4 has
the following properties:

(1) it contains more than one point,

(2) each arc component of it is an arc component of M, and

(3) it has at most » — 1 arc components.

Suppose there is a point p € M such that {p} is an arc component of
M. From the proof of Lemma 4.4 and the induction hypothesis, we can
conclude that f~1(f(p)) = {p} (otherwise, f(») would be a choice for “d”
in the prooi of Lemma 4.4). If 2 < f(p) < b, then (under the assumption
that {p} is an arc component of M) f~1([f(p), b]) would be a proper sub-
continuum of M satisfying (1}, (2) and (3); by the inducticn hypothesis,
this would complete the proof. Therefore we may assume, without loss
of generality, that f(p) = a.

Next we prove:

*) there are at most n — 1 points i € [4, &] such that f71(¢) is
not a single point.

Suppose there were n points 7; < t, < ... < t, such that /~1(z),

1 < i< n. is not a single point. Note that a < ¢; because “1(a) = {p}.

By the induction hypothesis and the proof of Lemma 4.4, we may assume
that each of the continua f~1(f¢. b]) satisfies (1), (2) and (3). Thus, since
S7i([t;, b1} is properiy contained in f1([i,.;, b]) foreachi=2,3, ..., n,
it foliows (since a < t) that M has at least n + 1 arc components. This
contradicts the definition of # and completes the prcof of (*).

It now follows that there is a point ¢ € [, b] such that ¢ > ¢ and
f~1(#) is a single point for all € [q, c]. Hence f~1({q, c]) is an arc in M
containing p, a contradiction to the supposition that {p} is an arc compo-
nent of M. This completes the proof of the tiieorem.
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Remark 4.11. We remark, in relation to Theorem 4.10, that there are :
non-degenerate chainable continua with only countably many arc com-
ponents such that some arc component is a single point and no arc com-
ponent is an arc. The object in Fig. | below is an exan ple of such a con-
tinuum. Its arc components are the sets C,,, n =0, 1, 2 ..., where Cpy ={0}
and, forn =1, 2, ...,C, is “above” and homeomorphic to the half-open

interval (1/2#, 1/27-1] of reals.

Cq
Ca
]
. 1 1 A
0... B 4 2

Fig. 1.

The following corollarv is an extension to the Hausdorff setting of [7,
Theorem 1].

Corollary 4.12. If M is a chainable continuum with precisely two arc
components, ther one of them is an arc and tie other is homeomorphic
to a connected linearly ordered space with a first point and no last point.

F-oof. L3t A; and A, de the arc components of M. By Theor¢m 4.9, we
can assume that 4, is an arc. Suppose 4, is nct homeomorphi: to a con-
nected linearly ordered space with a first point and no last point. Then,
by Lemma 4.8 and Theorem 4.2, 4, is homeomorphic to a connected
linearly ordered space L with no first point and no last point. Let f de-
note a homeomorphism of L onto 4,. Acccrding tc Theorem 3.7, K (f)
and K_(f) are disjoint subcontinua of A;. Consequentily, A, N cl{4,)is
not connected, which contradicts the hereditary unicoherence of M.

Remark 4.13. Ncte that not every connected linearly ordered space with
a first point and no last point can be an arc component of & chainable
continuum with 2xactly two arc components. In fact, by Lerama 3.5 (i)
and the fact that the Stone-Cech compactification *“follows” every other
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Hausdorff compacti*ication, such a connected linearly ordered space
must have a cofinal sequence.

Question 4.14. Is every chainable continuum irreducible between some
pair of points?
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