Chaining algorithms for multiple genome comparison

Mohamed Ibrahim Abouelhoda, Enno Ohlebusch *

Faculty of Computer Science, University of Ulm, 89069 Ulm, Germany
Available online 21 September 2004

Abstract

Given \(n \) fragments from \(k > 2 \) genomes, Myers and Miller showed how to find an optimal global chain of colinear non-overlapping fragments in \(O(n \log^5 n) \) time and \(O(n \log^{k-1} n) \) space. For gap costs in the \(L_1 \)-metric, we reduce the time complexity of their algorithm by a factor \(\log^2 n \) and the space complexity by a factor \(\log n \). For the sum-of-pairs gap cost, our algorithm improves the time complexity of their algorithm by a factor \(\log n \). A variant of our algorithm finds all significant local chains of colinear non-overlapping fragments. These chaining algorithms can be used in a variety of problems in comparative genomics: the computation of global alignments of complete genomes, the identification of regions of similarity (candidate regions of conserved synteny), the detection of genome rearrangements, and exon prediction.

© 2004 Elsevier B.V. All rights reserved.

Keywords: Fragment-chaining algorithms; Multiple alignment; Comparative genomics; Range maximum query

1. Introduction

Given the continuing improvements in high-throughput genomic sequencing and the ever-expanding biological sequence databases, new advances in software tools for post-sequencing functional analysis are being demanded by the biological scientific community.
Whole genome comparisons have been heralded as the next logical step toward solving genomic puzzles, such as determining coding regions, discovering regulatory signals, and deducing the mechanisms and history of genome evolution. However, before any such detailed analysis can be addressed, methods are required for comparing such large sequences. If the organisms under consideration are closely related (that is, if no or only a few genome rearrangements have occurred) or one compares regions of conserved synteny (regions in which orthologous genes occur in the same order), then global alignments can be used for the prediction of genes and regulatory elements. This is because coding regions are relatively well preserved, while non-coding regions tend to show varying degree of conservation. Non-coding regions that do show conservation are thought important for regulating gene expression, maintaining the structural organization of the genome and possibly have other, yet unknown functions. Several comparative sequence approaches using alignments have recently been used to analyze corresponding coding and non-coding regions from different species, although mainly between human and mouse. These approaches are based on software-tools for aligning DNA-sequences [5,7,8,11,12,18,19,21,27]; see [9] for a review.

To cope with the shear volume of data, most of the software-tools use an anchor-based method that is composed of three phases:

1. Computation of fragments (regions in the genomes that are similar).
2. Computation of an optimal global chain of colinear non-overlapping fragments: these are the anchors that form the basis of the alignment.
3. Alignment of the regions between the anchors.

The fragments computed in the first phase are often exact matches (maximal unique matches as in MUMmer [11,12], maximal multiple exact matches as in MGA [18], or exact k-mers as in GLASS [5]), but one may also allow substitutions (yielding fragments as in DIALIGN [21]) or even insertions and deletions (as the BLASTZ-hits [26] that are used in MultiPipMaker [27]). Each of the fragments has a weight that can, for example,
be the length of the fragment (in case of exact fragments) or its statistical significance. This article is concerned with algorithms for solving the combinatorial chaining problem of the second phase: finding an optimal (i.e., maximum weight) global chain of colinear non-overlapping fragments; see Fig. 1(a). Note that every genome alignment tool has to solve the chaining problem somehow, but the algorithms differ from tool to tool.

A well-known solution to the chaining problem consists of finding a maximum weight path in a weighted directed acyclic graph. However, the running time of this chaining algorithm is quadratic in the number of fragments. This can be a serious drawback if the number of fragments is large. To overcome this obstacle, Zhang et al. [30] presented an algorithm that constructs an optimal chain using space division based on kd-trees, a data structure known from computational geometry [6]. However, a rigorous analysis of the running time of their algorithm is difficult because the construction of the chain is embedded in the kd-tree structure. Another chaining algorithm, devised by Myers and Miller [23], is based on the line-sweep paradigm, and uses orthogonal range-searching supported by range trees instead of kd-trees. It is the only chaining algorithm for $k > 2$ sequences that runs in sub-quadratic time $O(n \log^k n)$, but the result is a time bound higher by a logarithmic factor than what one would expect. In particular, for $k = 2$ sequences it is one log-factor slower than previous chaining algorithms [13, 22], which require only $O(n \log n)$ time. In the epilogue of their paper [23], Myers and Miller wrote: “We thought hard about trying to reduce this discrepancy but have been unable to do so, and the reasons appear to be fundamental” and “To improve upon our result appears to be a difficult open problem”. In this article, we will improve their result. For gap costs in the L_1-metric, we cannot only reduce the time and space complexities of Myers and Miller’s algorithm by a log-factor but actually improve the time complexity by a factor $\frac{\log n}{\log \log n}$. For the sum-of-pairs gap cost, our method yields a reduction by a factor $\frac{\log n}{\log \log n}$. In essence, this improvement is achieved by enhancing the ordinary range tree with (1) the combination of fractional cascading [29] and the efficient priority queues of [17, 28], which yields a more efficient search, and (2) an appropriate incorporation of gap costs, so that it is enough to determine a maximum function value over a semi-dynamic set (instead of a dynamic set). We would like to point out that our algorithm can also employ other data structures that support orthogonal range-searching. For example, if the kd-tree is used instead of the range tree, the algorithm takes $O((k - 1)n^{2 - \frac{1}{k+1}})$ time and $O(n)$ space in the worst case, for $k > 2$ and gap costs in the L_1-metric.

As already mentioned, global alignments are a valuable tool for comparing the genomes of closely related species. In case of diverged genomic sequences, however, genome rearrangements have occurred during evolution, so that a global alignment strategy is likely predestined to failure for having to align unrelated regions in an end-to-end colinear approach. In this case, either local alignments are the strategy of choice or one must first identify syntenic regions, which then can be individually aligned. However, both alternatives are faced with obstacles. Current local alignment programs suffer from a huge running time, while the problem of automatically finding syntenic regions requires a priori knowledge of all genes and their locations in the genomes—a piece of information that is often not available. (It is beyond the scope of this paper to discuss the computational difficulties of gene prediction and the accurate determination of orthologous genes.) We will show that a local variant of our global chaining algorithm can be used to solve the prob-
lem of automatically finding regions of similarity in large genomic DNA sequences. As in the anchor-based global alignment method, one first computes fragments. In the second phase, however, instead of computing an optimal global chain of colinear non-overlapping fragments, one computes significant local chains. We call a local chain significant if its score (the sum of the weights of the fragments in the chain, where gaps between the fragments are penalized) exceeds a user-defined threshold. The computation of significant local chains can be done in the same time and space complexities as above-mentioned (for solving the global fragment-chaining problem).

Under stringent thresholds, significant local chains of colinear non-overlapping fragments represent candidate regions of conserved synteny. If one aligns these individually, one gets good local alignments. We would like to point out that the automatic identification of regions of similarity is a first step toward an automatic detection of genome rearrangements. In [2], we have demonstrated that our method can be used to detect genome rearrangements such as transpositions (where a section of the genome is excised and inserted at a new position in the genome, without changing orientation) and inversions (where a section of the genome is excised, reversed in orientation, and re-inserted).

We see several advantages of our chaining algorithms:

1. They can handle multiple genomes.
2. They can handle any kind of fragments.
3. In contrast to most other algorithms used in comparative genomics, they are not heuristic: They correctly solve clearly defined problems.

It is worth mentioning that chaining algorithms are also useful in other bioinformatics applications such as comparing restriction maps [22] or solving the exon assembly problem which is part of eucaryotic gene prediction [15]. A variety of applications in comparative genomics is described in [24].

This article is organized as follows. Section 2 defines the basic concepts dealt with. In Section 3, we will explain a global chaining algorithm that neglects gap costs. In Section 4, the algorithm is modified in two steps, so that it can deal with certain gap costs. Section 5 presents a local variant of the global chaining algorithm that can be used for finding regions of similarity in large genomic DNA sequences. Finally, Section 6 summarizes the main achievements of our work.

Parts of this article appeared in [1] and [2].

2. Basic concepts and definitions

For $1 \leq i \leq k$, $S_i = S_i[1 \ldots n_i]$ denotes a string of length $|S_i| = n_i$. In our application, S_i is a (long) DNA sequence. $S_i[l \ldots h]$ is the substring of S_i starting at position l and ending at position h. A fragment f consists of two k-tuples $\text{beg}(f) = (l_1, l_2, \ldots, l_k)$ and $\text{end}(f) = (h_1, h_2, \ldots, h_k)$ such that the strings $S_1[l_1 \ldots h_1], S_2[l_2 \ldots h_2], \ldots, S_k[l_k \ldots h_k]$ are “similar”. Furthermore, we speak of an exact fragment (or multiple exact match) if the substrings are identical, i.e., $S_1[l_1 \ldots h_1] = S_2[l_2 \ldots h_2] = \cdots = S_k[l_k \ldots h_k]$. An exact
fragment is maximal, if the substrings can neither be simultaneously extended to the left nor to the right in all S_i.

A fragment f of k genomes can be represented by a hyper-rectangle in R^k with the two extreme corner points $beg(f)$ and $end(f)$, where each coordinate of the points is a non-negative integer (consequently, the words number of genomes and dimension will be used synonymously in what follows). A hyper-rectangle (called hyperrectangular domain in [2]) is the Cartesian product of intervals on distinct coordinate axes. A hyper-rectangle $[l_1, \ldots, h_1] \times [l_2, \ldots, h_2] \times \cdots \times [l_k, \ldots, h_k]$ (with $l_i < h_i$ for all $1 \leq i \leq k$) will here be denoted by $R(p, q)$, where $p = (l_1, \ldots, l_k)$ and $q = (h_1, \ldots, h_k)$.

With every fragment f, we associate a positive weight $f.weight \in \mathbb{R}$. This weight can, for example, be the length of the fragment (in case of exact fragments) or its statistical significance.

In what follows, we will often identify the point $beg(f)$ or $end(f)$ with the fragment f. This is possible because we assume that all fragments are known from the first phase of the anchored-based approach described in Section 1 (so that every point can be annotated with a tag that identifies the fragment it stems from). For example, if we speak about the score of a point $beg(f)$ or $end(f)$, we mean the score of the fragment f.

For ease of presentation, we consider the points $0 = (0, \ldots, 0)$ (the origin) and $t = (|S_1| + 1, \ldots, |S_k| + 1)$ (the terminus) as fragments with weight 0. For these fragments, we define $beg(0) = \perp$, $end(0) = 0$, $beg(t) = t$, and $end(t) = \perp$.

The coordinates of a point $p \in \mathbb{R}^k$ will be denoted by $p.x_1, p.x_2, \ldots, p.x_k$. If $k = 2$, the coordinates of p will also be written as $p.x$ and $p.y$.

Definition 2.1. We define a binary relation \ll on the set of fragments by $f \ll f'$ if and only if $end(f).x_i < beg(f').x_i$ for all $1 \leq i \leq k$. If $f \ll f'$, then we say that f precedes f'.

Note that $0 \ll f \ll t$ for every fragment f with $f \neq 0$ and $f \neq t$.

Definition 2.2. A chain of colinear non-overlapping fragments (or chain for short) is a sequence of fragments f_1, f_2, \ldots, f_ℓ such that $f_i \ll f_{i+1}$ for all $1 \leq i < \ell$. The score of C is

$$score(C) = \sum_{i=1}^{\ell} f_i.weight - \sum_{i=1}^{\ell-1} g(f_{i+1}, f_i)$$

where $g(f_{i+1}, f_i)$ is the cost of connecting fragment f_i to f_{i+1} in the chain. We will call this cost gap cost.

Definition 2.3. Given n weighted fragments and a gap cost function, the global fragment-chaining problem is to determine a chain of maximum score (called optimal global chain in the following) starting at the origin 0 and ending at terminus t.

A direct solution to this problem is to construct a weighted directed acyclic graph $G = (V, E)$, where the set V of vertices consists of all fragments (including 0 and t) and
the set of edges E is characterized as follows: There is an edge $f \rightarrow f'$ with weight $f'.weight - g(f', f)$ if $f \ll f'$. See Fig. 1(b) for an example (where edges $f \rightarrow f'$ are omitted whenever there is a fragment \tilde{f} such that $f \ll \tilde{f} \ll f'$). An optimal global chain of fragments corresponds to a path with maximum score from vertex 0 to vertex t in the graph. Because the graph is acyclic, such a path can be computed as follows. Let $f'.score$ be defined as the maximum score of all chains starting at 0 and ending at f'. $f'.score$ can be expressed by the recurrence:

$$f'.score = f'.weight + \max \{ f.score - g(f', f): f \ll f' \}.$$

A dynamic programming algorithm based on this recurrence takes $O(|V| + |E|)$ time provided that computing gap costs takes constant time. Because $|V| + |E| \in O(n^2)$, computing an optimal global chain takes quadratic time and linear space. This graph-based solution works for any number of genomes and for any kind of gap cost. As explained in Section 1, however, the time bound can be improved by considering the geometric nature of the problem. In order to present our result systematically, we first give a chaining algorithm that neglects gap costs. Then we will modify this algorithm in two steps, so that it can deal with certain gap costs.

3. The global chaining algorithm without gap costs

3.1. The basic chaining algorithm

Given a set S of points in \mathbb{R}^k with associated score, a range query $RQ(p, q)$ asks for all points of S that lie in the hyper-rectangle $R(p, q)$, while a range maximum query $RMQ(p, q)$ asks for a point of maximum score in $R(p, q)$.

Lemma 3.1. Suppose that the gap cost function is the constant function 0. If $RMQ(0, \text{beg}(f') - \vec{1})$ returns the end point of fragment f (where $\vec{1}$ denotes the vector $(1, \ldots, 1)$), then $f'.score = f'.weight + f.score$.

Proof. This follows immediately from recurrence (1). □

Suppose that the start and end points of the fragments are sorted w.r.t. their x_1 coordinate. Then, processing the points in ascending order of their x_1 coordinate simulates a line (plane or hyper-plane in higher dimensions) that sweeps the points w.r.t. their x_1 coordinate. Here, we will use this so-called line-sweep technique to construct an optimal chain. If a point has already been scanned by the sweeping line, it is said to be active; otherwise it is said to be inactive. During the sweeping process, the x_1 coordinates of the active points are smaller than the x_1 coordinate of the currently scanned point s. According to Lemma 3.1, if s is the start point of fragment f', then an optimal chain ending at f' can be found by an RMQ over the set of active end points of fragments. Since $p.x_1 < s.x_1$ for every active end point p, the RMQ need not take the first coordinate into account. In other words, the RMQ is confined to the range $R(0, (s.x_2, \ldots, s.x_k) - \vec{1})$ in \mathbb{R}^{k-1}, so that the dimension of the problem is reduced by one. To manipulate the point set during the sweeping process,
we need a semi-dynamic data structure D that stores the end points of fragments and efficiently supports the following two operations: (1) activation and (2) RMQ over the set of active points. Algorithm 1 is based on such a data structure D, which will be defined later.

Algorithm 1 (k-dimensional chaining of n fragments).
Sort all start and end points of the n fragments in ascending order w.r.t. their x_1 coordinate and store them in the array $points$; because we include the end point of the origin and the start point of the terminus, there are $2n + 2$ points. Store all end points of the fragments (ignoring their x_1 coordinate) as inactive in the $(k-1)$-dimensional data structure D.

for $i := 1$ to $2n + 2$
 if $points[i]$ is the start point of fragment f' then
 $q := RMQ(\emptyset, (points[i].x_2, \ldots, points[i].x_k) - 1)$
 determine the fragment f with end(f) = q
 $f'.prec := f$
 $f'.score := f'.weight + f.score$
 else /* $points[i]$ is end point of a fragment */
 activate ($points[i], x_2, \ldots, points[i].x_k$) in D

In the algorithm, $f'.prec$ denotes a field that stores the preceding fragment of f' in a chain. It is an immediate consequence of Lemma 3.1 that Algorithm 1 finds an optimal chain. The complexity of the algorithm depends of course on how the data structure D is implemented. In the following subsection, we will outline an implementation of D that supports RMQs with activation in time $O(n \log^{d-1} n \log \log n)$ and space $O(n \log^{d-1} n)$ for n points, where d is the dimension. Because in our chaining problem $d = k - 1$, finding an optimal chain by Algorithm 1 takes $O(n \log^{k-2} n \log \log n)$ time and $O(n \log^{k-2} n)$ space.

3.2. Answering RMQs with activation efficiently

Our orthogonal range-searching data structure is based on range trees, which are well known in computational geometry. Given a set S of $n d$-dimensional points, its range tree can be built as follows (see, e.g., [4,25]). For $d = 1$, the range tree of S is a minimum-height binary search tree or an array storing S in sorted order. For $d > 1$, the range tree of S is a minimum-height binary search tree T with n leaves, whose ith leftmost leaf stores the point in S with the ith smallest x_1-coordinate. To each interior node v of T, we associate a canonical subset $C_v \subseteq S$ containing the points stored at the leaves of the subtree rooted at v. For each v, let l_v (respectively h_v) be the smallest (respectively largest) x_1 coordinate of any point in C_v, and let

$$C_v^* := \{(p.x_2, \ldots, p.x_d) \in \mathbb{R}^{d-1} \mid (p.x_1, p.x_2, \ldots, p.x_d) \in C_v\}.$$

The interior node v stores l_v, h_v, and a $(d-1)$-dimensional range tree constructed on C_v^*. For any fixed dimension d, the data structure can be built in $O(n \log^{d-1} n)$ time and space. A range query $R(q, p)$ for the hyper-rectangle $R(p, q) = [l_1 \ldots h_1] \times [l_2 \ldots h_2] \times \cdots \times [l_d \ldots h_d]$ can be answered as follows. If $d = 1$, the query can be answered in $O(\log n)$
time by a binary search. For \(d > 1 \), we traverse the range tree starting at the root. Suppose node \(v \) is visited in the traversal. If \(v \) is a leaf, then we report its corresponding point if it lies inside \(R(p, q) \). If \(v \) is an interior node, and the interval \([l_v, h_v] \) does not intersect \([l_1, h_1] \), there is nothing to do. If \([l_v, h_v] \subseteq [l_1, h_1] \), we recursively search in the \((d - 1)\)-dimensional range tree stored at \(v \) with the hyper-rectangle \([l_2 \ldots h_2] \times \cdots \times [l_d \ldots h_d] \). Otherwise, we recursively visit both children of \(v \). This procedure takes \(O(\log^d n + z) \) time, where \(z \) is the number of points in the hyper-rectangle \(R(p, q) \).

The technique of fractional cascading \cite{29} saves one log-factor in answering range queries (in the same construction time and using the same space as the original range tree). Here, we will recall this technique for range queries of the form \(RQ(0, q) \) because we want to modify it to answer range maximum queries of the form \(RMQ(0, q) \) efficiently.

For ease of presentation, we consider the case \(d = 2 \). In this case, the range tree is a binary search tree (called \(x \)-tree) of arrays (called \(y \)-arrays). Let \(v \) be a node in the \(x \)-tree and let \(v.L \) and \(v.R \) be its left and right children. The \(y \)-array \(A_v \) of \(v \) contains all the points in \(C_v \) sorted in ascending order w.r.t. their \(y \) coordinate. Every element \(p \in A_v \) has two downstream pointers: The left pointer \(Lptr \) and the right pointer \(Rptr \). The left pointer \(Lptr \) points to the largest (i.e., rightmost) element \(q_1 \) in \(A_v.L \) such that \(q_1 \leq p \) (\(Lptr \) is a NULL pointer if such an element does not exist). In an implementation, \(Lptr \) is the index with \(A_v.L[Lptr] = q_1 \). Analogously, the right pointer \(Rptr \) points to the largest element \(q_2 \) of \(A_v.R \) such that \(q_2 \leq p \) (\(Rptr \) is a NULL pointer if such an element does not exist). In an implementation, \(Lptr \) is the index with \(A_v.L[Lptr] = q_1 \). Analogously, the right pointer \(Rptr \) points to the largest element \(q_2 \) of \(A_v.R \) such that \(q_2 \leq p \).

Fig. 3 shows an example of this structure. Locating all the points in a rectangle \(R(0, (h_1, h_2)) \) is done in two stages. In the first stage, a binary search is performed over the \(y \)-array of the root node of the \(x \)-tree to locate the rightmost point \(p_{h_2} \) such that \(p_{h_2}.y \in [0 \ldots h_2] \). Then, in the second stage, the \(x \)-tree is traversed (while keeping track of the downstream pointers) to locate the rightmost leaf \(p_{h_1} \) such that \(p_{h_1}.x \in [0 \ldots h_1] \). During the traversal of the \(x \)-tree, we identify a set of nodes which we call canonical nodes (w.r.t. the given range query). The set of canonical nodes is the smallest set of nodes \(v_1, \ldots, v_t \in x \)-tree such that \(\bigcup_{j=1}^{t} C_{v_j} = RQ(0, (h_1, \infty)) \). (\(\bigcup \) denotes disjoint union.) In other words, \(P := \bigcup_{j=1}^{t} A_{v_j} = \bigcup_{j=1}^{t} C_{v_j} \) contains every point \(p \in S \) such that \(p.x \in [0 \ldots h_1] \). However, not every point \(p \in P \) satisfies \(p.y \in [0 \ldots h_2] \). Here,
Fig. 3. Range tree with fractional cascading for the points in Fig. 2. The colored nodes are visited for answering the range query of Fig. 2. Hatched nodes are the canonical nodes. The small circles refer to NULL pointers. In this example, \(p_{h_1} = p_6 \) and \(p_{h_2} = p_5 \). The colored elements of the \(y \)-arrays of the canonical nodes are the points in the query rectangle of Fig. 2. The value \(h_{v.L} \) in every internal node \(v \) is the \(x \) coordinate that separates the points in its left subtree from those occurring in its right subtree.

the downstream pointers come into play. As already mentioned, the downstream pointers are followed while traversing the \(x \)-tree, and to follow one pointer takes constant time. If we encounter a canonical node \(v_j \), then the element \(e_j \), to which the last downstream pointer points, partitions the list \(A_{v_j} \) as follows: Every \(e \) that is strictly to the right of \(e_j \) is not in \(R(0,(h_1,h_2)) \), whereas all other elements of \(A_{v_j} \) lie in \(R(0,(h_1,h_2)) \). For this reason, we will call the element \(e_j \) the "split" element. It is easy to see that the number of canonical nodes is \(O(\log n) \). Moreover, we can find all of them and the split elements of their \(y \)-arrays in \(O(\log n) \) time; cf. [29]. Therefore, the range tree with fractional cascading supports 2-dimensional range queries in \(O(\log n + z) \) time, where \(z \) is the number of points in the rectangle \(R(0,q) \). For dimension \(d > 2 \), it takes time \(O(\log^{d-1} n + z) \).

In order to answer RMQs with activation, we will further enhance every \(y \)-array that occurs in the fractional cascading data structure with a priority queue as described in [17, 28]. Each of these queues is (implicitly) constructed over the rank space\(^1\) of the points in the \(y \)-array. The rank space of the points in the \(y \)-array consists of points in the range \([0 \ldots m]\), where \(m \) is the size of the \(y \)-array, and the rank of a point is its index in the \(y \)-array because the \(y \)-array is sorted w.r.t. the \(y \) dimension.

The priority queue supports the operations \(\text{insert}(r) \), \(\text{delete}(r) \), \(\text{predecessor}(r) \) (gives the largest element \(\leq r \)), and \(\text{successor}(r) \) (gives the smallest element \(> r \)) in time \(O(\log \log m) \), where \(r \) is an integer in the range \([0 \ldots m]\). Algorithm 2 shows how to activate a point \(q \) in the 2-dimensional range tree and Algorithm 3 shows how to answers an RMQ \((0,q) \).

\(^1\) See, e.g., [10,14] for more details on the rank space.
Algorithm 2 (Activation of a point \(q \) in the data structure \(D \)).

\[
v := \text{root node of the } x\text{-tree}
\]

find the rank (index) \(r \) of \(q \) in \(A_v \) by a binary search

while \((v \neq \bot)\)

\[
\text{if } (A_v[r].score > A_v[\text{predecessor}(r)].score) \text{ then}
\]

insert(\(r \)) into the priority queue attached to \(A_v \)

\[
\text{while}(A_v[r].score > A_v[\text{successor}(r)].score)
\]

\[
delete(\text{successor}(r)) \text{ from the priority queue attached to } A_v
\]

\[
\text{if } (A_v[r] = A_v[L[A_v[r].Lptr)]) \text{ then}
\]

\[
r := A_v[r].Lptr
\]

\[
v := v.L
\]

else

\[
r := A_v[r].Rptr
\]

\[
v := v.R
\]

Note that in the outer while-loop of Algorithm 2, the following invariant is maintained:

If \(0 \leq i_1 < i_2 < \cdots < i_\ell \leq m \) are the entries in the priority queue attached to \(A_v \), then \(A_v[i_1].score \leq A_v[i_2].score \leq \cdots \leq A_v[i_\ell].score \).

Algorithm 3 gives pseudo-code for answering \(\text{RMQ}(0, q) \), but we would like to first describe the idea on a higher level. In essence, we locate all canonical nodes \(p.x \) that \(\text{Avj} \) highest score in the priority queue of \(\text{Avj} \) element \(\text{Av} \) the split element in \(\text{Avj} \) \(r_j \) in \(\text{Av} \).

Note that in the outer while-loop of Algorithm 2, the following invariant is maintained:

If \(0 \leq i_1 < i_2 < \cdots < i_\ell \leq m \) are the entries in the priority queue attached to \(A_v \), then \(A_v[i_1].score \leq A_v[i_2].score \leq \cdots \leq A_v[i_\ell].score \).

Algorithm 3 gives pseudo-code for answering \(\text{RMQ}(0, q) \), but we would like to first describe the idea on a higher level. In essence, we locate all canonical nodes \(p.x \) in \(D \) for the hyper-rectangle \(R(0, q) \). For any \(v_j \), \(1 \leq j \leq \ell \), let the \(r_j \)th element be the split element in \(A_{v_j} \). We have seen that \(\bigcup_{j=1}^{\ell} A_{v_j} \) contains every point \(p \in S \) such that \(p.x \in [0 \ldots q.x] \). Now if \(r_j \) is the index of the split element of \(A_{v_j} \), then all points \(A_{v_j}[i] \) with \(i \leq r_j \) are in \(R(0, q) \), whereas all other elements \(A_{v_j}[i] \) with \(i > r_j \) are not in \(R(0, q) \). Since Algorithm 2 maintains the above-mentioned invariant, the element with highest score in the priority queue of \(A_{v_j} \) that lies in \(R(0, q) \) is \(q_j = \text{predecessor}(r_j) \) (if \(r_j \) is in the priority queue of \(A_{v_j} \), then \(q_j = r_j \) because \(\text{predecessor}(r_j) \) gives the largest element \(\leq r_j \)). We then compute \(\text{max_score} := \max(A_{v_j}[q_j].score) \) \(1 \leq j \leq \ell \) and return \(\text{max_point} := A_{v_j}[q_j] \), where \(A_{v_j}[q_j].score = \text{max_score} \).

Algorithm 3 (\(\text{RMQ}(0, q) \) in the data structure \(D \)).

\[
v := \text{root node of the } x\text{-tree}
\]

\[
\text{max_score} := -\infty
\]

\[
\text{max_point} := \bot
\]

find the rank (index) \(r \) of the rightmost point \(p \) with \(p.y \in [0 \ldots q.y] \) in \(A_v \)

while \((v \neq \bot)\)

\[
\text{if } (h_v.x \leq q.x) \text{ then } */ v \text{ is a canonical node */}
\]

\[
\text{tmp} := \text{predecessor}(r) \text{ in the priority queue of } A_v
\]

\[
\text{max_score} := \max(\text{max_score}, A_v[\text{tmp}].score)
\]

\[
\text{if } (\text{max_score} = \text{tmp.score}) \text{ then } \text{max_point} := A_v[\text{tmp}]
\]

else if \((h_v.L.x \leq q.x) \text{ then } */ v.L \text{ is a canonical node */}
\]

\[
\text{tmp} := \text{predecessor}(A_v[r].Lptr) \text{ in the priority queue of } A_v.L
\]

\[
\text{max_score} := \max(\text{max_score}, A_v.L[\text{tmp}].score)
\]
if (max_score = tmp.score) then max_point := A_v.L[tmp]
 r := A_v[r].Rptr
 v := v.R
else
 r := A_v[r].Lptr
 v := v.L

Because the number of canonical nodes is \(O(\log n)\) and any of the priority queue operations takes \(O(\log \log n)\) time, answering a 2-dimensional range maximum query takes \(O(\log n \log \log n)\) time. Since every point occurs in at most \(\log n\) priority queues, there are at most \(n \log n\) delete operations. Hence the total time complexity of activating \(n\) points is \(O(n \log n \log \log n)\).

Theorem 3.2. Given \(k > 2\) genomes and \(n\) fragments, an optimal global chain (without gap costs) can be found in \(O(n \log^{k-2} n \log \log n)\) time and \(O(n \log^{k-2} n)\) space.

Proof. In Algorithm 1, the points are first sorted w.r.t. their first dimension and the \(\text{RMQ}\) with activation is required only for \(d = k - 1\) dimensions. For \(d \geq 2\) dimensions, the preceding data structure is implemented for the last two dimensions of the range tree, which yields a data structure \(D\) that requires \(O(n \log^{d-1} n)\) space and \(O(n \log^{d-1} n \log \log n)\) time for \(n\) \(\text{RMQs}\) and \(n\) activation operations. Consequently, one can find an optimal chain in \(O(n \log^{k-2} n \log \log n)\) time and \(O(n \log^{k-2} n)\) space. \(\Box\)

In case \(k = 2\), the data structure \(D\) is simply a priority queue (over the rank space of all points). Therefore, if the points are already sorted, then the algorithm takes \(O(n \log \log n)\) time. Otherwise, the sorting procedure in Algorithm 1 dominates the overall time complexity of Algorithm 1 because it requires \(O(n \log n)\) time.

4. Incorporating gap costs

In the previous section, fragments were chained without penalizing the gaps in between them. In this section, we modify the algorithm so that it can take gap costs into account.

4.1. Gap costs in the \(L_1\) metric

We first handle the case in which the cost for the gap between two fragments is the distance between the end and start point of the two fragments in the \(L_1\) metric. For two points \(p, q \in \mathbb{R}^k\), this distance is defined by

\[
d_1(p, q) = \sum_{i=1}^{k} |p_i - q_i|
\]

and for two fragments \(f \ll f'\) we define \(g_1(f', f) = d_1(\text{beg}(f'), \text{end}(f))\). If an alignment of two sequences \(S_1\) and \(S_2\) shall be based on fragments and one uses this gap cost, then the characters between the two fragments are deleted/inserted; see left side of Fig. 4.
The problem with gap costs in our approach is that an RMQ does not take the cost \(g(f', f) \) from recurrence (1) into account, and if we would explicitly compute \(g(f', f) \) for every pair of fragments with \(f \ll f' \), then this would yield a quadratic time algorithm. Thus, it is necessary to express the gap costs implicitly in terms of weight information attached to the points. We achieve this by using the geometric cost of a fragment \(f \), which we define in terms of the terminus point \(t \) as

\[
gc(f) = d_1(t, \text{end}(f)).
\]

Lemma 4.1. Let \(f, \tilde{f}, \text{and} f' \text{ be fragments such that } f \ll f' \text{ and } \tilde{f} \ll f'. \text{ Then the inequality } \tilde{f}.\text{score} - g_1(f', \tilde{f}) > f.\text{score} - g_1(f', f) \text{ holds true if and only if the inequality } \tilde{f}.\text{score} - gc(\tilde{f}) > f.\text{score} - gc(f) \text{ holds.}
\]

Proof.

\[
\tilde{f}.\text{score} - g_1(f', \tilde{f}) > f.\text{score} - g_1(f', f) \\
\Leftrightarrow \tilde{f}.\text{score} - \sum_{i=1}^{k} (\text{beg}(f').x_i - \text{end}(\tilde{f}).x_i) > \\
f.\text{score} - \sum_{i=1}^{k} (\text{beg}(f').x_i - \text{end}(f).x_i) \\
\Leftrightarrow \tilde{f}.\text{score} - \sum_{i=1}^{k} (t.x_i - \text{end}(\tilde{f}).x_i) > \\
f.\text{score} - \sum_{i=1}^{k} (t.x_i - \text{end}(f).x_i) \\
\Leftrightarrow \tilde{f}.\text{score} - gc(\tilde{f}) > f.\text{score} - gc(f).
\]

The second equivalence follows from adding \(\sum_{i=1}^{k} \text{beg}(f').x_i \) to and subtracting \(\sum_{i=1}^{k} t.x_i \) from both sides of the inequality. Fig. 5 illustrates the lemma for \(k = 2 \).}

Because \(t \) is fixed, the value \(gc(f) \) is known in advance for every fragment \(f \). Therefore, Algorithm 1 needs only two slight modifications to take gap costs into account. First, we replace the statement \(f'.\text{score} := f'.\text{weight} + f.\text{score} \) with

\[
f'.\text{score} := f'.\text{weight} + f.\text{score} - g_1(f', f).
\]

Second, if points \(i \) is the end point of \(f' \), then it will be activated with \(f'.\text{priority} := f'.\text{score} - gc(f') \). Thus, an RMQ will return a point of maximum priority instead of a point of maximum score. The next lemma implies the correctness of the modified algorithm.
Fig. 5. Points p and q are active end points of the fragments f and f'. The start point s of fragment f' is currently scanned by the sweeping line and t is the terminus point.

Lemma 4.2. If the range maximum query $\text{RMQ}(0, \text{beg}(f') - 1)$ returns the end point of fragment f', then we have $\hat{f}.\text{score} - g_1(f', \hat{f}) = \max\{f.\text{score} - g_1(f', f) : f \ll f'\}$.

Proof. $\text{RMQ}(0, \text{beg}(f') - 1)$ returns the end point of fragment \hat{f} such that $\hat{f}.\text{priority} = \max\{f.\text{priority} : f \ll f'\}$. Since $f.\text{priority} = f.\text{score} - g(f)$ for every fragment f, it is an immediate consequence of Lemma 4.1 that $\hat{f}.\text{score} - g_1(f', \hat{f}) = \max\{f.\text{score} - g_1(f', f) : f \ll f'\}$. □

4.2. The sum-of-pairs gap cost

In this section we consider the gap cost associated with the “sum-of-pairs” model, which was introduced by Myers and Miller [23]. For clarity of presentation, we first treat the case $k = 2$ because the general case $k > 2$ is rather involved.

4.2.1. The case $k = 2$

For two points $p, q \in \mathbb{R}^2$, we write $\Delta x_i(p, q) = |p.x_i - q.x_i|$, where $i \in \{1, 2\}$. We will sometimes simply write Δx_1 and Δx_2 if their arguments can be inferred from the context. The sum-of-pairs distance of two points $p, q \in \mathbb{R}^2$ depends on the parameters ϵ and λ, and was defined in [23] as follows:

$$d(p, q) = \begin{cases} \epsilon \Delta x_2 + \lambda (\Delta x_1 - \Delta x_2) & \text{if } \Delta x_1 \geq \Delta x_2, \\ \epsilon \Delta x_1 + \lambda (\Delta x_2 - \Delta x_1) & \text{if } \Delta x_2 \geq \Delta x_1. \end{cases}$$

We rearrange these terms and derive the following equivalent definition:

$$d(p, q) = \begin{cases} \lambda \Delta x_1 + (\epsilon - \lambda) \Delta x_2 & \text{if } \Delta x_1 \geq \Delta x_2, \\ (\epsilon - \lambda) \Delta x_1 + \lambda \Delta x_2 & \text{if } \Delta x_2 \geq \Delta x_1. \end{cases}$$

For two fragments f and f' with $f \ll f'$, we define $g(f', f) = d(\text{beg}(f'), \text{end}(f))$. Intuitively, $\lambda > 0$ is the cost of aligning an anonymous character with a gap position in the other sequence, while $\epsilon > 0$ is the cost of aligning two anonymous characters. For
$\lambda = 1$ and $\epsilon = 2$, this gap cost coincides with the g_1 gap cost, whereas for $\lambda = 1$ and $\epsilon = 1$, this gap cost corresponds to the L_∞ metric. (The gap cost of connecting two fragments $f \ll f'$ in the L_∞ metric is defined by $g_\infty(f', f) = d_\infty(\text{beg}(f'), \text{end}(f))$, where $d_\infty(p, q) = \max_{i \in [1, k]} |p.x_i - q.x_i|$ for $p, q \in \mathbb{R}^k$.) Following [23, 30], we demand that $\lambda > \frac{1}{2} \epsilon$ because otherwise it would always be best to connect fragments entirely by gaps as in the L_1 metric. So if an alignment of two sequences S_1 and S_2 shall be based on fragments and one uses the sum-of-pairs gap cost with $\lambda > \frac{1}{2} \epsilon$, then the characters between the two fragments are replaced as long as possible and the remaining characters are deleted or inserted; see right side of Fig. 4.

In order to compute the score of a fragment f' with $\text{beg}(f') = s$, the following definitions are useful. The first quadrant of a point $s \in \mathbb{R}^2$ consists of all points $p \in \mathbb{R}^2$ with $p.x_1 \leq s.x_1$ and $p.x_2 \leq s.x_2$. We divide the first quadrant of s into regions O_1 and O_2 by the straight line $x_2 = x_1 + (s.x_2 - s.x_1)$. O_1, called the first octant of s, consists of all points p in the first quadrant of s satisfying $\Delta x_1 \geq \Delta x_2$ (i.e., $s.x_1 - p.x_1 \geq s.x_2 - p.x_2$), these are the points lying above or on the straight line $x_2 = x_1 + (s.x_2 - s.x_1)$; see Fig. 6. The second octant O_2 consists of all points q satisfying $\Delta x_2 \geq \Delta x_1$ (i.e., $s.x_2 - q.x_2 \geq s.x_1 - q.x_1$), these are the points lying below or on the straight line $x_2 = x_1 + (s.x_2 - s.x_1)$. Then $f'.\text{score} = f'.\text{weight} + \max\{v_1, v_2\}$, where $v_i = \max\{f.\text{score} - g(f', f): f \ll f' \text{ and } \text{end}(f) \text{ lies in octant } O_i\}$, for $i \in \{1, 2\}$.

However, our chaining algorithms rely on RMQs, and these work only for orthogonal regions, not for octants. For this reason, we will make use of the octant-to-quadrant transformations of Guibas and Stolfi [16]. The transformation $T_1 : (x_1, x_2) \mapsto (x_1 - x_2, x_2)$ maps the first octant to a quadrant. More precisely, point $T_1(p)$ is in the first quadrant of $T_1(s)$ if and only if p is in the first octant of point s.\footnote{Observe that the transformation may yield points with negative coordinates, but it is easy to overcome this obstacle by an additional transformation (a translation). Hence we will skip this minor problem.} Similarly, for the transformation $T_2 : (x_1, x_2) \mapsto (x_1, x_2 - x_1)$, point q is in the second octant of point s if and only if $T_2(q)$ is in the first quadrant of $T_2(s)$. By means of these transformations, we can apply the same
techniques as in the previous sections. We just have to define the geometric cost properly.

The following lemma shows how to choose the geometric cost \(gc_1 \) for points in the first octant \(O_1 \). An analogous lemma holds for points in the second octant.

Lemma 4.3. Let \(f, \hat{f}, \) and \(f' \) be fragments such that \(f \ll f' \) and \(\hat{f} \ll f' \). If \(\text{end}(f) \) and \(\text{end}(\hat{f}) \) lie in the first octant of \(\text{beg}(f') \), then \(\hat{f}.\text{score} - g(f', \hat{f}) > f.\text{score} - g(f', f) \) if and only if \(\hat{f}.\text{score} - gc_1(f') > f.\text{score} - gc_1(f) \), where \(gc_1(f') = \lambda \Delta_{x_1}(t, \text{end}(f')) + (\epsilon - \lambda)\Delta_{x_2}(t, \text{end}(f')) \) for any fragment \(\hat{f} \).

Proof. Similar to the proof of Lemma 4.1. \(\square \)

In Section 4.1 there was only one geometric cost \(gc \), but here we have to take two different geometric costs \(gc_1 \) and \(gc_2 \) into account. To cope with this problem, we need two data structures \(D_1 \) and \(D_2 \), where \(D_1 \) stores the set of points

\[
\{ T_1(\text{end}(f)) \mid f \text{ is a fragment} \}.
\]

If we encounter the end point of fragment \(f' \) in Algorithm 1, then we activate point \(T_1(\text{end}(f')) \) in \(D_1 \) with priority \(f'.\text{score} - gc_1(f') \) and point \(T_2(\text{end}(f')) \) in \(D_2 \) with priority \(f'.\text{score} - gc_2(f') \). If we encounter the start point of fragment \(f' \), then we launch two \(\text{RMQ} \) range maximum queries, namely \(\text{RMQ}(0, T_1(\text{beg}(f') - 1)) \) in \(D_1 \) and \(\text{RMQ}(0, T_2(\text{beg}(f') - 1)) \) in \(D_2 \). If the first \(\text{RMQ} \) returns \(T_1(\text{end}(f_i)) \) and the second returns \(T_2(\text{end}(f_i)) \), then \(f_i \) is a fragment of highest priority in \(D_i \), \(1 \leq i \leq 2 \), such that \(T_i(\text{end}(f_i)) \ll T_i(\text{beg}(f')) \).

Because a point \(p \) is in the octant \(O_i \) of point \(\text{beg}(f') \) if and only if \(T_i(p) \) is in the first quadrant of \(T_i(\text{beg}(f')) \), it follows that \(f_i \) is a fragment such that its priority \(f_i.\text{score} - gc_i(f_i) \) is maximal in octant \(O_i \). Therefore, according to Lemma 4.3, the value \(v_1 = f_i.\text{score} - g(f', f_i) \) is maximal in octant \(O_i \). Hence, if \(v_1 > v_2 \), then we set \(f'.\text{prec} = f_1 \) and \(f'.\text{score} := f'.\text{weight} + v_1 \). Otherwise, we set \(f'.\text{prec} = f_2 \) and \(f'.\text{score} := f'.\text{weight} + v_2 \).

For the sum-of-pairs gap cost, the two-dimensional chaining algorithm runs in \(O(n \log n \log \log n) \) time and \(O(n \log n) \) space because of the two-dimensional \(\text{RMQ} \)s required for the transformed points. This is in sharp contrast to gap costs in the \(L_1 \)-metric, where we merely need one-dimensional \(\text{RMQ} \)s.

4.2.2. The case \(k > 2 \)

In this case, the sum-of-pairs gap cost is defined for fragments \(f \ll f' \) by

\[
g_{\text{sup}}(f', f) = \sum_{0 \leq i < j \leq k} g(f'_{i,j}, f_{i,j}),
\]

where \(f'_{i,j} \) and \(f_{i,j} \) are the two-dimensional fragments consisting of the \(i \)th and \(j \)th component of \(f' \) and \(f \), respectively. For example, in case of \(k = 3 \), let \(s = \text{beg}(f') \) and \(p = \text{end}(f) \) and assume that \(\Delta_{x_1}(s, p) \geq \Delta_{x_2}(s, p) \geq \Delta_{x_3}(s, p) \). In this case, we have

\[
g_{\text{sup}}(f', f) = 2\lambda \Delta_{x_1} + \epsilon \Delta_{x_2} + (\epsilon - \lambda)2\Delta_{x_3}
\]

because \(g(f'_{1,2}, f_{1,2}) = \lambda \Delta_{x_1} + (\epsilon - \lambda)\Delta_{x_2} \), \(g(f'_{1,3}, f_{1,3}) = \lambda \Delta_{x_1} + (\epsilon - \lambda)\Delta_{x_3} \), and \(g(f'_{2,3}, f_{2,3}) = \lambda \Delta_{x_2} + (\epsilon - \lambda)\Delta_{x_3} \). By contrast, if \(\Delta_{x_1} \geq \Delta_{x_2} \geq \Delta_{x_3} \), then the equality \(g_{\text{sup}}(f', f) = 2\lambda \Delta_{x_1} + (\epsilon - \lambda)2\Delta_{x_2} + \epsilon \Delta_{x_3} \) holds.
Lemma 4.4. Point \(h \) hence 6 transformations:

for the case \(k \) octant-to-quadrant hyper-corners). We describe the generalization of the 3. The extension to the case \(k > 3 \) is obvious. There are \(3! \) hyper-regions, hence 6 transformations:

\[
\Delta x_1 \geq \Delta x_2 \geq \Delta x_3; \quad T_1(x_1, x_2, x_3) = (x_1 - x_2, x_2 - x_3, x_3), \\
\Delta x_1 \geq \Delta x_2 \geq \Delta x_3; \quad T_2(x_1, x_2, x_3) = (x_1 - x_3, x_2, x_3 - x_2), \\
\Delta x_2 \geq \Delta x_1 \geq \Delta x_3; \quad T_3(x_1, x_2, x_3) = (x_1 - x_3, x_2 - x_1, x_3), \\
\Delta x_3 \geq \Delta x_1 \geq \Delta x_2; \quad T_4(x_1, x_2, x_3) = (x_1, x_2 - x_3, x_3 - x_1), \\
\Delta x_3 \geq \Delta x_2 \geq \Delta x_1; \quad T_5(x_1, x_2, x_3) = (x_1 - x_2, x_2, x_3 - x_1), \\
\Delta x_2 \geq \Delta x_3 \geq \Delta x_1; \quad T_6(x_1, x_2, x_3) = (x_1, x_2 - x_1, x_3 - x_2).
\]

In what follows, we will focus on the particular case where \(\pi \) is the identity permutation. The hyper-region corresponding to the identity permutation will be denoted by \(R_\pi \). The other permutations are numbered in an arbitrary order and are handled similarly.

Lemma 4.4. Point \(p \in \mathbb{R}^k \) is in hyper-region \(R_1 \) of point \(s \) if and only if \(T_1(p) \) is in the first hyper-corner of \(T_1(s) \), where \(T_1(x_1, x_2, \ldots, x_k) = (x_1 - x_2, x_2 - x_3, \ldots, x_k - x_{k-1} - x_k) \).

Proof. \(T_1(p) \) is in the first hyper-corner of \(T_1(s) \)

\[
\iff T_1(s, x_l) \geq T_1(p, x_l) \quad \text{for all } 1 \leq l \leq k \\
\iff s, x_l - s, x_{l+1} \geq p, x_l - p, x_{l+1} \quad \text{and } s, x_k \geq p, x_k \quad \text{for all } 1 \leq l < k \\
\iff (s, x_1 - p, x_1) \geq (s, x_2 - p, x_2) \geq \cdots \geq (s, x_k - p, x_k) \\
\iff \Delta x_1(s, p) \geq \Delta x_2(s, p) \geq \cdots \geq \Delta x_k(s, p).
\]

The last statement holds if and only if \(p \) is in hyper-region \(R_1 \) of \(s \).

For each hyper-region \(R_j \), we compute the corresponding geometric cost \(gc_j(f) \) of every fragment \(f \). Note that for every index \(j \) a \(k \)-dimensional analogue to Lemma 4.3 holds. Furthermore, for each transformation \(T_j \), we keep a data structure \(D_j \) that stores the transformed end points \(T_j(end(f)) \) of all fragments \(f \). Algorithm 4 generalizes the 2-dimensional chaining algorithm described above to \(k \) dimensions. For every start point \(beg(f') \) of a fragment \(f' \), Algorithm 4 searches for a fragment \(f \) in the first hyper-corner
of \(\text{beg}(f') \) such that \(f.'\text{score} - g_{\text{sup}}(f', f) \) is maximal. This entails \(k! \) RMQs because the first hyper-corner is divided into \(k! \) hyper-regions. Analogously, for every end point \(\text{end}(f') \) of a fragment \(f' \), Algorithm 4 performs \(k! \) activation operations. Therefore, the total time complexity of Algorithm 4 is \(O(k! n \log^{k-1} n \log \log n) \) and its space requirement is \(O(k! n \log n) \). This result improves the running time of Myers and Miller’s algorithm [23] by a factor \(\frac{\log n}{\log \log n} \).

Algorithm 4 (\(k \)-dim. chaining of \(n \) fragments w.r.t. the sum-of-pairs gap cost).

Sort all start and end points of the \(n \) fragments in ascending order w.r.t. their \(x_1 \) coordinate and store them in the array points; because we include the end point of the origin and the start point of the terminus, there are \(2n + 2 \) points.

for \(j := 1 \) to \(k! \)
 apply transformation \(T_j \) to the end points of the fragments and store the resulting points as inactive in the \(k \)-dimensional data structure \(D_j \)

for \(i := 1 \) to \(2n + 2 \)
 if points\([i]\) is the start point of fragment \(f' \) then
 \[\text{maxRMQ} := -\infty \]
 for \(j := 1 \) to \(k! \)
 \[q := \text{RMQ}(0, T_j(\text{points}[i] - \vec{1})) \text{ in } D_j \]
 determine the fragment \(f_q \) with \(T_j(\text{end}(f_q)) = q \)
 \[\text{maxRMQ} := \max\{\text{maxRMQ}, f_q.'\text{score} - g_{\text{sup}}(f', f_q)\} \]
 if \(f_q.'\text{score} - g_{\text{sup}}(f', f_q) = \text{maxRMQ} \) then \(f := f_q \)
 \[f.'\text{prec} := f \]
 \[f.'\text{score} := f.'\text{weight} + \text{maxRMQ} \]
 else /* points\([i]\) is end point of a fragment \(f' \) */
 for \(j := 1 \) to \(k! \)
 activate \(T_j(\text{points}[i]) \) in \(D_j \) with priority \(f.'\text{score} - g_c(f') \)

5. The local chaining algorithm

In the previous sections, we have tackled the global chaining problem, which asks for an optimal chain starting at the origin \(0 \) and ending at terminus \(t \). However, in many applications (such as searching for local similarities in genomic sequences) one is interested in chains that can start and end with arbitrary fragments. If we remove the restriction that a chain must start at the origin and end at the terminus, we get the local chaining problem; see Fig. 7.

Definition 5.1. Given \(n \) weighted fragments and a gap cost function \(g \), the local fragment-chaining problem is to determine a chain of maximum score \(\geq 0 \). Such a chain will be called optimal local chain.

Note that if \(g \) is the constant function 0, then an optimal local chain must also be an optimal global chain, and vice versa. Our solution to the local chaining problem is a variant of
Fig. 7. Computation of local chains of colinear non-overlapping fragments. The optimal local chain is composed of the fragments 1, 4, and 6. Another significant local chain consists of the fragments 7 and 8.

the global chaining algorithm. For ease of presentation, we will use gap costs corresponding to the L_1 metric (see Section 4.1), but the approach also works with the sum-of-pairs gap cost (see Section 4.2).

Definition 5.2.

$$f'.score = \max \{ \text{score}(C) : C \text{ is a chain ending with } f' \}.$$

A chain C ending with f' and satisfying $f'.score = \text{score}(C)$ will be called **optimal chain ending with** f'.

Lemma 5.3. The following equality holds:

$$f'.score = f'.weight + \max \{0, f.score - g_1(f', f) : \ll f'\}. \tag{2}$$

Proof. Let $C' = f_1, f_2, \ldots, f_{\ell}, f'$ be an optimal chain ending with f', that is, $\text{score}(C') = f'.score$. Because the chain that solely consists of fragment f' has score $f'.weight \geq 0$, we must have $\text{score}(C') \geq f'.weight$. If $\text{score}(C') = f'.weight$, then $f.score - g_1(f', f) \leq 0$ for every fragment f that precedes f', because otherwise it would follow $\text{score}(C') > f'.weight$. Hence equality (2) holds in this case. So suppose $\text{score}(C') > f'.weight$. Clearly, $\text{score}(C') = f'.weight + \text{score}(C) - g_1(f', f_{\ell})$, where $C = f_1, f_2, \ldots, f_{\ell}$. It is not difficult to see that C must be an optimal chain that is ending with f_{ℓ} because otherwise C' would not be optimal. Therefore, $\text{score}(C') = f'.weight + f_{\ell}.score - g_1(f', f_{\ell})$. If there were a fragment f that precedes f' such that $f.score - g_1(f', f) > f_{\ell}.score - g_1(f', f_{\ell})$, then it would follow that C' is not optimal. We conclude that equality (2) holds.

With the help of Lemma 5.3, we obtain Algorithm 5. It is not difficult to verify that we can implement this algorithm by means of the techniques of the previous sections such that it solves the local fragment-chaining problem in the same time and space complexities as our solution to the global fragment-chaining problem.
Algorithm 5 (Finding an optimal local chain).

for every fragment f' do begin
 determine \tilde{f} with $\hat{g}(\tilde{f}, f) = \max\{g(f', f) | f \ll f'\}$
 $\max := \max\{0, \hat{f}.score - \hat{g}(f', \tilde{f})\}$
 if $\max > 0$ then $f'.prec := \tilde{f}, f'.score := f'.weight + \max$
end

Determine a fragment \tilde{f} such that $\tilde{f}.score = \max\{f.score | f \text{ is a fragment}\}$
Report an optimal local chain by following the pointers $\tilde{f}.prec$ until a fragment f with $f.prec = NULL$ is reached.

We stress that **Algorithm 5** can easily be modified, so that it can report all chains whose score exceeds some threshold T (in **Algorithm 5**, instead of determining a fragment \tilde{f} of maximum score, one determines all fragments whose score exceeds T). Such chains will be called significant local chains; see Fig. 7. As outlined in Section 1, under stringent thresholds, significant local chains of colinear non-overlapping fragments represent candidate regions of conserved synteny. Furthermore, the automatic identification of regions of similarity is a first step toward an automatic detection of genome rearrangements. The interested reader is referred to [2], where we have provided evidence that our local chaining method can be used to detect genome rearrangements such as transpositions and inversions.

6. Conclusions

In this article, we have presented line-sweep algorithms that solve both the global and the local fragment-chaining problem of multiple genomes. For $k > 2$ genomes, our algorithms take

- $O(n \log^{k-2} n \log \log n)$ time and $O(n \log^{k-2} n)$ space without gap costs,
- $O(n \log^{k-2} n \log \log n)$ time and $O(n \log^{k-2} n)$ space for gap costs in the L_1 metric,
- $O(kn \log^{k-1} n \log \log n)$ time and $O(kn \log^{k-1} n)$ space for the sum-of-pairs gap cost and for gap costs in the L_∞ metric.

For $k = 2$, they take $O(n \log n)$ time and $O(n)$ space for gap costs in the L_1 metric. If the fragments are already sorted, then the time complexity reduces to $O(n \log \log n)$. For the sum-of-pairs gap cost and for gap costs in the L_∞ metric, our algorithms take $O(n \log n \log \log n)$ time and $O(n \log \log n)$ space.

We stress that our algorithms can employ any other data structure that supports orthogonal range-searching. For example, if the kd-tree is used instead of the range tree, the algorithms take $O((k - 1)n^{2-1/(k-1)})$ time and $O(n)$ space for gap costs in the L_1 metric. (It has been shown in [20] that answering one d-dimensional range query with the kd-tree takes $O(dn^{1-1/d})$ time in the worst case.) Moreover, for small k, a collection of programming tricks can speed up the running time in practice; for more details we refer the reader to [6].
Among other things, the software tool CHAINER [3] contains an implementation of the chaining algorithms presented here. Currently, this implementation uses gap costs in the L_1 metric and is based on kd-trees. It remains future work to experimentally compare this kd-tree version with an implementation based on range trees.

Acknowledgements

The authors were supported by DFG-grant Oh 54/4-1. Thanks go to an anonymous reviewer whose suggestions helped to improve the presentation of this article.

References

