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In the flavor basis where the mass eigenstates of three charged leptons are identified with their flavor
eigenstates, one may diagonalize a 3 × 3 Majorana neutrino mass matrix Mν by means of the standard
parametrization of the 3 × 3 neutrino mixing matrix V . In this treatment the unphysical phases of Mν

have to be carefully factored out, unless a special phase convention for neutrino fields is chosen so as
to simplify Mν to M ′

ν without any unphysical phases. We choose this special flavor basis and establish

some exact analytical relations between the matrix elements of M ′
ν M ′ †

ν and seven physical parameters —
three neutrino masses (m1, m2, m3), three flavor mixing angles (θ12, θ13, θ23) and the Dirac CP-violating
phase (δ). Such results allow us to derive the conditions for the μ–τ flavor symmetry with θ23 = π/4
and maximal CP violation with δ = ±π/2, which should be useful for discussing specific neutrino mass
models. In particular, we show that θ23 = π/4 and δ = ±π/2 keep unchanged when constant matter
effects are taken into account for a long-baseline neutrino oscillation experiment.

© 2010 Elsevier B.V.

1. Recent neutrino oscillation experiments [1] have provided us with very convincing evidence that neutrinos are massive and lepton
flavors are mixed. Similar to the phenomenon of quark flavor mixing, which is described by the 3 × 3 Cabibbo–Kobayashi–Maskawa (CKM)
matrix [2], the phenomenon of lepton flavor mixing can also be described by a 3 × 3 unitary matrix V , the so-called Maki–Nakagawa–
Sakata–Pontecorvo (MNSP) matrix [3].1 A full parametrization of the MNSP matrix V needs three rotation matrices in the complex (1,2),
(1,3) and (2,3) planes:

O 12 =
⎛
⎝ c12 s12 0

−s12 c12 0
0 0 1

⎞
⎠ , O 13 =

⎛
⎝ c13 0 ŝ∗

13

0 1 0
−ŝ13 0 c13

⎞
⎠ , O 23 =

⎛
⎝1 0 0

0 c23 s23

0 −s23 c23

⎞
⎠ , (1)

where ci j ≡ cos θi j , si j ≡ sin θi j and ŝ13 ≡ s13eiδ (for i j = 12,13,23). The unitary MNSP matrix V can then be parametrized as

V = PlU Pν, (2)

where Pl = Diag{eiφe , eiφμ, eiφτ } and Pν = Diag{eiρ, eiσ ,1} are two diagonal phase matrices, and

U = O 23 O 13 O 12 =
⎛
⎝ c12c13 s12c13 ŝ∗

13

−s12c23 − c12s23 ŝ13 c12c23 − s12s23 ŝ13 s23c13

s12s23 − c12c23 ŝ13 −c12s23 − s12c23 ŝ13 c23c13

⎞
⎠ (3)

is just the standard parametrization of the CKM matrix [1]. Without loss of generality, one may arrange three mixing angles (θ12, θ13,
θ23) to lie in the first quadrant and allow three CP-violating phases (δ, ρ , σ ) to vary between 0 and 2π . In the mass eigenstates of three
charged leptons and three neutrinos, V appears in the charged-current interactions

* Corresponding author.
E-mail address: xingzz@ihep.ac.cn (Z.-z. Xing).

1 Different from the CKM matrix, which must be unitary in the standard electroweak model, the MNSP matrix V can be either unitary or non-unitary in a given neutrino
mass model. For example, V is unitary in the type-II seesaw mechanism, but it must be non-unitary in the type-I, type-(I+II), type-III and multiple seesaw models [4]
although the effects of its unitarity violation are at most at the percent level [5]. In this Letter we simply assume that V is unitary at low energies.
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Lcc = − g√
2
( e μ τ )L γ μV

(
ν1
ν2
ν3

)
L

W −
μ + h.c. (4)

Hence the phase matrix Pl is unphysical and can be rotated away by redefining the phases of three charge-lepton fields. If neutrinos are
the Dirac particles, the phase matrix Pν can also be rotated away be redefining the phases of three neutrino fields. In this case we are
left with U as the MNSP matrix. If neutrinos are the Majorana particles, however, Pν is physical because it characterizes two irremovable
relative phases of three Majorana neutrino fields [6]. In this case we are left with V ′ = U Pν , which contains three mixing angles and
three CP-violating phases. We shall assume neutrinos to be the Majorana particles throughout this Letter (U in the Dirac case can simply
be reproduced from V ′ in the Majorana case by setting Pν = 1).

In the flavor basis where the mass eigenstates of three charged leptons are identified with their flavor eigenstates, V ′ = U Pν links the
neutrino flavor eigenstates (νe, νμ,ντ ) to the neutrino mass eigenstates (ν1, ν2, ν3). The effective Majorana neutrino mass term can be
written as

Lν = 1

2
( νe νμ ντ )LMν

⎛
⎝ (νe)

c

(νμ)c

(ντ )c

⎞
⎠

R

+ h.c., (5)

where (να)c ≡ Cνα
T denotes the charge-conjugate counterpart of να (for α = e,μ, τ ), and Mν is a symmetric 3 × 3 matrix which totally

has six complex entries or twelve real parameters:

Mν =
(a b c

b d e
c e f

)
. (6)

In the chosen basis one may obtain three neutrino masses (m1, m2, m3), three neutrino mixing angles (θ12, θ13, θ23) and three CP-violating
phases (δ, ρ , σ ) by diagonalizing Mν . We stress that it is not a trivial job to diagonalize Mν and derive the generic expressions of nine
physical parameters in terms of the elements of Mν . Such an attempt has been made by Aizawa and Yasuè [7], but their treatment is
subject to the transformation2

V ′ †Mν V ′ ∗ = M̂ν ≡
(m1 0 0

0 m2 0
0 0 m3

)
. (7)

In view of the fact that V ′ = U Pν and M̂ν totally consist of nine physical parameters but Mν generally contains twelve free parameters,
one immediately encounters a parameter mismatching problem. This ambiguity will be clarified in this Letter.

The purpose of our work is two-fold. First, we point out that one should use the transformation V †Mν V ∗ = M̂ν instead of the one
in Eq. (7) to diagonalize the 3 × 3 Majorana neutrino mass matrix Mν . In this case the aforementioned parameter mismatching problem
does not occur, because V = Pl V ′ contains three unphysical phases which can exactly eliminate the unphysical phases of Mν . Second, we
choose a special flavor basis of three neutrino fields to factor out the unphysical phases of Mν such that Mν is reduced to M ′

ν which only

contains nine free parameters. Then we diagonalize the Hermitian matrix H ′
ν ≡ M ′

ν M ′ †
ν via the transformation U † H ′

νU = M̂2
ν . Different

from Ref. [7], here a much simpler and more transparent way is found to establish some exact analytical relations between the physical
parameters of U and M̂ν and the matrix elements of H ′

ν . Our results can be used to work out the conditions for the μ–τ flavor symmetry
with θ23 = π/4 and maximal CP violation with δ = ±π/2. Their usefulness is illustrated by taking a simple example of Mν . In particular,
we show that θ23 = π/4 and δ = ±π/2 keep unchanged when constant matter effects are taken into account for a long-baseline neutrino
oscillation experiment.

2. Let us diagonalize Mν by means of the transformation V †Mν V ∗ = M̂ν . Namely, Mν can be parametrized as follows:

Mν = V M̂ν V T = Pl V
′M̂ν V ′ T P T

l = Pl M
′
ν P T

l , (8)

where V = Pl V ′ with V ′ = U Pν , and M ′
ν ≡ V ′M̂ν V ′ T . Since U , Pν and M̂ν contain four, two and three real parameters respectively, M ′

ν
totally consists of nine parameters which are all physical or experimentally observable. Given three unphysical phases in Pl , the total
number of real parameters of Mν is therefore twelve. In other words, Mν can be reduced to M ′

ν after its three unphysical phases are
factored out. This parameter counting is certainly consistent with Eq. (6), in which six independent elements of Mν are totally composed
of twelve real parameters. After substituting Eq. (8) into Eq. (5), we obtain

Lν = 1

2

(
ν ′

e ν ′
μ ν ′

τ L
)

M ′
ν

⎛
⎝ (ν ′

e)
c

(ν ′
μ)c

(ν ′
τ )c

⎞
⎠

R

+ h.c., (9)

where ν ′
α = ναe−iφα (for α = e,μ, τ ). In this new basis of three neutrino fields, the corresponding Majorana neutrino mass matrix can be

parametrized as

M ′
ν = V ′M̂ν V ′ T = U Pν M̂ν P T

ν U T . (10)

2 Note that the notations used in Ref. [7] are different from ours.



586 Z.-z. Xing, Y.-L. Zhou / Physics Letters B 693 (2010) 584–590
Now it becomes obvious that the treatment in Ref. [7] is equivalent to a choice of the special flavor basis given in Eq. (9). This observation
does not change even if one considers the following Hermitian matrices:

H ′
ν ≡ M ′

ν M ′ †
ν = V ′M̂2

ν V ′ † = U Pν M̂2
ν P †

νU † = U M̂2
νU †,

Hν ≡ Mν M†
ν = V M̂2

ν V † = Pl V
′M̂2

ν V ′ † P †
l = Pl H

′
ν P †

l . (11)

Two comments are in order.

• H ′
ν only contains seven real parameters and has nothing to do with the Majorana phase matrix Pν . Hence one may establish the

direct relations between the elements of H ′
ν and the physical parameters of U and M̂ν (i.e., m1, m2, m3; θ12, θ13, θ23 and δ), no

matter whether massive neutrinos are the Dirac or Majorana particles.
• To diagonalize Hν or Mν itself, one has to take into account the unphysical phase matrix Pl . In the literature many authors have

chosen the flavor basis defined in Eq. (9) to reconstruct the effective Majorana neutrino mass matrix M ′
ν . This special phase convention

or basis choice is useful in the study of neutrino phenomenology, but one should keep in mind that a neutrino mass model generally
predicts Mν in the flavor basis defined in Eq. (5).

After clarifying the difference between the flavor bases associated with Mν (or Hν ) and M ′
ν (or H ′

ν ), we shall follow a phenomenological
way to derive the exact analytical expressions of three neutrino masses, three flavor mixing angles and the Dirac CP-violating phase in
terms of the matrix elements of H ′

ν . Our present treatment is much simpler and more transparent than the one given Ref. [7], and it leads
us to two constraint equations for the matrix elements of H ′

ν which were not presented in Ref. [7].
To be more specific, we denote the matrix elements of the Hermitian matrix H ′

ν as

H ′
ν =

( A B C
B∗ D E
C∗ E∗ F

)
, (12)

where A, D and F are real, and B , C and E are in general complex. Note that H ′
ν = P †

l Hν Pl = P †
l Mν M†

ν Pl holds, and the matrix elements
of Mν have been expressed in Eq. (6). Therefore,

A = |a|2 + |b|2 + |c|2, B = (
ab∗ + bd∗ + ce∗)ei(φμ−φe), C = (

ac∗ + be∗ + cf ∗)ei(φτ −φe),

D = |b|2 + |d|2 + |e|2, E = (
bc∗ + de∗ + ef ∗)ei(φτ −φμ), F = |c|2 + |e|2 + | f |2. (13)

Let us reiterate that the above six matrix elements of H ′
ν are not fully independent. Because H ′

ν totally consists of seven real parameters,
there must exist two constraint equations among A, B , C , D , E and F . This point can also be understood in another way. The Majorana
phases of Mν (i.e., ρ and σ ) are completely canceled in the elements of H ′

ν , and the unphysical phases of Mν (i.e., φe , φμ and φτ ) are
also canceled in those elements. So the number of real parameters of H ′

ν is not nine but seven, leading to two correlative equations of its
six matrix elements. Now we substitute U = O 23 O 13 O 12 into the expression of H ′

ν in Eq. (11). Then we arrive at

O †
23 H ′

ν O 23 = O 13 O 12M̂2
ν O †

12 O †
13 = O 13Nν O †

13, (14)

where

Nν ≡ O 12M̂2
ν O †

12 =
⎛
⎜⎝

m2
1 + s2

12�m2
21 c12s12�m2

21 0

c12s12�m2
21 m2

1 + c2
12�m2

21 0

0 0 m2
3

⎞
⎟⎠ ≡

⎛
⎝ N11 N12 0

N12 N22 0

0 0 N33

⎞
⎠ (15)

with �m2
21 ≡ m2

2 − m2
1. The left- and right-hand sides of Eq. (14) explicitly read

O †
23 H ′

ν O 23 =
⎛
⎜⎝

A c23 B − s23C s23 B + c23C

c23 B∗ − s23C∗ c2
23 D + s2

23 F − 2c23s23 Re(E) c23s23(D − F ) + c2
23 E − s2

23 E∗

s23 B∗ + c23C∗ c23s23(D − F ) + c2
23 E∗ − s2

23 E s2
23 D + c2

23 F + 2c23s23 Re(E)

⎞
⎟⎠ ,

O 13Nν O †
13 =

⎛
⎜⎝

c2
13N11 + s2

13N33 c13N12 c13 ŝ∗
13(N33 − N11)

c13N12 N22 −ŝ∗
13N12

c13 ŝ13(N33 − N11) −ŝ13N12 c2
13N33 + s2

13N11

⎞
⎟⎠ . (16)

The equality (O †
23 H ′

ν O 23)12 = (O 13Nν O †
13)12 yields

c13N12 = c23 B − s23C . (17)

Since the left-hand side of Eq. (17) is real and positive, we immediately obtain Im(c23 B − s23C) = 0. As a result, the neutrino mixing
angle θ23 is simply given by

tan θ23 = Im(B)
. (18)
Im(C)
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On the other hand, the equality (O †
23 H ′

ν O 23)13 = (O 13Nν O †
13)13 yields

c13 ŝ∗
13(N33 − N11) = s23 B + c23C . (19)

This equation allows us to obtain the Dirac CP-violating phase:

tan δ = − s23 Im(B) + c23 Im(C)

s23 Re(B) + c23 Re(C)
= − [Im(B)]2 + [Im(C)]2

Re(B) Im(B) + Re(C) Im(C)
. (20)

With the help of the equality (O †
23 H ′

ν O 23)23 = (O 13Nν O †
13)23, we have

−ŝ∗
13N12 = c23s23(D − F ) + c2

23 E − s2
23 E∗, (21)

which can also lead us to an expression of δ:

tan δ = − Im(E)

c23s23(D − F ) + (c2
23 − s2

23)Re(E)

= − Im(E){[Im(B)]2 + [Im(C)]2}
Im(B) Im(C)(D − F ) − {[Im(B)]2 − [Im(C)]2}Re(E)

. (22)

A straightforward comparison between Eqs. (20) and (22) yields a constraint equation for the matrix elements of H ′
ν :

D − F = {Re(B) Im(B) + Re(C) Im(C)} Im(E) + {[Im(B)]2 − [Im(C)]2}Re(E)

Im(B) Im(C)
. (23)

Combining Eqs. (17) and (21), we obtain the smallest neutrino mixing angle θ13 as follows:

tan θ13 =
∣∣∣∣ c23s23(D − F ) + c2

23 E − s2
23 E∗

c23 B − s23C

∣∣∣∣
= ∣∣Im(E)

∣∣√{[Im(B)]2 + [Im(C)]2}2 + {Re(B) Im(B) + Re(C) Im(C)}2√{[Im(B)]2 + [Im(C)]2}{Re(B) Im(C) − Im(B)Re(C)}2
. (24)

It should be noted that θ13 can also be derived in another way. The difference between the equalities (O †
23 H ′

ν O 23)11 = (O 13Nν O †
13)11 and

(O †
23 H ′

ν O 23)33 = (O 13Nν O †
13)33 reads(

c2
13 − s2

13

)
(N33 − N11) = s2

23 D + c2
23 F + 2c23s23 Re(E) − A. (25)

Combining Eqs. (19) and (25), we obtain

tan 2θ13 =
∣∣∣∣ 2(s23 B + c23C)

s2
23 D + c2

23 F + 2c23s23 Re(E) − A

∣∣∣∣
= 2|B Im(B) + C Im(C)|√[Im(B)]2 + [Im(C)]2

|(D − A)[Im(B)]2 + (F − A)[Im(C)]2 + 2 Im(B) Im(C)Re(E)| . (26)

In view of tan 2θ13 = 2 tan θ13/(1− tan2 θ13), one may do a straightforward but lengthy calculation to work out another constraint equation
for the elements of H ′

ν from Eqs. (24) and (26). The result is

A = Re(B) Im(C) − Im(B)Re(C)

Im(E)
+ [Im(B)]2 D + [Im(C)]2 F + 2 Im(B) Im(C)Re(E)

[Im(B)]2 + [Im(C)]2

− {[Im(B)]2 + [Im(C)]2}2 + {Re(B) Im(B) + Re(C) Im(C)}2

{[Im(B)]2 + [Im(C)]2}{Re(B) Im(C) − Im(B)Re(C)} Im(E). (27)

Eqs. (23) and (27) clearly reflect the fact that H ′
ν only contains seven independent real parameters.

We proceed to derive the expressions of θ12 and m2
i (for i = 1,2,3) by using Eq. (15). To do so, we have to first express N11, N12,

N22 and N33 in terms of the matrix elements of H ′
ν . These four quantities can be derived from Eq. (16) with the help of two constraint

equations and the results of θ13, θ23 and δ obtained above. After an algebraic exercise, we find

N11 = A − Re(B) Im(C) − Im(B)Re(C)

Im(E)
,

N12 =
[ [Re(B) Im(C) − Im(B)Re(C)]2

[Im(B)]2 + [Im(C)]2
+

[ {Re(B) Im(B) + Re(C) Im(C)}2

{[Im(B)]2 + [Im(C)]2}2
+ 1

][
Im(E)

]2
]1/2

,

N22 = [Im(C)]2 D + [Im(B)]2 F − 2 Im(B) Im(C)Re(E)

[Im(B)]2 + [Im(C)]2
,

N33 = [Im(B)]2 D + [Im(C)]2 F + 2 Im(B) Im(C)Re(E)

2 2
+ Re(B) Im(C) − Im(B)Re(C)

. (28)
[Im(B)] + [Im(C)] Im(E)
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Then Eq. (15) leads us to

tan 2θ12 = 2c12s12

c2
12 − s2

12

= 2N12

N22 − N11
, (29)

which can be expressed in terms of the elements of H ′
ν via Eq. (28). Furthermore, three neutrino masses can simply be obtained from

m2
1 = 1

2
(N11 + N22) − 1

2

√
(N22 − N11)2 + 4N2

12, m2
2 = 1

2
(N11 + N22) + 1

2

√
(N22 − N11)2 + 4N2

12, m2
3 = N33. (30)

So we complete the derivation of two constraint equations for the elements of H ′
ν and their exact relations with seven physical quanti-

ties m2
i (for i = 1,2,3), θi j (for i j = 12,13,23) and δ.

3. Now we consider an especially interesting case of neutrino mixing and CP violation: θ23 = π/4 and δ = ±π/2. In fact, θ23 cor-
responds to the μ–τ flavor symmetry in the neutrino sector in the chosen flavor basis (e.g., |Vμi| = |Vτ i| holds (for i = 1,2,3) in this
case [8]); and δ = ±π/2 implies the maximal strength of CP violation in neutrino oscillations for given values of θ12, θ13 and θ23 (i.e., the
leptonic Jarlskog parameter is maximal in this case [9]). From Eqs. (18) and (20), we see that θ23 = π/4 and δ = ±π/2 lead us to

Im(B) = Im(C), Re(B) = −Re(C); (31)

or equivalently B = −C∗ . In this case Eqs. (23) and (27) are simplified to D = F and

A = D + Re(E) + 2
Re(B) Im(B)

Im(E)
− Im(B) Im(E)

Re(B)
. (32)

As a consequence,

tan θ13 = 1√
2

∣∣∣∣ Im(E)

Re(B)

∣∣∣∣, tan 2θ12 = 2
|Re(B)|√2[Re(B)]2 + [Im(E)]2

| Im(B) Im(E) − 2 Re(B)Re(E)| ; (33)

and

m2
1 = 1

2

[
2D − Im(B) Im(E)

Re(B)
−

√[
Im(B) Im(E)

Re(B)
− 2 Re(E)

]2

+ 4
{

2
[
Re(B)

]2 + [
Im(E)

]2}]
,

m2
2 = 1

2

[
2D − Im(B) Im(E)

Re(B)
+

√[
Im(B) Im(E)

Re(B)
− 2 Re(E)

]2

+ 4
{

2
[
Re(B)

]2 + [
Im(E)

]2}]
,

m2
3 = A − Im(B) Im(E)

Re(B)
. (34)

These simplified results are expected to be useful in discussing a specific neutrino mass model with the μ–τ flavor symmetry and maximal
CP violation.

Given the μ–τ flavor symmetry and maximal CP violation, the form of H ′
ν explicitly reads

H′
ν =

⎛
⎝ A B −B∗

B∗ D E

−B E∗ D

⎞
⎠ , (35)

in which A, B D and E are related to one another through Eq. (32). Hence H′
ν totally contains five real and independent parameters. The

corresponding form of Hν defined in Eq. (11) is

Hν = Pl H′
ν P †

l =
⎛
⎝ A Bei(φe−φμ) −B∗ei(φe−φτ )

B∗ei(φμ−φe) D Eei(φμ−φτ )

−Bei(φτ −φe) E∗ei(φτ −φμ) D

⎞
⎠ . (36)

The meaning of this matrix is clear: if the texture of a Majorana neutrino mass matrix Mν derived from a specific neutrino mass model
satisfies Mν M†

ν = Hν as given in Eq. (36), then it must predict θ23 = π/4 and δ = ±π/2 in the standard parametrization of the MNSP
matrix. This prediction is independent of the constraint equation in Eq. (32). Because three unphysical phases φα (for α = e,μ, τ ) can
be arbitrarily rearranged, one may simply compare a model-dependent texture of Hν with Eq. (36) to judge whether they are consistent
with each other.

To illustrate, let us consider a typical texture of the effective Majorana neutrino mass matrix:

Mν =
( a b −b∗

b d e
−b∗ e d∗

)
(37)

with a and e being real, which has been discussed in a number of neutrino mass models with discrete flavor symmetries [10]. Therefore,
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Hν = Mν M†
ν =

⎛
⎝ A B −B∗

B∗ D E
−B E ∗ D

⎞
⎠ , (38)

where

A = a2 + 2|b|2, B = (a − e)b∗ + bd∗, D = |b|2 + |d|2 + e2, E = −b2 + 2de. (39)

Comparing Eq. (38) with Eq. (36), we immediately see that they are consistent with each other if

2φe = φμ + φτ (40)

is taken. In this case Hν in Eq. (36) totally contains six real and independent parameters: five of them come from H′
ν given in Eq. (35),

and the left is just (φμ − φτ ) because φe − φμ = −(φμ − φτ )/2 and φe − φτ = (φμ − φτ )/2 hold. In comparison, Hν in Eq. (38) consists of
six real and independent parameters too. That is why it is improper to take φe = φμ = φτ (or to simply assume all of them to vanish [7])
and then equalize Eqs. (36) and (38). Otherwise, the resultant parameter mismatching problem would violate Eq. (32) and make the results
in Eqs. (33) and (34) invalid. We stress that Eq. (40) is the proper phase convention which allows us to reduce Hν to H′

ν in Eq. (35) after

the transformation H′
ν = P †

l Hν Pl . Hence we must be able to arrive at the μ–τ flavor symmetry with θ23 = π/4 and maximal CP violation
with δ = ±π/2. This example clearly shows that Hν and H′

ν correspond to two different flavor bases as generally defined in Eqs. (5)
and (9), and only in the latter basis the exact analytical results of m2

i (for i = 1,2,3), θi j (for i j = 12,13,23) and δ obtained above are
safely applicable.

We remark that θ23 = π/4 is strongly favored by current neutrino oscillation data [11]. Although δ = ±π/2 is purely a phenomenolog-
ical conjecture, it corresponds to maximal leptonic CP violation and thus is very interesting. In fact, it is possible to obtain δ = ±π/2 from
a number of neutrino mass models [12]. If neither the μ–τ flavor symmetry nor maximal CP violation is realistic, one may still use the
exact analytical relations between the elements of H ′

ν and seven physical quantities to discuss a specific neutrino mass model. To do so,
however, one must carefully choose the flavor basis of three neutrino fields so as to eliminate or factor out the relevant unphysical phases
hidden in the original Majorana neutrino mass matrix.

Of course, one may follow the same procedure to directly diagonalize Hν = V M̂2
ν V † = Pl H ′

ν P †
l in a generic flavor basis. In this case the

analytical results of mi (for i = 1,2,3), θi j (for i j = 12,13,23) and δ are more complicated and less useful than the ones obtained above,
simply because the phases of Pl must be involved to cancel the unphysical phases hidden in the matrix elements of Hν . Such an exercise
has been done in Ref. [13]. Switching off the unphysical phases and taking account of the constraint equations, we find that it is possible
to reach an agreement between the results obtained in Ref. [13] and ours.

Finally, we point out an immediate and interesting application of Eq. (36) to the analysis of terrestrial matter effects on neutrino mixing
and CP violation. Assuming a constant matter density profile, we may write out the effective Hamiltonian responsible for the propagation
of a neutrino beam in matter in the same way as that in vacuum:

Hv = 1

2E
V

⎛
⎝m2

1 0 0
0 m2

2 0
0 0 m2

3

⎞
⎠ V †,

Hm = 1

2E
Ṽ

⎛
⎝m̃2

1 0 0
0 m̃2

2 0
0 0 m̃2

3

⎞
⎠ Ṽ † = 1

2E
V

⎛
⎝m2

1 0 0
0 m2

2 0
0 0 m2

3

⎞
⎠ V † +

( a 0 0
0 0 0
0 0 0

)
, (41)

where E is the neutrino beam energy, a = √
2 GFne stands for the terrestrial matter effects [14], m̃i (for i = 1,2,3) denote the effective

neutrino masses in matter, and Ṽ represents the effective neutrino mixing matrix in matter [15]. Given θ23 = π/4 and δ = ±π/2 for V
in vacuum, the texture of Hv must be the same as Hν in Eq. (36). In this case Hm takes the same texture as Hv, but its (1,1) element
is different from that of Hv. This difference implies that the constraint equation in Eq. (32) does not hold for the matrix elements of Hm,
and thus we are left with m̃i �= mi , θ̃12 �= θ12 and θ̃13 �= θ13. In contrast, the basic texture of Hv or Hm can be reduced to H′

ν after a proper
phase transformation, so θ̃23 = θ23 = π/4 and δ̃ = δ = ±π/2 must hold. This observation is apparently consistent with the Toshev equality
sin 2θ̃23 sin δ̃ = sin 2θ23 sin δ [16]. Our conclusion is that the μ–τ flavor symmetry with θ23 = π/4 and maximal CP violation with δ = ±π/2
keep unchanged when constant matter effects are taken into account for a long-baseline neutrino oscillation experiment. We shall explore
more generic applications of our results obtained in this Letter to the description of neutrino oscillations in matter elsewhere [17].
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