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Effects of adrenergic nervous system and catecholamines
on systemic and renal hemodynamics, sodium and
water excretion and renin secretion
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The influences of the adrenergic nervous system on
various organ systems in the body are protean. No
attempt will be made in this review to survey these
many effects; but rather the focus will be on the specific
influences that adrenergic tone and catecholamines
exert on systemic and renal hemodynamics, the excre-
tion of sodium and water excretion and the secretion of
renin, Where possible, emphasis will be placed on the
integration of these functionsintoateleologically orien-
ted system of control of systemic hemodynamics and of
body fluid volume and composition, including the im-
plications for the pathogenesis of disease states.

Effect of adrenergic nervous system and catecho-
lamines on systemic and renal hemodynamics. The
endogenous catecholamines, norepinephrine and epine-
phrine, each exert a combination of alpha- and beta-
adrenergic effects and the use of specific receptor
blocking agents has allowed pharmacological separa-
tion of these two properties. When appropriate, there-
fore, the separate effects of alpha- and beta-adrenergic
stimulation will be discussed.

The primary cardiovascular effect of beta-adrener-
gic stimulation relates to its inotropic and chrono-
tropic action on the heart [1]. The increase in cardiac
output associated with the beta-adrenergic agonist,
isoproterenol, therefore is due to a rise in both heart
rate and stroke volume. An increase in 3’5'-adenosine
monophosphate (cyclic AMP) appears to be the intra-
cellular hormonal mediator (secondary messenger) of
the increase in stroke volume produced by isopro-
terenol [2]. Beta-adrenergic stimulation has also been
demonstrated to exert a vasodilatory effect on the
peripheral vasculature [1]. This decrease in total peri-
pheral resistance may be a determining factor, in addi-
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tion to the direct cardiac effect, in the increase in
cardiac output during i.v. administration of isopro-
terenol. On the other hand, if the rise in cardiac output
during infusion of isoproterenol increases arterial
blood pressure, then the fall in peripheral vascular re-
sistance may be mediated both by the direct peripheral
vascular effect of the agonist and the baroreceptor-
mediated reflex vasodilatation. Thus, several inter-
related influences occur as a result of systemic
beta-adrenergic stimulation and the summation of
these influences may result in different effects on mean
arterial blood pressure. In some instances isoproterenol
administration may increase mean arterial pressure
as a result of the predominant effect of the drug to
increase cardiac output. In other circumstances the
peripheral vasodilatation associated with i.v. ad-
ministration of isoproterenol may predominate and
cause a diminution in mean arterial pressure. In still
other situations, the relative effect of beta-adrenergic
stimulation to increase cardiac output and decrease
peripheral vascular resistance may be such that arterial
pressure is unchanged. The extent to which either of
these effects of beta-adrenergic stimulation on syste-
mic arterial pressure predominate appears to be related,
at least in part, to the amount of the stimulating agent
administered. Because of these extrarenal effects of
beta-adrenergic stimulation on cardiac output and
peripheral vascular resistance, it is difficult to isolate
the intrarenal effects of beta-adrenergic stimulation
during the i.v. administration of these agonists. For
example, although i.v. administered isoproterenol
decreases total peripheral resistance, remal vascular
resistance may be unchanged or even increased if the
net effect of the drug is to lower arterial pressure [3].
In this circumstance, the baroreceptor-mediated in-
crease in renal sympathetic tone may obscure any
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direct intrarenal effect that isoproterenol may have to
decrease renal vascular resistance. Since none of the
known adrenergic agents exerts selective effects on the
kidney, neither the systemic administration of the
agents nor the systemic blockade of their action per-
mits delineation of any direct effects on the kidney.
Moreover, due to the prolonged action of most beta-
and alpha-adrenergic blocking agents, systemic effects
are observed even when these blocking agents are ad-
ministered into a renal artery. A selective intrarenal
adrenergic blockade, therefore, has been difficult to
obtain; thus, the intrarenal infusion of beta- and
alpha-adrenergic agonists has been the primary mode
of delineating the intrarenal effects of adrenergic
stimulation.

In contrast to the effects of beta-adrenergic stimula-
tion, the primary cardiovascular effect of alpha-
adrenergic stimulation is vasoconstriction of the peri-
pheral arterioles and venules [1]. This increase in
peripheral vascular resistance results in an increase in
arterial pressure which also may be secondarily modi-
fied by reflex changes in arterial baroreceptor tone. As
with beta-adrenergic agonists, the intrarenal effect of
alpha-adrenergic stimulation is best defined by direct
infusion of the agonist into the renal artery. Norepine-
phrine possesses both alpha- and beta-adrenergic
stimulating properties; therefore, the intrarenal alpha-
adrenergic effect of the substance is best observed in
the presence of beta-adrenergic blockade. Since the
kidney has been demonstrated to be an effective site of
inactivation of catecholamines, including isoproterenol
[4] and norepinephrine [5], intrarenal effects of these
agents can be produced in the absence of either syste-
mic effects or effects in the contralateral kidney.

Evidence has been obtained that the kidney possesses
both alpha- and beta-adrenergic receptors. The intra-
renal infusion of the beta-adrenergic agonist, isoprote-
renol, has been demonstrated to produce vasodilata-
tion of the kidney [6]. In quantitative terms this effect
of isoproterenol appears to be less potent than other
renal vasodilators such as acetylcholine [7, 8], brady-
kinin [7, 8] and prostaglandin E; [9]. In the presence of
the beta-adrenergic blocker, propranolol, large doses
of isoproterenol can be associated with renal vasocon-
striction, an alpha-adrenergic effect [6]. Whether
either the intrarenal beta- or alpha-adrenergic effect of
isoproterenol is of physiological importance remains
to be determined. In this regard, the intrarenal infusion
of the beta-blocking agent, propranolol, has not been
found to produce any detectable unilateral alterations
in renal hemodynamics in anesthetized dogs which are
known to have an increase in renal sympathetic tone
[11]. The interpretation of these results must be tem-
pered, however, by the knowledge of the relatively
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long t% value of this agent so that its accumulation may
lead to extrarenal hemodynamic alterations which
could obscure any intrarenal effects of beta blockade.

In contrast to beta-adrenergic stimulation, changes
in alpha-adrenergic tone definitely appear to exert
major physiological effects on renal hemodynamics.
Norepinephrine, the adrenergic neurohumoral trans-
mitter, is primarily an alpha-adrenergic agonist; there-
fore, increases in renal sympathetic tone produce
vasoconstriction of the renal vasculature. It appears
that several renal vascular sites for alpha-adrenergic
stimulation exist including the afferent and efferent
arterioles as well as the venules. With marked adren-
ergic stimulation, an increase in renal vascular resist-
ance no doubt occurs as a result of vasoconstriction at
all of these locations and the result is a decrease in both
glomerular filtration rate and renal blood flow. Intra-
renally administered norepinephrine and renal nerve
stimulation, however, may exert a preferential vaso-
constrictor effect on the efferent arteriole so that the
fall in glomerular filtration rate is less than the decrease
in renal blood flow; thus, filtration fraction increases.
With modest doses of norepinephrine, either infused
i.v. or into the renal artery, mild constriction of the
afferent arteriole may be counterbalanced by sufficient
constriction of the efferent arteriole so that glomerular
filtration rate is maintained constant although renal
blood flow decreases [12]. The counterpart of this
effect may occur during beta-adrenergic stimulation
with isoproterenol in which preferential vasodilatation
of the efferent arteriole leads to a rise in renal blood
flow as glomerular filtration rate remains constant
[6].

The effect of alpha-adrenergic stimulation to con-
strict renal venules is another component of the in-
crease in renal vascular resistance and, in the presence
of drug-induced renal vasodilatation, may be primarily
responsible for the observed increase in deep renal
venous pressure with a norepinephrine infusion [13].
In addition to these renal vasoconstrictor effects of
alpha-adrenergic stimulation, there have been reports
that alpha-adrenergic stimulation may not produce
homogeneous vasoconstriction throughout all of the
nephrons. Using the ®krypton washout method,
Pomeranz, Birtch and Barger [14] suggested that renal
nerve stimulation induced either by bilateral carotid
ligation or splanchnic nerve stimulation decreased
outer cortical and increased medullary blood flow. In
contrast to these results, estimation of renal blood dis-
tribution by investigators using radioactive micro-
spheres has failed to demonstrate any effect of renal
nerve stimulation [15] or norepinephrine infusion [16]
to redistribute renal cortical blood flow. However,
several investigators using either the inert gas or radio-
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active microsphere method have found a decrease in
outer cortical blood flow during hemorrhage [15-18].
Norepinephrine has been suggested to be important in
this effect of hemorrhage on cortical blood flow but
attempts to reverse this redistribution with alpha-
adrenergic blockade have produced conflicting resuits
[15, 17, 18]. The results of recent studies using the
radioactive microsphere technique suggest that the
fall in arterial pressure during hemorrhage may be re-
sponsible for the associated decrease in outer cortical
blood flow. In these studies, the lowering of renal per-
fusion pressure [15], but not the infusion of norepine-
phrine or angiotensin [16}, was shown to mimic the
effect of hemorrhage to decrease fractional blood flow
to the outer cortical nephrons.

Adrenergic stimulation also has been suggested to
cause a redistribution of blood flow away from the
renal cortex in humans with heart failure and experi-
mental models of sodium retention [19]. These results
were obtained using the inert gas technique to estimate
the distribution of renal blood flow. The administra-
tion of alpha-adrenergic blockers into the renal artery
also has been found to reverse the increase in renal
vascular resistance which occurs in patients [20] and
experimental animals [21] with heart failure. There is
also other evidence suggesting that increased renal
adrenergic tone occurs in patients with cardiac failure.
As with renal nerve stimulation and norepinephrine
infusion, an increase in filtration fraction is a consistent
occurrence in patients with severe heart failure [22].
Moreover, high concentrations of endogenous catecho-
lamines have been measured in patients with heart
failure [23]. The renal vasoconstriction which occurs
during heart failure may be mediated both by an in-
crease in renal sympathetic efferent tone, as well as
elevated concentrations of endogenous catecholamines.
Renal vasoconstriction observed in patients with ad-
vanced liver disease [24] also may be mediated, at least
in part, by an increase in renal adrenergic tone and
elevated concentrations of endogenous catecholamines.
Of course, an additional importance of other circulat-
ing vasoconstrictor agents, such as angiotensin 11, also
may be involved in the renal vasoconstriction associ-
ated with cardiac or hepatic failure.

The baseline level of renal vascular tone also may be
an important determinant of renal responses to various
stimuli. For example, in the presence of a high control
level of renal vascular resistance, alpha-adrenergic
stimulation may be less effective but any vasodilating
response may be accentuated. For example, patients
with hepatorenal syndrome actually increase their
glomerular filtration rate and renal blood flow in re-
sponse to pressor doses of the alpha-adrenergic
agonist, metaraminol [24]. In contrast, in normal sub-

jects the same dose of metaraminol exerts profound
renal vasoconstriction so that glomerular filtration
rate and renal blood flow decrease. On the other hand,
the renal vasodilatation which accompanies volume
expansion is much more pronounced in patients with
essential hypertension and increased remal vascular
resistance than in normal subjects [25]. The exagger-
ated response of arterial pressure and renal hemodyna-
mics to volume expansion in patients with autonomic
insufficiency may be related primarily to an ineffective
arterial baroreceptor mechanism [26]. Finally, alpha-
adrenergic stimulation with norepinephrine may inter-
fere with renal autoregulation but the exact mechanism
has not been defined [27].

Effects of adrenergic nervous system and catecho-
lamines on sodium reabsorption and excretion. Altera-
tions in adrenergic neural tone may influence sodium
reabsorption and excretion by several pathways.
Changes in sympathetic neural tone might alter extra-
renal mechanisms which in turn mediate changes in
renal sodium excretion. Effects of adrenergic stimula-
tion on renal hemodynamics may also affect renal
sodium excretion. Finally, a direct effect of alpha- or
beta-adrenergic stimulation on active sodium trans-
port mechanisms by the renal epithelial cell may alter
renal sodium excretion. There are several investiga-
tions which bear on the role of these potential path-
ways whereby adrenergic pathways affect renal sodium
excretion.

Spinal cord section {28, 29] and cardiac denervation
{30, 31] both have been used to incriminate extrarenal
adrenergic mechanisms in the regulation of sodium
excretion. The interruption of sympathetic afferent and
efferent pathways by cervical spinal section has been
demonstrated to impair the natriuretic response to
volume expansion with both isotonic saline [28] and
artificial whole blood [29]. The demonstration that
cardiac denervation is associated with a similar blunt-
ing of the natriuretic response to volume expansion
[30, 31] led to the suggestion that an intracardiac
volume receptor is involved in the regulation of sodium
excretion. This hypothesis was supported by the ob-
servation that spinal cord section at the cervical, but
not at the sixth thoracic, level was associated with an
impaired natriuretic response to volume expansion [28].
On the basis of these results [29-31}, the thoracic sym-
pathetic afferent pathways were thought to transmit
signals arising from alterations in extracellular fluid
volume to the central nervous system. However, since
cord section and cardiac denervation interrupt both
sympathetic afferent and efferent pathways, further
studies were necessary to document this hypothesis.
The hypothesis was found not to be tenable when
selective interruption of thoracic sympathetic afferent
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pathways by posterior rhizotomy did not impair the
natriuretic response to expansion of the extracellular
fluid volume [28]. Since interruption of vagal path-
ways also was found not to influence the natriuresis
associated with volume expansion [28, 31], the inter-
ruption of sympathetic efferent pathways seemed the
primary mediator of the impairment in sodium excre-
tion following cervical spinal cord section [28, 29] or
cardiac denervation [30, 31]. Support for this conclu-
sion is provided by the observation that selective in-
terruption of adrenergic or sympathetic efferent path-
ways by pharmacologic depletion of catecholamines is
associated with a similar impairment in sodium excre-
tion as cord section or cardiac denervation [32]. Dur-
ing volume expansion the primary hemodynamic con-
sequence of interruption of adrenergic pathways is a
diminution in total peripheral resistance and arterial
pressure which occurs in the absence of any effect on
the cardiac output [28, 32]. In this situation the diminu-
tion in renal perfusion pressure, which occurs in the
absence of detectable changes in glomerular filtration
rate, may mediate the increased tubular reabsorption
of sodium {8, 32].

In the absence of alterations in systemic arterial
pressure, the intrarenal effect of diminished adrenergic
tone may predominate and be associated with an in-
crease, rather than a decrease, in sodium excretion.
For example, when tested in the supine position, indi-
viduals with idiopathic [26] or pharmacologically in-
duced [33] autonomic insufficiency have been found to
excrete a saline load more rapidly than normal sub-
jects. An earlier escape from the sodium-retaining
effect of mineralocorticoid hormones has also been
demonstrated to occur in the presence of adrenergic
impairment secondary to guanethedine administra-
tion [34]. Taken together, these results suggest that
renal adrenergic impairment may enhance sodium ex-
cretion unless the fall in total peripheral resistance and
arterial pressure associated with extrarenal adrenergic
impairment obscures this intrarenal effect. When the
extrarenal effect of adrenergic impairment predomin-
ates, renal sodium retention occurs. Such is generally
the situation with the use of sympatholytic agents, for
the treatment of hypertension and the concomitant
administration of diuretics is necessary to avoid ex-
cessive sodium retention.

Renal denervation has been known for some time to
be associated with a natriuresis in the anesthetized
dog [35]. Although this natriuretic effect of renal de-
nervation may be partially related to the concomitant
increase in glomerular filtration rate [36], prevention
of this increase in filtration rate by injection of micro-
spheres has failed to abolish this ““denervation natri-
uresis” [37], thus suggesting some direct or indirect

effect of renal neural tone on tubular sodium reab-
sorption.

There is considerable evidence that an increase in
renal adrenergic tone may be partially responsible for
the increased retention of sodium associated with low-
output cardiac failure in humans and experimental
animals. The intrarenal injection of alpha-adrenergic
blocking agents has been demonstrated not only to de-
crease renal vascular resistance but to increase urinary
sodium excretion in humans [20] and experimental
animals [21] with low-output heart failure. Alpha-
adrenergic blockade also abolishes the effect of acute
constriction of the thoracic inferior vena cava to in-
crease tubular sodium reabsorption, specifically the
component of this enhanced sodium reabsorption
which occurs independent of changes in renal arterial
and renal venous pressures [38]. While this anti-
natriuretic effect of vena caval constriction seems to be
partially due to changes in circulating catecholamines
[38], the effect of hemorrhage to increase tubular
sodium reabsorption has been demonstrated to be
mediated primarily by increased renal adrenergic tone
[39]. When the renal nerves of a hemorrhaged animal
were left intact but the blood perfusing the same
animal’s kidneys was derived from another animal, an
antinatriuresis in the hemorrhaged animal occurred in
the absence of a detectable change in filtration rate [39].
This finding seems to focus on the importance of renal
nerves and to exclude the need for changes in circulat-
ing concentrations of catecholamines, angiotensin or
other vasoactive substances in the antinatriuretic
effect of hemorrhage. While the authors suggested that
this effect of renal nerve stimulation during hemorrhage
might enhance sodium reabsorption by a direct effect
on the active transport of sodium by the renal tubule
cell, it is important to note that the antinatriuresis was
associated with a consistent decrease in renal blood
flow and increase in filtration fraction. In fact, in
virtually all in vivo experiments demonstrating an effect
of alterations in adrenergic tone on sodium excretion,
the results do not differentiate between a direct effect
on active sodium transport and an indirect effect
mediated by some alteration in intrarenal hemodyna-
mics.

As already alluded to, the intrarenal hemodynamic
consequences of alpha-adrenergic stimulation which
could be involved in the resultant decrease in sodium
excretion include a diminution of glomerular filtration
rate or renal cortical blood flow, or both, and an in-
crease in filtration fraction. A decrease in glomerular
filtration rate due to adrenergic stimulation, even in the
presence of glomerulotubular balance, would certainly
be expected to somewhat decrease urinary sodium ex-
cretion. There is considerable clearance [8, 13, 40, 41]
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and micropuncture [42-44] evidence that a decrease in
postglomerular hydrostatic pressure and an increase in
postglomerular oncotic pressure, as might occur with
the increased renal vascular resistance and filtration
fraction during alpha-adrenergic stimulation, might
lead to increased proximal tubular sodium reabsorp-
tion. It should, however, be mentioned that some re-
cent micropuncture investigations [45, 46] have failed
to demonstrate a substantial effect of these peritubular
Starling forces on tubular sodium reabsorption. The
mechanism whereby a redistribution of renal blood
flow away from outer cortical to juxtamedullary ne-
phrons might increase the tubular reabsorption of
sodium also remains to be explained [19]. It has been
proposed that since juxtamedullary nephrons possess
longer loops of Henie than outer cortical nephrons,
more avid sodium reabsorption may occur in the
juxtamedullary nephrons. Results of recent experi-
ments, however, have cast doubt on whether such
redistribution in renal blood flow occurs during alpha-
adrenergic stimulation [15, 18]. Moreover, such a re-
distribution in renal blood flow has been dissociated
from changes in renal sodium excretion [15,45].
Specifically, this alteration in renal blood flow distri-
bution has been observed during sodium restriction in
man using radioxenon washout measurements, but
restoration to a normal blood flow pattern did not
occur with the administration of large doses of alpha-
adrenergic blocking agents into the renal artery [47].
Similarly, using the technique of radioactive micro-
spheres to estimate cortical blood flow distribution,
the decreased fractional blood flow to outer cortical
nephrons which occurs during hemorrhage is not re-
versed by alpha-adrenergic blockade [15]. Other studies
using the same microsphere method have been unable
to correlate distribution of renal cortical blood flow
with changes in sodium excretion but have found a
correlation between sodium excretion and total renal
vascular resistance [48].

There is another potential extrarenal effect of
alpha-adrenergic stimulation on sodium excretion.
Alpha-adrenergic stimulation is known to cause vaso-
constriction of venules and veins [1]. This venocon-
striction could impede the return of lymph flow into
the thoracic veins and there is some experimental
evidence that such an impedance to lymphatic flow
may initiate renal sodium retention. Specifically, the
resultant sodium retention and ascites formation
associated with chronic constriction of the thoracic in-
ferior vena cava may be attenuated by shunting the
thoracic duct across the vena caval constriction into a
thoracic vein [49]. It is thus possible that the increased
adrenergic neural tone and catecholamine concentra-
tions which are present in patients with cardiac failure

[20, 23] may contribute to edema formation by caus-
ing venoconstriction and impeding lymphatic flow.

As with alpha-adrenergic stimulation, any effect of
beta-adrenergic stimulation to decrease tubular sodium
reabsorption [50] could be related either to alterations
in intrarenal hemodynamics or to a direct effect on the
active transport of sodium. Injection of large doses of
isoproterenol into the renal artery has been shown to
cause renal vasodilatation [6]; however, redistribution
of cortical blood flow has not been found to occur dur-
ing beta-adrenergic stimulation with isoproterenol [S51].

In addition to the aforementioned extrarenal and
intrarenal hemodynamic effects of adrenergic stimula-
tion on the renal excretion of sodium, there is some
evidence that beta- and alpha-adrenergic stimulation
may directly alter active sodium transport. In this re-
gard, norepinephrine has been demonstrated to in-
crease the short circuit current in the toad bladder [52],
and frog skin [53), thus suggesting an increase in
active sodium transport. A direct effect of alpha- and
beta-adrenergic stimulation to alter net sodium trans-
port in the proximal tubule has also been suggested on
the basis of results obtained in the dog during water
diuresis [50, 54]. Since norepinephrine and isopro-
terenol have been reported to decrease and increase
renal cortical tissue cyclic AMP, respectively, in the
dog [55] and rat [56], it has been proposed that the
effect of adrenergic stimulation on proximal tubular
sodium reabsorption may involve a cyclic-AMP-
mediated mechanism. In this regard, dibutyryl cyclic
AMP has been shown to increase urine flow in the dog
during water diuresisin a manner similar to intrarenally
administered isoproterenol [57]. However, although
the dibutyryl cyclic AMP was infused into one renal
artery, a bilateral renal effect was observed; thus, an
extrarenal mechanism mediating this effect of the
nucleotide could not be excluded.

Infusion of cyclic guanosine 3’'5’-monophosphate
(cyclic GMP) has also been reported in a preliminary
communication to produce a similar decrease in urine
flowas norepinephrine [58]. Since guanyl cyclase and cy-
clic GMP are known to be present in the kidney [59-61],
it has been proposed that enhanced sodium reabsorp-
tion in the proximal tubule during alpha-adrenergic
stimulation may be mediated by increased intracellular
concentrations of cyclic GMP [54, 58]. Thus, increased
cyclic AMP and cyclic GMP have been proposed to
mediate the effect of beta- and alpha-adrenergic stimu-
lation on proximal tubular sodium reabsorption. A
similar effect of these nucleotides on renal gluconeo-
genesis and ammonia formation has also been pro-
posed [62, 63]. While such a hypothesis remains
attractive, it should be noted that two recent groups of
investigators using micropuncture techniques in the



296

dog have failed to detect any effect of either alpha- or
beta-adrenergic stimulation on proximal tubular
sodium reabsorption [64, 65]. A small effect of adren-
ergic stimulation on tubular sodium reabsorption,
which is not detectable by micropuncture techniques,
however, cannot be excluded. Such a modest effect, if
present, could be of considerable physiological signi-
ficance over a period of hours or days.

Effects of the adrenergic nervous system and catecho-
lamines on renal water excretion. There is considerable
evidence in both man and experimental animals that
alterations in adrenergic neural tone may influence the
osmotic movement of water in the mammalian ne-
phron. The i.v. infusion of norepinephrine has been
known for some time to be associated with a solute-
free water diuresis in both man [66-68] and animals
[69, 70]. This diuresis has been demonstrated to occur
in the absence of changes in two of the main deter-
minants of renal water excretion, namely glomerular
filtration rate and solute excretion [66-68]. Other re-
sults also indicate that this effect of norepinephrine on
water excretion is related to its alpha-adrenergic
stimulating properties since the diuresis is abolished by
alpha- but not beta-adrenergic blockade [69]. In con-
trast, beta-adrenergic stimulation with i.v. admini-
stered isoproterenol has been shown to be associated
with a consistent antidiuresis [3, 71-73] which also
may occur independent of alterations in the rate of
glomerular filtration or solute excretion [3]. This anti-
diuretic effect with i.v. administered isoproterenol is
abolished by beta- but not alpha-adrenergic blockade
[70]. On the basis of these results, it is evident that
alpha- and Dbeta-adrenergic stimulation exert con-
sistent and competing effects on renal water excretion.

There are several investigations which bear on the
mechanism(s) whereby adrenergic stimulation alters
renal water excretion. Alpha- and beta-adrenergic
stimulation may decrease [54] and increase [51] distal
tubular fluid delivery, respectively; therefore, these
effects would, if anything, modify both the diuretic
effect of norepinephrine and the antidiuretic effect of
isoproterenol rather than account for them. Since the
i.v. infusion of norepinephrine is associated with an
increase in systemic arterial pressure, the possibility
existed that the resultant water-diuresis was mediated
by the increase in renal perfusion pressure. A so-
called ““druck-diuresis’ or pressure diuresis had been
previously described in association with an increase in
renal arterial pressure to a perfused kidney [74, 75].
Although the level of renal arterial pressure was
greater in these previous studies [74, 75] than the renal
arterial pressure which occurred during the i.v. infu-
sion of norepinephrine [12, 66-69], a water diuresis
was observed in both circumstances. Thus, the increase
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in renal arterial pressure during the norepinephrine
infusion in earlier studies could have contributed to the
water diuresis. The results of more recent investiga-
tions, however, have demonstrated that this water
diuresis occurs in spite of maintenance of a constant
renal perfusion pressure [12].

Isoproterenol administered i.v. may quantitatively
diminish total peripheral resistance to a greater degree
than it enhances cardiac output; thus, a diminution in
systemic arterial pressure frequently occurs [3, 71-73].
The antidiuretic effect of beta-adrenergic stimulation
therefore could be partially attributed to changes in
renal arterial pressure. However, as with 1.v. admini-
stration of norepinephrine, the antidiuretic effect of
beta-adrenergic stimulation has been dissociated from
alterations in renal arterial pressure [3]. These effects
of systemic alpha- and beta-adrenergic stimulation on
renal water excretion have also been demonstrated not
to be dependent on renal sympathetic innervation [3,
12]. Thus, taken together, these results suggest that an
adrenergic influence on renal water excretion appears
to occur independent of changes in renal hemo-
dynamics, renal innervation and renal perfusion pres-
sure. A direct effect of adrenergic stimulation on the
water-permeability of the renal tubule epithelium or on
the release of vasopressin therefore was implicated.

There is some in vitro evidence which suggests that
alpha-adrenergic stimulation with norepinephrine
antagonizes the effect of vasopressin on water trans-
port {52, 76]. It has been suggested that this antagon-
ism by norepinephrine of the action of vasopressin
on osmotic water movement in the toad bladder
may be mediated by interference with the effect of
vasopressin to increase cyclic AMP [52]. Recent in
vitro results using dissected medullary collecting
ducts support this hypothesis, since addition of
norepinephrine abolished the effect of vasopressin to
enhance cyclic AMP generation [56]. In contrast, the
in vitro results examining the effect of isoproterenol on
water transport and cyclic AMP, however, have not
been consistent [52, 76]. While the in vitro addition of
isoproterenol to dog kidney tissue has been found to
increase medullary cyclic AMP [55], this finding was
not confirmed in the rat kidney [56]. Recent studies
from our laboratory, however, have demonstrated that
the i.v. infusion of isoproterenol is associated with an
increased renal medullary tissue concentration of cyclic
AMP in water-diuresis intact rats but not in rats suffer-
ing from pituitary diabetes insipidus [77].

Beta-adrenergic stimulation with isoproterenol has
been found, however, to directly activate adenylate
cyclase and increase cyclic AMP in several nonrenal
tissues of the body {78, 79]. If vasopressin and isopro-
terenol increase osmotic water movement in the mam-
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malian nephron via the same cyclic AMP-mediated
mechanism, then beta-adrenergic blockade with pro-
pranolol might be expected to abolish both antidiuretic
responses. In this regard, propranolol administration
has been found to abolish the antidiuretic effect of iso-
proterenol but not the antidiuretic effect of vasopres-
sin {70]. In view of these findings, the proposal has
been presented that an intermediate receptor in the
renal tubule cell might be involved in the antidiuretic
effect of beta-adrenergic stimulation [70].

In many in vivo studies which have suggested a direct
intrarenal effect of the adrenergic nervous system on
water transport, a role of endogenous vasopressin re-
lease unfortunately has not been excluded [66-73].
Moreover, the use of the bioassay for vasopressin has
failed to allow definitive conclusions, since i.v. ad-
ministered isoproterenol has been reported to increase
endogenous vasopressin in man [80] but not in dogs
[70]. A small antidiuretic effect of i.v. administered iso-
proterenol has been demonstrated to occur in rats
suffering from hereditary diabetes insipidus [81]. How-
ever, although arterial pressure and renal hemodyna-
mics were not measured in these studies [81], the
dose/body weight ratio was such as to expect rather
profound changes in these hemodynamic indexes [3].
If present, intrarenal hemodynamic alterations, such as
a decrease in renal arterial pressure or glomerular
filtration, or both [82, 83], could entirely account for
the small increase in urinary osmolality (120 to 180
mOsm) which occurred with beta-adrenergic stimula-
tion in these rats with pituitary diabetes insipidus [81].

There is some recent experimental evidence which
fails to support a direct in vivo effect of either alpha- or
beta-adrenergic stimulation on the permeability of the
distal nephron to osmotic water movement [3, 12]. In
these experiments norepinephrine [12] or isoproterencl
[3] was infused directly into the renal artery in a dose
estimated to deliver an amount of the drug to the renal
circulation which was equal to or greater than that
reaching the kidney during the i.v. infusion of the
agents. Although both the water diuresis with nore-
pinephrine and the antidiuresis with isoproterenol con-
sistently occurred during i.v. infusion of these hor-
mones, these effects on water excretion could not be
duplicated by the intrarenal infusion of the sub-
stances [3, 12]. Since the doses of norepinephrine and
isoproterenol which were infused into the renal artery
were associated with either minimal or no detectable
changes in renal hemodynamics or solute excretion
[3,12], it was unlikely that any effect of the adrenergic
agents on tubular water transport was obscured by
such alterations. These results thus suggested that the
effect of both alpha- and beta-adrenergic stimulation
on water excretion may be primarily mediated by extra-

renal mechanisms. Since the time of onset and nature
of the effect of both systemic alpha- and beta-adren-
ergic stimulation on renal water excretion mimicked
the action of vasopressin, the role of alterations in
endogenous vasopressin release in these responses has
been investigated. "

In recent studies, acutely hypophysectomized dogs
undergoing a water diuresis during glucocorticoid
hormone replacement were used to investigate the role
of vasopressin release in mediating the effect of adren-
ergic stimulation on renal water excretion. In the
absence of water loading, these hypophysectomized
animals have been found to excrete urine with a mean
osmolality less than 100 mOsm and to respond to the
administration of exogenous vasopressin [12]. In con-
trast to results in the intact animal, beta-adrenergic
stimulation with i.v. administered isoproterenol in
these hypophysectomized dogs was not associated
with an antidiuresis although the systemic and renal
hemodynamic responses were similar [3]. Moreover, in
acutely hypophysectomized animals receiving a con-
tinuous infusion of either a large or small dose of exo-
genous vasopressin, i.v. administered norepinephrine
was found not to be associated with a water diuresis
[12]. These results in intact and hypophysectomized
animals, during systemic alpha- and beta-adrenergic
stimulation are shown in Figs. 1 through 3. Taken
together, these findings provide substantial evidence
that the primary effect of both alpha- and beta-
adrenergic stimulation on renal water excretion is
mediated by alterations in endogenous vasopressin
release. The previous results in man [68] and dog [69]
which demonstrated a diuretic effect of i.v. adminis-
tered norepinephrine during an infusion of sub-
maximal doses of vasopressin are best explained by
failure of complete suppression of endogenous vaso-
pressin or the effect of the concomitant increase in
renal perfusion pressure to produce a *“druckdiuresis”
or both. Recent results in patients with diabetes
insipidus indicate that the primary cause may have
been failure of suppression of endogenous vasopressin
[84]. Intravenous infusion of norepinephrine into
patients suffering from pituitary diabetes insipidus,
and receiving the same dose of vasopressin as used in
the previous study [68], was not associated with a
water diuresis. Moreover, the i.v. infusion of isopro-
terenol into the same patients with diabetes insipidus
failed to produce an antidiuresis.

There are several pathways whereby alpha- and
beta-adrenergic stimulation may result in the altered
rate of release of endogenous vasopressin. Although
the effect of adrenergic stimulation on renal water
excretion has been dissociated from changes in renal
perfusion pressure, consistent alterations in systemic
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hemodynamics occur both during alpha and beta-
adrenergic stimulation [3, 12]. The increase in mean
arterial pressure during the i.v. administration of
norpinephrine or the decrease in mean arterial pressure
during the i.v. administration of isoproterenol, there-
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fore, could be involved in the alterations in vasopressin
release. Such an effect could be due to a direct effect
of changes in cerebral arterial pressure or changes in
cervical parasympathetic afferent tone on vasopressin
release [85]. Since beta-adrenergic stimulation with i.v.
administered isoproterenol increases renin release [86],
the resultant antidiuretic effect also could be mediated
by an effect of antiotensin II to increase vasopressin
release. Such a mechanism is possible, since some
investigators have suggested that angiotensin II stimu-
lates vasopressin release [87]. Other workers have
failed, however, to confirm this observation using
similar bioassay techniques [88], and moderate hemor-
rhage also has been shown to stimulate renin but not
vasopressin release [89]. In recent studies in dogs
undergoing a water diuresis, neither i.v. nor intra-
carotid infusion of antiotensin 1I was found to alter
renal water excretion [90]. Taken together, these
results thus suggest that increased antiotensin II con-
centrations during beta-adrenergic stimulation are not
involved in the resultant antidiuresis. Since i.v. ad-
ministered norepinephrine stimulates renin release
[91-93] and, yet, is associated with a water diuresis,
angiotensin Il appears to be unimportant in this effect
of alpba-adrenergic stimulation to suppress vaso-
pressin release.

In an effort to demonstrate a direct effect of cate-
cholamines on vasopressin release, both isoproterenol
[94] and norepinephrine [95] have been infused into
the carotid artery of dogs at doses estimated to deliver
an amount of the drug comparable or greater than
that reaching the cerebral circulation during the i.v.
infusion of these adrenergic agents. The intracarotid
infusion of neither alpha- nor beta-adrenergic agonists
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has been found to alter renal water excretion [94, 95].
Also, no evidence for a direct effect of changes in
cerebral arterial pressure on vasopressin release was
obtained in experiments in which the carotid arteries
of animals with denervated baroreceptors were pump-
perfused at different levels of arterial pressure [95].
Since alterations in arterial baroreceptor tone may
influence vasopressin release [85], the effect of i.v.
administration of norepinephrine on renal water
excretion was compared in sham-operated animals vs.
animals with denervated arterial baroreceptors.
Alpha-adrenergic stimulation with i.v. administered
norepinephrine was associated with a water diuresis
only in the sham-operated animals (Fig. 4) [95].
Similarly, i.v. administration of isoproterenol was
associated with a consistent antidiuresis in sham-
operated animals but not in the animals with dener-
vated arterial baroreceptors (Fig. 5) [94].

These results thus suggest that the effect of both
alpha- and beta-adrenergic stimulation on vasopressin
release involves alterations in arterial baroreceptor
tone. It also is possible that this same pathway may be
involved in other circumstances in which renal water
excretion is altered by nonosmotic influences. In this
regard, the antidiuretic effect of nicotine recently has
been demonstrated to be dependent on intact cervical
parasympathetic pathways [96]. Whether alterations in
renal water excretion during changes in volume or
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osmolality (above) and free water clearance (below) in animals
with cervical sham operation (left) and denervation of barore-
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diuretic effect of i.v. administered norepinephrine. Each point
represents the mean value of three to five urine collections for a
single kidney. The broken lines represent results from denervated
kidneys and the solid lines represent results from innervated
kidneys (reproduced with permission of publisher [95]).
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emotional status, endocrine dysfunction, cardiac or
hepatic failure and administration of various drugs
such as barbituates and opiates involve this baro-
receptor-mediated pathway of vasopressin release
remains to be determined.

Effect of adrenergic nervous system on renin secretion.
There is considerable evidence that increased activity
of the adrenergic nervous system provides a potent
stimulus to increase renin secretion. Several maneuvers
are known to stimulate both sympathetic neural path-
ways and renin release including hemorrhage [97-100],
carotid occlusion [98], direct stimulation of renal
nerves [91, 101, 102], infusion of catecholamines or
ganglionic stimulating agents [91, 98], hypoglycemia
[103, 104] and stimulation of the midbrain [105-107].
It has been proposed that either circulating catechol-
amines from the adrenal medulla or norepinephrine
liberated at renal adrenergic nerve terminals, or a
combination thereof, may mediate these responses.
Evidence in support of a role of circulating catechol-
amines from the adrenal medulla is derived from
experiments in which adrenal, but not renal, denerva-
tion abolished the effect of hypoglycemia to increase
plasma renin activity {104]. It is not known, however,
whether release of norepinephrine from nonadrenal
extrarenal adrenergic nerve endings can substantially
alter circulating levels of norepinephrine so as to
mediate effects on renin secretion. A local effect of
norepinephrine release at renal sympathetic nerves is
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suggested by the finding that increased plasma renin
activity associated with midbrain stimulation can be
attenuated or abolished by renal denervation [107].

There are several mechanisms whereby adrenergic
stimulation might cause an increase in renal secretion
of renin. The renal vasoconstriction association with
alpha-adrenergic stimulation could increase renin
release by either diminishing the rate of sodium
delivery to [108], or transport at [109], the macula
densa. Such an effect could be caused by either a
diminished filtration rate of sodium, an increase in
sodium reabsorption in the proximal tubule, or a
combination thereof. Adrenergic stimulation could
also increase renin secretion by diminishing the pres-
sure at an intrarenal vascular receptor site which in-
fluences renin release [110, 111]. Although systemic
arterial pressure may increase during renal nerve
stimulation [101, 102}, carotid occlusion [98] and mid-
brain stimulation [105-107]; it may remain unchanged
during moderate hemorrhage [98] and hypoglycemia
[103, 104] or decrease during severe hemorrhage [97];
yet, in all these situations the concomitant renal nerve
stimulation and renal vasoconstriction could diminish
pressure at some intrarenal pressure-sensitive receptor
and stimulate renin release from the juxtaglomerular
cells.

In addition to the importance of these so-called
macula densa [108, 109] and baroreceptor mechanisms
[110, 111], some investigators have suggested that
renal nerve stimulation may increase renin release by
a direct effect on the juxtaglomerular cells [101, 102,
112, 113]. This possibility has been considered tenable
since juxtaglomerular cells of the afferent arteriole are
richly innervated by postganglionic neural fibers {114,
115]. Moreover, it has been reported that stimulation
of renal nerves increases the release of renin in both
the normal [112] and nonfiltering kidney [113] in
which vascular reactivity has been diminished by a
renal arterial infusion of papaverine. Since the respon-
siveness of any intrarenal vascular receptor governing
renin release may be abolished by the papaverine in-
fusion and any effect of sodium delivery to, or trans-
port at, the macula densa is presumably precluded by
use of the nonfiltering kidney, these results have been
interpreted in support of a direct effect of adrenergic
pathways on renin release. Other support for a direct
action on the juxtaglomerular cells is the observation
that catecholamines may increase production or
release of renin from renal cortical slices in vitro [116].
A redistribution of blood flow away from the outer
portion of the renal cortex, which contains the highest
renal concentration of renin, is another potential
mechanism whereby renal nerve stimulation might
cause an increased release of renin. As discussed
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earlier, although results using radioxenon washout
curves suggested that adrenergic stimulation might
produce such a redistribution of cortical blood flow
[14, 17], more recent studies using the radioactive
microsphere method failed to demonstrate such an
effect on cortical blood flow distribution during either
norepinephrine infusion [16] or renal nerve stimula-
tion [15].

There is some evidence that beta-adrenergic stimu-
lation may provide a more important pathway for
control of renin release than alpha-adrenergic stimula-
tion. Several of the maneuvers known to stimulate
renin release including hypoglycemia [104], renal
nerve stimulation [101, 102] and midbrain stimulation
[107] have been found to be attenuated or abolished
by the administration of the beta-adrenergic blocking
agent, propranolol, but are either enhanced or un-
affected by alpha-adrenergic blockade. In contrast to
these results, however, are the findings of Winer,
Chokshi and Walkenhorst [117], which demonstrated
that both propranolol and the alpha-adrenergic
antagonist phentolamine blocked the effects of nore-
pinephrine to increase renin secretion. The beta-
adrenergic blocker propranolol also abolished the
effect of cyclic AMP to stimulate renin secretion {117].
These authors therefore suggested that phentolamine
and propranolol suppress renin secretion at a site
distal to cyclic AMP production, rather than by block-
ade of plasma membrane alpha- or beta-adrenergic
receptors or inhibition of adenyl cyclase. Winer et al
[117] also have reported that both the D- and L-isomers
of propranolol block the effect of norepinephrine to
increase renin release, even though only the L-isomer
possesses beta-adrenergic blocking properties. Since
lidocaine, a local anesthetic, did not prevent the
isoproterenol-induced rise in renin secretion, the
authors concluded that the anesthetic properties of
propranolol did not account for the capacity of these
agents to block the effect of isoproterenol to stimulate
renin secretion [117]. Renal denervation also has
failed to abolish the effect of i.v. administered isopro-
terenol to increase renin secretion [86].

As yet there is no adequate explanation for the
reported different effects of alpha-adrenergic blocking
agents on the effect of various adrenergic stimuli to
increase renin secretion. It is known, however, that
alpha-adrenergic blockade alone is a potent stimulator
of renin secretion [101]. In this regard, most investiga-
tors who have failed to attenuate the increases in
plasma renin activity during various adrenergic
stimuli by alpha-adrenergic blockade, have used large
doses of blockers. These larger doses of alpha-
adrenergic blocking agents are associated with a de-
crease in systemic arterial pressure, and this hypo-
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tensive effect may account for the rise in renin secretion
observed during their administration. Thus, the inde-
pendent effect of the alpha-adrenergic blockers to
stimulate renin secretion may have obscured any effect
that these alpha-adrenergic blockers may have had to
inhibit renin release caused by the primary stimulus.
Studies are therefore needed to examine whether
smaller doses of alpha-adrenergic blocking agents,
which do not independently stimulate renin secretion
but produce effective alpha-adrenergic blockade,
exist.

Not only are the results of studies using alpha- and
beta-adrenergic blockers difficult to synthesize into
firm conclusions, but the results of investigations using
alpha- and beta-adrenergic stimulators also do not
conclusively favor the predominance of either an
alpha- or beta-adrenergic receptor in the reguiation of
renin secretion. Both relatively specific beta-adrenergic
agonists, such as isoproterenol [3, 118, 119], and
alpha-adrenergic agonists, such as metaraminol and
methoxamine [120, 121], have been shown to stimulate
renin release. Some authors have found that with
similar doses of epinephrine and norepinephrine,
epinephrine provides the more potent stimulation of
renin release, thus favoring the predominance of a
beta-adrenergic receptor [97]. Recent studies by
Johnson, Davis and Whitty [113], however, have
shown that the effect of epinephrine, but not nore-
pinephrine, to stimulate renin release in the nonfilter-
ing kidney is blocked by papaverine. This finding
would suggest that any direct effect of these catechol-
amines on the juxtaglomerular cells may involve
alpha-adrenergic receptors. The finding that cyclic
AMP [117] and theophylline (a phosphodiesterase
inhibitor, which increases tissue concentrations of
cyclic AMP) [122, 123], increase renin secretion has
been used to support a predominant role of beta-
receptors in the control of renin release. The basis for
this argument is that beta-, but not alpha-, adrenergic
stimulation increases renal cortical tissue concentra-
tions of cyclic AMP [55, 56]. It must be emphasized,
however, that conflicting results as to the effect of
cyclic AMP on renin secretion have been reported
[117, 124].

The exact location of an alpha- or beta-adrenergic
receptor for regulation of renin release also has been
a matter of some debate. Evidence has been presented
for the existence of an intrarenal beta-receptor which
affects renin secretion [101, 102]. The histologic
findings previously mentioned [114, 115] which demon-
strated many adrenergic nerve endings among the
juxtaglomerular cells provide the anatomical setting
for an intrarenal receptor site whereby adrenergic
stimulation influences renin release. In support of this

hypothesis is the finding that norepinephrine, epine-
phrine and cyclic AMP have been reported to stimulate
renin release in vitro [116]. Other investigators, how-
ever, have not been able to demonstrate similar in
vitro effects of catecholamines in renin release {125,
126]. Moreover, in vitro results may not be readily
transferable to in vivo conditions.

It has been suggested that since either propranolol
administration or renal denervation abolishes the
effect of midbrain stimulation to increase plasma renin
activity, the effect must involve an intrarenal beta-
receptor [107]. Such an interpretation, however, can
be accepted only with some reservation. Although
renal hemodynamics were not measured in these
experiments [107], it is known from other studies that
midbrain stimulation is associated with a marked
diminution in glomerular filtration rate {127]. Such an
effect of midbrain stimulation on renin secretion
could be mediated, therefore, by either a baroreceptor
or macula densa mechanisms in the absence of any
direct effect on the juxtaglomerular cells. In this regard,
the effect of renal denervation to abolish the effect of
midbrain stimulation to increase plasma renin activity
could be related to the attenuation of these renal
hemodynamic alterations [107]. Moreover, the extra-
renal hemodynamic effects of midbrain stimulation
were markedly altered by systemic beta-adrenergic
blockade with propranolol. Specifically, the rise in
arterial pressure with midbrain stimulation was much
less after administration of propranolol. These results
with midbrain stimulation [107], therefore, do not
establish the presence of an intrarenal beta-adrenergic
receptor which regulates renin secretion.

The studies which more directly investigate the
presence of an intrarenal adrenergic receptor involve
either renal nerve stimulation [101, 102, 113] or
infusion of catecholamines into the renal artery [91-
93]. Since the doses of norepinephrine which stimulate
renin secretion may also produce renal vasoconstric-
tion, a direct effect of this catecholamine on the juxta-
glomerular cells to release renin is difficult to assess.
The infusion of the beta-adrenergic agonist isopro-
terenol into the renal artery has been shown to
stimulate renin secretion in the absence of renal
vasoconstriction, but in some of these studies the
doses of isoproterenol used may have produced extra-
renal alterations [118, 119]. A comparison of the effect
of isoproterenol on renin secretion in the infused and
contralateral kidneys was also not examined in these
studies in an effort to document an intrarenal effect.

The study by Ayers, Harris and Lefer [118] has
provided some evidence for the presence of an intra-
renal beta-adrenergic receptor which regulates renin
secretion. In this study the intrarenal infusion of iso-
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proterenol into the constricted renal artery of animals
with renal vascular hypertension produced a more
pronounced effect on renin secretion than an i.v.
infusion of the same dose of the drug. The renal
arterial infusion, however, was begun one hour after
the i.v. infusion, and no control studies were performed
to examine whether a continuous i.v. infusion of iso-
proterenol for the same duration of time would have
produced similar results. A recent study in dogs also
has compared the effect of the same dose of isopro-
terenol infused i.v. and into a renal artery on renin
secretion [86]. Because of the capacity of the kidney
to inactivate isoproterenol [4], the intrarenal infusion
was not associated with extrarenal hemodynamic
alterations [86]. Only the i.v. infusion of isoproterenol
was found to exert a significant effect on plasma renin
activity and renin secretion (Fig. 6). These results
therefore suggested that an extrarenal mechanism was
responsible for the effect of isoproterenol to increase
renin secretion. The dose of isoproterenol used in
these dog studies was sufficient to produce a 509,
increase in cardiac output when infused i.v. and, yet,
did not affect renin secretion when infused into the
renal artery [86]. If present, therefore, any intrarenal
beta-receptor influencing renin release must be con-
siderably less sensitive than the extrarenal cardio-
vascular beta-receptors.

In intact animals the effect of larger intrarenal doses
of isoproterenol to stimulate renin release is difficult
to evaluate with respect to an intrarenal beta-receptor,
since these large doses of isoproterenol may produce
extrarenal hemodynamic alterations [118, 119]. How-
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Fig. 6. Effect of i.v. administered but not intrarenal isoproterenol
(Is0) to increase renin secretion rates. Results in denervated and
innervated kidneys are shown by broken and solid lines, respec-
tively (reproduced from data published in [86]).

ever, in a recent study in the isolated perfused rat
kidney, large doses (per g of kidney wt) of isoproterenol
were found to stimulate renin secretion [128]. Whether
this effect is of pharmacologic or physiologic signi-
ficance, however, remains to be determined.

As previously mentioned, the effect of renal nerve
stimulation to increase plasma renin activity has been
reported to be abolished by propranolol administration
[101, 102]. Since renal hemodynamics were not
measured in these studies [101, 102] and propranolol
administration could alter the renal hemodynamic
response to renal nerve stimulation, further studies are
necessary to differentiate between a direct effect of
renal nerve stimulation on the juxtaglomerular cells
and an effect on renin release mediated by either a
baroreceptor or macula densa mechanism. The studies
of Johnson et al [113] have demonstrated that renal
nerve stimulation increases renin secretion in the non-
filtering kidney receiving a papaverine infusion. While
these results suggest a direct effect of renal nerve
stimulation on the release of renin by the juxta-
glomerular cells, they do not differentiate between an
alpha- or beta-adrenergic receptor. As previously
discussed, the finding that papaverine administration
abolished the effect of epinephrine but not norepine-
phrine to increase renin secretion in the nonfiltering
kidney suggested an importance of an intrarenal
alpha-receptor [113].

In summary, there seems little doubt that adrenergic
stimulation provides a potent stimulus to renin secre-
tion by both extrarenal and intrarenal mechanisms.
This effect on renin secretion may be mediated by
several pathways including a direct effect on the
juxtaglomerular cells, a change in pressure at an
intrarenal vascular receptor or a change in sodium
delivery to, or transport at, the macula densa. Whether
there is a predominant role of alpha- or beta-adrener-
gic receptors, or whether this pharmacologic approach
used to define the mechanism is even appropriate,
awaits further investigations. A primary or secondary
role of adrenergic stimulation in the increased renin
secretion observed in clinical circumstances including
salt restriction and hypovolemia; adrenal insufficiency;
congestive failure; hepatic cirrhosis; nephrotic syn-
drome; anesthesia; and high renin, accelerated hyper-
tension seems likely and must be investigated further.
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