
http://www.elsevier.com/locate/jctb

Journal of Combinatorial Theory, Series B 92 (2004) 85–97

Large generalized books are p-good

V. Nikiforov and C.C. Rousseau

Department of Mathematical Sciences, The University of Memphis, 373 Dunn Hall,

Memphis, TN 38152-3240, USA

Received 7 January 2003

Available online 4 June 2004

Abstract

Let B
ðrÞ
q ¼ Kr þ qK1 be the graph consisting of q distinct ðr þ 1Þ-cliques sharing a common

r-clique. We prove that if pX2 and rX3 are fixed, then

rðKpþ1;B
ðrÞ
q Þ ¼ pðq þ r � 1Þ þ 1

for all sufficiently large q:
r 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The title of this paper refers to the notion of goodness introduced by Burr and
Erdo+s [3] and subsequently studied by Burr and various collaborators. A connected
graph H is p-good if the Ramsey number rðKp;HÞ is given by

rðKp;HÞ ¼ ð p � 1ÞðjVðHÞj � 1Þ þ 1:

In this paper we prove that for every pX3 the generalized book B
ðrÞ
q ¼ Kr þ qK1 is

p-good if q is sufficiently large.
As much as possible, standard notation is used; see, for example, [2]. A set of

cardinality p is called a p-set. Unless explicitly stated, all graphs are defined on the
vertex set ½n� ¼ f1; 2;y; ng: Let u be any vertex; then NGðuÞ and dGðuÞ ¼ jNGðuÞj
denote its neighborhood and degree, respectively. A graph with n vertices and m
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edges will be designated by Gðn;mÞ: By an r-book we shall mean some number of
independent vertices that are each connected to every vertex of an r-clique. The given
r-clique is called the base of the r-book and the additional vertices are called the
pages. The number of pages of an r-book is called its size; the size of the largest

r-book in a graph G is denoted by bsðrÞðGÞ: We shall denote the complete p-partite
graph with each part having q vertices by KpðqÞ: The Ramsey number rðH1;H2Þ
is the least number n such that for every graph G of order n either H1CG or H2CG:

2. The structure of subsaturated Kpþ1-free graphs

We shall need the following theorem of Andrásfai et al. [1].

Theorem 1. If G is a Kpþ1-free graph of order n and

dðGÞ4 1� 3

3p � 1

� �
n;

then G is p-chromatic.

The celebrated theorem of Turán gives a tight bound on the maximum size of a
Kp-free graph of given order. In the following theorem, we show that if the size of a

Kpþ1-free graph is close to the maximum then we may delete a small portion of its

vertices so that the remaining graph is p-chromatic. This is a particular stability
theorem in extremal graph theory (see [8]).

Theorem 2. For every pX2 there exists c ¼ cð pÞ40; such that for every a satisfying

0oapc; every Kpþ1-free graph G ¼ Gðn;mÞ satisfying

mX
p � 1

2p
� a

� �
n2

contains an induced p-chromatic graph G0 of order at least ð1� 2a1=3Þn and with

minimum degree

dðG0ÞX 1� 1

p
� 4a1=3

� �
n:

Proof. Let c0 be the smallest positive root of the equation

x3 þ 1þ 3

3p � 1

p � 1

p

� �2 !
x � 1

2 3p � 1ð Þp ¼ 0 ð1Þ

and set cð pÞ ¼ c30; then, for every y satisfying 0oypcð pÞ; we easily see that

y þ 1þ 3

3p � 1

p � 1

p

� �2 !
y1=3p

1

2ð3p � 1Þp: ð2Þ
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A rough approximation of the function cð pÞ is cð pÞE6�3p�6; obtained by

neglecting the x3 term in Eq. (1) and substituting the appropriate asymptotic
(for large p) approximations for the remaining coefficients. This gives reasonable
values even for small p: For all pX2;

1

ð2pð3p þ 2ÞÞ3
ocð pÞo 1

ð2pð3p � 1ÞÞ3
: ð3Þ

The upper bound is evident, and the lower bound follows from a simple
computation.
Let 0oapcð pÞ and the graph G ¼ Gðn;mÞ satisfy the hypothesis of the theorem.

We shall prove first thatXn

u¼1
d2ðuÞp2

p � 1

p

� �
mn: ð4Þ

Indeed, writing k3ðGÞ for the number of triangles in G; we have

3k3ðGÞ ¼
X
uvAE

jNðuÞ-NðvÞjX
X
uvAE

ðdðuÞ þ dðvÞ � nÞ ¼
Xn

u¼1
d2ðuÞ � mn:

Applying Turán’s theorem to the Kp-free neighborhoods of vertices of G; we deduce

3k3ðGÞp p � 2

2ð p � 1Þ
Xn

u¼1
d2ðuÞ:

Hence,Xn

u¼1
d2ðuÞ � mnp

p � 2

2ð p � 1Þ
Xn

u¼1
d2ðuÞ

and (4) follows.

Since 0oapcð pÞ; taking the upper bound in (3) for p ¼ 2; we see that ap20�3:
Hence,

ð1þ 8aÞ4m2

n
X 2ð1þ 8aÞ p � 1

p
� 2a

� �
mn

¼ 2 p � 1

p
þ 6� 8

p

� �
a� 16a2

� �
mn

X 2
p � 1

p
þ 2a� 16a2

� �
mn42

p � 1

p

� �
mn;

and from (4) we deduce

Xn

u¼1
dðuÞ � 2m

n

� �2
¼
Xn

u¼1
d2ðuÞ � 4m

n

2

p2
p � 1

p

� �
mn � 4m

n

2

o 8a
4m2

n
p8a

p � 1

p

� �2
n3: ð5Þ
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Set V ¼ VðGÞ and let Me be the set of all vertices uAV satisfying dðuÞo2m=n � en:
For every e40; inequality (5) implies

jMeje2n2o
X

uAMe

dðuÞ � 2m

n

� �2
p
X
uAV

dðuÞ � 2m

n

� �2
p8a

p � 1

p

� �2
n3;

and thus,

jMejo8e�2a
p � 1

p

� �2
n: ð6Þ

Furthermore, setting Ge ¼ G½V \Me�; for every uAVðGeÞ; we obtain

dGeðuÞXdðuÞ � jMejX
2m

n
� en � jMej4

p � 1

p
n � 2an � en � jMej: ð7Þ

For e ¼ 2a1=3 we claim that

p � 1

p
n � 2an � en � jMej4

3p � 4

3p � 1
ðn � jMejÞ ¼

3p � 4

3p � 1
vðGeÞ: ð8Þ

Indeed, assuming the opposite and applying inequality (6) with e ¼ 2a1=3; we see that

1

ð3p � 1Þp � 2a� 2a1=3
� �

np
3

3p � 1
jM2a1=3 jo2

3

3p � 1

p � 1

p

� �2
a1=3n;

hence,

2aþ 2 1þ 3

3p � 1

p � 1

p

� �2 !
a1=3 � 1

ð3p � 1Þp40;

contradicting (2).
Set G0 ¼ G2a1=3 ; from (8), we see that G0 satisfies the conditions of Theorem 1, so it

is p-chromatic.
Finally, from (6) and (7), we have

dðG0ÞX
p � 1

p
n � 2an � 2a1=3n � p � 1

p

� �2
a1=3n4

p � 1

p
n � 2an � 3a1=3n

4 1� 1

p
� 4a1=3

� �
n;

completing the proof. &

3. A Ramsey property of Kpþ1-free graphs

The main result of this section is the following theorem.

Theorem 3. Let rX2; pX2 be fixed. For every x40 there exists an n0 ¼ n0ð p; r; xÞ
such that every graph G of order nXn0 that is Kpþ1-free either satisfies bsðrÞðGÞ4n=p;
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or contains an induced p-chromatic graph G1 of order ð1� xÞn and minimum degree

dðG1ÞX 1� 1

p
� 2x

� �
n:

Our main tool in the proof of Theorem 3 is the regularity lemma of Szemerédi
(SRL); for expository matter on SRL see [2,7]. For the sake of completeness we
formulate here the relevant basic notions.
Let G be a graph; if A;BCVðGÞ are nonempty disjoint sets, we write eðA;BÞ for

the number of A � B edges and call the value

dðA;BÞ ¼ eðA;BÞ
jAjjBj

the density of the pair ðA;BÞ:
Let e40; a pair ðA;BÞ of two nonempty disjoint sets A;BCVðGÞ is called e-regular

if the inequality

jdðA;BÞ � dðX ;YÞjoe

holds whenever XCA; YCB; jX jXejAj; and jY jXejBj:
We shall use SRL in the following form.

Theorem 4 (Szemerédi’s regularity lemma). Let lX1; e40: There exists M ¼ Mðe; lÞ
such that, for every graph G of sufficiently large order n; there exists a partition

VðGÞ ¼
Sk

i¼0 Vi satisfying lpkpM and:

(i) jV0joen; jV1j ¼ ? ¼ jVkj;
(ii) all but at most ek2 pairs ðVi;VjÞ; ði; jA½k�Þ; are e-uniform.

We also need a few technical results; the first one is a basic property of e-regular
pairs (see [7, Fact 1.4]).

Lemma 1. Suppose 0oeodp1 and ðA;BÞ is an e-regular pair with eðA;BÞ ¼ djAjjBj:
If YCB and ðd � eÞr�1jY j4ejBj where r41; then there are at most erjAjr r-sets RCA

with

\
uAR

NðuÞ
 !

-Y

�����
�����pðd � eÞrjY j:

The next lemma gives a lower bound on the number of r-cliques in a graph
consisting of several dense e-regular pairs sharing a common part.

Lemma 2. Suppose 0oeodp1 and ðd � eÞr�24e: Suppose H is a graph and VðHÞ ¼
A,B1,?,Bt is a partition with jAj ¼ jB1j ¼ ? ¼ jBtj and such that for every iA½t�
the pair ðA;BiÞ is e-regular with eðA;BiÞXdjAjjBij: If m is the number of the r-cliques

in A; then at least

tjAjðm � erjAjrÞðd � eÞr

ðr þ 1Þ-cliques of H have exactly r vertices in A:
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Proof. Set a ¼ jAj ¼ jB1j ¼ ? ¼ jBtj: For every iA½t�; applying Lemma 1 to the pair
ðA;BiÞ with Y ¼ Bi we conclude that there are at most erar�1 r-sets RCA with

\
uAR

NðuÞ
 !

-Bi

�����
�����pðd � eÞr

a;

and therefore, at least ðm � erarÞ r-cliques RCA satisfy

\
uAR

NðuÞ
 !

-Bi

�����
�����4ðd � eÞr

a:

Hence, at least tðd � eÞrðm � erarÞa ðr þ 1Þ-cliques of H have exactly r vertices in A

and one vertex in
S

iA½t� Bi; completing the proof. &

The following consequence of Ramsey’s theorem has been proved by Erdo+s [5].

Lemma 3. Given integers pX2; rX2; there exist a cp;r40 such that if G is a Kpþ1-free

graph of order n and nXrðKpþ1;KrÞ then G contains at least cp;rn
r independent r-sets.

We need another result related to the regularity lemma of Szemerédi, the so-called
Key Lemma (e.g. see [7, Theorem 2.1]). We shall use the following simplified version
of the Key Lemma.

Theorem 5. Suppose 0oeodo1 and let m be a positive integer. Let G be a graph of

order ð p þ 1Þm and let VðGÞ ¼ V1,?,Vpþ1 be a partition of VðGÞ into p þ 1 sets

of cardinality m so that each of the pairs ðVi;VjÞ is e-regular and has density at least d:

If epðd � eÞp=ð p þ 2Þ then Kpþ1CG:

Proof of Theorem 3. Our proof is straightforward but rather rich in technical details,
so we shall briefly outline it first. For some properly selected e; applying SRL, we
partition all but en vertices of G in k sets V1;y;Vk of equal cardinality such that
almost all pairs ðVi;VjÞ are e-regular. We may assume that the number of dense
e-regular pairs ðVi;VjÞ is no more than p�1

2p
k2; since otherwise, from Theorem 5 and

Turán’s theorem, G will contain a Kpþ1: Therefore, there are at least ð1=2p þ oð1ÞÞk2
sparse e-regular pairs ðVi;VjÞ: From Lemma 3 it follows that the number of

independent r-sets in any of the sets V1;y;Vk is YðnrÞ: Consider the size of the
r-book in G having for its base the average independent r-set in Vi: For every sparse
e-regular pair ðVi;VjÞ almost every vertex in Vj is a page of such a book. Also each

e-regular pair ðVi;VjÞ whose density is not very close to 1 contributes substantially
many additional pages to such books. Precise estimates show that either

bsðrÞðGÞ4n=p or else the number of all e-regular pairs ðVi;VjÞ with density close
to 1 is ðp�1

2p
þ oð1ÞÞk2: Thus the size of G is ðp�1

2p
þ oð1ÞÞn2 and therefore, according to

Theorem 2, G contains the required induced p-chromatic subgraph with the required
minimum degree.
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Details of the proof: Let cð pÞ be as in Theorem 2 and cp;r be as in Lemma 3. Select

d ¼ min
x3

32
;
cð pÞ
4

	 

; ð9Þ

set

d ¼ min
d
2

� �rþ1
r

cp;r
þ 2r þ 1þ 2p

� ��1
;

pd
1þ pd

r

cp;r
þ 2r þ 1

� ��1
( )

; ð10Þ

and let

e ¼ min d;
dp

2ð p þ 1Þ

	 

: ð11Þ

These definitions are justified at the later stages of the proof. Since cp;ror! we
easily see that 0o2eododo1: Hence, Bernoulli’s inequality implies

ðd � eÞp
Xdp � pedp�14dp � pe ¼ 2ð p þ 1Þe� pe ¼ ð p þ 2Þe: ð12Þ

Applying SRL we find a partition VðGÞ ¼ V0,V1,?,Vk so that jV0joen;
jV1j ¼ ? ¼ jVkj and all but ek2 pairs ðVi;VjÞ are e-regular. Without loss of

generality we may assume jVij4rðKpþ1;KrÞ and k41=e: Consider the graphs Hirr;

Hlo; Hmid and Hhi defined on the vertex set ½k� as follows:

(i) ði; jÞAEðHirrÞ iff the pair ðVi;VjÞ is not e-regular,
(ii) ði; jÞAEðHloÞ iff the pair ðVi;VjÞ is e-regular and

dðVi;VjÞpd;

(iii) ði; jÞAEðHmidÞ iff the pair ðVi;VjÞ is e-regular and

dodðVi;VjÞp1� d;

(iv) ði; jÞAEðHhiÞ iff the pair ðVi;VjÞ is e-regular and

dðVi;VjÞ41� d:

Clearly, no two of these graphs have edges in common; thus

eðHirrÞ þ eðHloÞ þ eðHmidÞ þ eðHhiÞ ¼
k

2

� �
:

Hence, from d42e and k41=e; we see that

eðHloÞ þ eðHmidÞ þ eðHhiÞX
k

2

� �
� ek2 ¼ k2

2
� k

2
� ek2

X
k2

2
� ek2 � ek24

1

2
� d

� �
k2: ð13Þ

Since G is Kpþ1-free, from (12), we have epðd � eÞp=ð p þ 2Þ; applying

Theorem 5, we conclude that the graph Hmid,Hhi is Kpþ1-free. Therefore, from
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Turán’s theorem,

eðHmidÞ þ eðHhiÞp
p � 1

2p

� �
k2;

and from inequality (13) we deduce

eðHloÞ4
1

2p
� d

� �
k2: ð14Þ

Next we shall bound bsðrÞðGÞ from below. To achieve this we shall count the
independent ðr þ 1Þ-sets having exactly r vertices in some Vi and one vertex outside
Vi: Fix iA½k� and let m be the number of independent r-sets in Vi: Observe that

Lemma 3 implies mXcp;rjVijr:
Set L ¼ NHlo

ðiÞ and apply Lemma 2 with A ¼ Vi; Bj ¼ Vj; for all jAL; and

H ¼ G A,
[
jAL

Bj

 !" #
:

Since, for every jAL; the pair ðVi;VjÞ is e-regular and

eHðVi;VjÞXð1� dÞjVijjVj j;

we conclude that there are at least

dHlo
ðiÞjVijðm � erjVijrÞð1� d � eÞr

independent ðr þ 1Þ-sets in G having exactly r vertices in Vi and one vertex inS
jAL Bj:

Set now M ¼ NHmid
ðiÞ; and apply Lemma 2 with A ¼ Vi; Bj ¼ Vj for all jAM and

H ¼ G A,
[

jAM

Bj

 !" #
:

Since, for every jAM; the pair ðVi;VjÞ is e-regular and

eHðVi;VjÞXdjVijjVjj;

we conclude that there are at least

dHmid
ðiÞjVijðm � erjVijrÞðd� eÞr

independent ðr þ 1Þ-sets in G having exactly r vertices in Vi and one vertex inS
jAL Bj: Since

[
jAL

Bj

 !\ [
jAM

Bj

 !
¼ |;

there are at least

dHlo
ðiÞjVijðm � erjVijrÞð1� d � eÞr þ dHmid

ðiÞjVijðm � erjVijrÞðd� eÞr
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independent ðr þ 1Þ-sets in G having exactly r vertices in Vi and one vertex outside
Vi: Thus, taking the average over all m independent r-sets in Vi; we conclude

bsðrÞðGÞX jVij 1� er
cp;r

� �
ðdHlo

ðiÞð1� d � eÞr þ dHmid
ðiÞðd� eÞrÞ

X n
1� e

k

� �
1� er

cp;r

� �
ðdHlo

ðiÞð1� d � eÞr þ dHmid
ðiÞðd� eÞrÞ:

Summing this inequality for all i ¼ 1;y; k we obtain

bsðrÞðGÞ
n

X ð1� eÞ 1� er
cp;r

� �
2eðHloÞ

k2
ð1� d � eÞr þ 2eðHmidÞ

k2
ðd� eÞr

� �

4 1� r

cp;r
þ 1

� �
e

� �
2eðHloÞ

k2
ð1� rðd þ eÞÞ þ 2eðHmidÞ

k2
ðd� eÞr

� �

4 1� r

cp;r
þ 1

� �
d

� �
2eðHloÞ

k2
ð1� 2rdÞ þ 2eðHmidÞ

k2
d
2

� �r� �

4 1� r

cp;r
þ 2r þ 1

� �
d

� �
2eðHloÞ

k2
þ 1� r

cp;r
þ 1

� �
d

� �

� d
2

� �r
2eðHmidÞ

k2
: ð15Þ

Assume the assertion of the theorem false and suppose

bsðrÞðGÞpn

p
: ð16Þ

We shall prove that this assumption implies

eðHloÞo
1

2p
þ d
2

� �
k2; ð17Þ

eðHmidÞodk2: ð18Þ

Disregarding the term eðHmidÞ in (15), in view of (16) and (10), we have

eðHloÞo 1� r

cp;r
þ 2r þ 1

� �
d

� ��1
bsðrÞðGÞ
2n

k2

p 1� r

cp;r
þ 2r þ 1

� �
d

� ��1
k2

2p

p 1� pd
1þ pd

� ��1
k2

2p
¼ 1

2p
þ d
2

� �
k2;

and inequality (17) is proved.
Furthermore, observe that equality (10) implies

r

cp;r
þ 1

� �
do

r

cp;r
þ 2r þ 1

� �
dp

pd
1þ pd

ppdo
1

2
;
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and consequently,

1� r

cp;r
þ 1

� �
d

� �
4
1

2
:

Hence, from (15), taking into account (16) and (14), we find that

eðHmidÞ
2

d
2

� �r

o eðHmidÞ
d
2

� �r

1� r

cp;r
þ 1

� �
d

� �

p
bsðrÞðGÞk2

2n
� 1� r

cp;r
þ 2r þ 1

� �
d

� �
eðHloÞ

o
1

2p
� 1� r

cp;r
þ 2r þ 1

� �
d

� �
1

2p
� d

� �� �
k2

¼ 1þ r

cp;r
þ 2r þ 1

� �
1

2p
� d

� �� �
dk2

o
1

2p

r

cp;r
þ 2r þ 1þ 2p

� �
dk2o

d
2

� �rþ1
k2:

Therefore, inequality (18) holds also.
Furthermore, inequality (13), together with (17) and (18), implies

eðHhiÞ4
1

2
� d

� �
k2 � 1

2p
þ d
2

� �
k2 � dk2 ¼ p � 1

2p
� 5d
2

� �
k2;

and consequently, from the definition of Hhi; we obtain

eðGÞX eðHhiÞ
ð1� eÞn

k

� �2
ð1� dÞ4 p � 1

2p
� 5d
2

� �
ð1� 2eÞð1� dÞn2

¼ p � 1

2p
1� 5pd

p � 1

� �
ð1� 2eÞð1� dÞn24

4
p � 1

2p
1� 5p

p � 1
þ 3

� �
d

� �
n24

p � 1

2p
� 4d

� �
n2:

Hence, by (9), applying Theorem 2, it follows that G contains an induced
p-chromatic graph with the required properties. &

Following the basic idea of the proof of Theorem 3 but applying the complete Key
Lemma instead of Theorem 5, we obtain a more general result, whose proof,
however, is considerably easier than the proof of Theorem 3.

Theorem 6. Suppose H is a fixed ð p þ 1Þ-chromatic graph. For every H-free graph G

of order n;

bsðrÞðGÞ4 1

p
þ oð1Þ

� �
n:
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Note that the graph Kpðq þ r � 1Þ is p-chromatic and its complement has no B
ðrÞ
q ;

so for every ð p þ 1Þ-chromatic graph H and every r; q we have

rðH;BðrÞ
q ÞXpðq þ r � 1Þ þ 1:

Hence, from Theorem 6, we immediately obtain the following theorem.

Theorem 7. For every fixed ð p þ 1Þ-chromatic graph H and fixed integer r41;

rðH;BðrÞ
q Þ ¼ pq þ oðqÞ:

Note that it is not possible to avoid the oðqÞ term in Theorem 7 without additional
stipulations about H; since, as Faudree, Rousseau and Sheehan have shown in [6],
the inequality

rðC4;Bð2Þ
q ÞXq þ 2

ffiffiffi
q

p

holds for infinitely many values of q: However, when H ¼ Kpþ1 and q is large we can

prove a precise result.

4. Ramsey numbers rðKp;B
ðrÞ
q Þ for large q

In this section we determine rðKp;B
ðrÞ
q Þ for fixed pX3; rX2 and large q:

Theorem 8. For fixed pX2 and rX2; rðKpþ1;B
ðrÞ
q Þ ¼ pðq þ r � 1Þ þ 1 for all

sufficiently large q:

Proof. Since Kpðq þ r � 1Þ contains no Kpþ1 and its complement contains no B
ðrÞ
q ; we

have

rðKpþ1;BðrÞ
q ÞXpðq þ r � 1Þ þ 1:

Let G be a Kpþ1-free graph of order n ¼ pðq þ r � 1Þ þ 1: Since n=p4q; either

we’re done or else G contains an induced p-chromatic subgraph G1 of order pq þ
oðqÞ with minimum degree

dðG1ÞX 1� 1

p
þ oð1Þ

� �
n:

Using this bound on dðG1Þ we can easily prove by induction on p that G1 contains a
copy of KpðrÞ: Fix a copy of KpðrÞ in G1 and let A1;A2;y;Ap be its vertex classes.

Let A ¼ A1,?,Ap and B ¼ VðGÞ\A: If some vertex iAB is adjacent to at least one

vertex in each of the parts A1;A2;y;Ap then G contains a Kpþ1: Otherwise for each

vertex uAB there is at least one v so that u is adjacent in G to all members of Av: It
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follows by the pigeonhole principle that bsðrÞðGÞ ¼ s where

sX
n � pðr � 1Þ

p

� �
¼ q � 1þ 1

p

� �
¼ q;

and we really are done. &

The proof using the regularity lemma that rðKpþ1;B
ðrÞ
q Þ ¼ pðq þ r � 1Þ þ 1 if q is

sufficiently large does indeed require that q increase quite rapidly as a function of the
parameters p and r: This raises the question of what growth rate is actually required.
The following simple calculation shows that polynomial growth in p is not sufficient.

Theorem 9. For arbitrary fixed k and r;

rðKm;B
ðrÞ
mkÞ

mkþr�1 -N

as m-N:

Proof. We shall prove that rðKm;B
ðrÞ
mkÞ4cmkþr=ðlogmÞr for all sufficiently large m:

Let N ¼ Icmkþr=ðlogmÞrm where c is to be chosen, and set p ¼ ðC=mÞlogm where
C ¼ 2ðk þ r � 1Þ: Let G be the random graph G ¼ GðN; 1� pÞ: The probability that
KmCG

PðKmCGÞp
N

m

� �
ð1� pÞð

m
2
Þp

N

m

� �
e�pmðm�1Þ=2o

Ne

m

� �m

epm=2m�ðkþr�1Þm

¼ Ne1þp=2m�ðkþr�1Þ

m

� �m

¼ oð1Þ; m-N:

To bound the probability that B
ðrÞ
mkCG; we use the following simple consequence

of Chernoff ’s inequality [4]: if X ¼ X1 þ X2 þ?þ Xn where independently each
Xi ¼ 1 with probability p and Xi ¼ 0 with probability 1� p then

PðXXMÞp npe

M

� �M

for any MXnp: Thus we find

PðBðrÞ
mkCGÞp

N

r

� �
prðr�1Þ=2 ðN � rÞpre

mk

� �mk

:

Since the product of the first two factors has polynomial growth in m; to have

PðBðrÞ
mkÞ ¼ oð1Þ when m-N; it suffices to take c ¼ 1=ð3CrÞ; so that

ðN � rÞpre

mk
p
ðc mkþr=ðlogmÞrÞððC=mÞlogmÞr

e

mk
¼ e

3
;

making the last factor approach 0 exponentially. &
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