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Abstract

Let Bf,") = K, + ¢K; be the graph consisting of ¢ distinct (r + 1)-cliques sharing a common
r-clique. We prove that if p>2 and r>3 are fixed, then

r(Kpe1, BY) = plg+7r—1)+1

for all sufficiently large q.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The title of this paper refers to the notion of goodness introduced by Burr and
Erdds [3] and subsequently studied by Burr and various collaborators. A connected
graph H is p-good if the Ramsey number r(K,, H) is given by

r(Kp, H) = (p=D)(IV(H)| = 1)+ 1.

In this paper we prove that for every p>3 the generalized book Bg) =K, +¢K; is
p-good if ¢ is sufficiently large.

As much as possible, standard notation is used; see, for example, [2]. A set of
cardinality p is called a p-set. Unless explicitly stated, all graphs are defined on the
vertex set [n] = {1,2,...,n}. Let u be any vertex; then Ng(u) and dg(u) = |Ng(u)|
denote its neighborhood and degree, respectively. A graph with »n vertices and m
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edges will be designated by G(n,m). By an r-book we shall mean some number of
independent vertices that are each connected to every vertex of an r-clique. The given
r-clique is called the base of the r-book and the additional vertices are called the
pages. The number of pages of an r-book is called its size; the size of the largest

r-book in a graph G is denoted by bs")(G). We shall denote the complete p-partite
graph with each part having ¢ vertices by K,(¢q). The Ramsey number r(H,, H>)

is the least number # such that for every graph G of order n either H; =G or H,<G.

2. The structure of subsaturated K, -free graphs
We shall need the following theorem of Andrasfai et al. [1].
Theorem 1. If G is a K, -free graph of order n and

o0(G)> (1 - 3p3— 1>n,

then G is p-chromatic.

The celebrated theorem of Turan gives a tight bound on the maximum size of a
K,-free graph of given order. In the following theorem, we show that if the size of a
K, 1-free graph is close to the maximum then we may delete a small portion of its
vertices so that the remaining graph is p-chromatic. This is a particular stability
theorem in extremal graph theory (see [8]).

Theorem 2. For every p=2 there exists ¢ = c¢(p) >0, such that for every o satisfying
0<a<c, every K,i-free graph G = G(n,m) satisfying

> il 2
m= 2[) o |n

contains an induced p-chromatic graph Gy of order at least (1 —24'*)n and with
minimum degree

3(Go) = (1 —% - 40(1/3)}1.

Proof. Let ¢y be the smallest positive root of the equation

3 (p—1\? 1
x3+<”sp——1<7> )"‘mzo W

and set ¢(p) = ¢}; then, for every y satisfying 0<y<c(p), we easily see that

. 1+3(p—l)2 phe L )
3p—1\ p T2(3p—1)p
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A rtough approximation of the function ¢(p) is ¢(p)~6~3p~°® obtained by
neglecting the x* term in Eq. (1) and substituting the appropriate asymptotic
(for large p) approximations for the remaining coefficients. This gives reasonable
values even for small p. For all p>2,

(2p(3p +2))° (2p(3p—1))*

The upper bound is evident, and the lower bound follows from a simple
computation.

Let 0<a<c(p) and the graph G = G(n, m) satisfy the hypothesis of the theorem.
We shall prove first that

3)

z -1
Z dz(u)<2<p—>mn. (4)
u=1 p
Indeed, writing k3(G) for the number of triangles in G, we have
3k3(G) = Y INW)AN@®)[= > (d(w) +d(v) —n)=>_ d*(u) -
uekE uwekE u=1

Applying Turan’s theorem to the K,-free neighborhoods of vertices of G, we deduce

u=1
Hence,
n _2 n
d*(u) — mn< P d*(u
; (u) 2p=1) ; ()

and (4) follows.
Since 0 <a<c(p), taking the upper bound in (3) for p = 2, we see that <2073.
Hence,

4m 1
(1 +8a)—> 2(1 +8a)(7—2a>mn
:2([)_1+ (6 —8>o¢— 16oc2>mn
P p

-1 -1
= 2(p—+2a— 16a2>mn>2<p—>mn,
P 4

and from (4) we deduce

" 2m\? & 4m> -1 4m*
Z(d(u)—7> = Zl a’z(u)—7 <2(I)T>mn—7

u=1
4m> —1\*
< 8<x£<8a<p ) n. (5)
n p
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Set VV'= V(G) and let M, be the set of all vertices ue V satisfying d(u) <2m/n — en.
For every ¢>0, inequality (5) implies

M|t < Y (d(u) - %’")2 Z(d(u) —27m>2<8cx (’Ll)zrﬁ,

ueM, uel’ p
and thus,

~1\?

|Mg<8£2<x<p) n. (6)
p

Furthermore, setting G, = G[V \M,], for every ue V(G;), we obtain
2 —1
d, (1) > d(u) — | M,| >7’” —en— M| >E "0 2am —en— | M. (7)

For ¢ = 20!/% we claim that
p—1 _3p—4

31’

3p—4
n—2on —en— | M| > P (n —[M,|)

o (G.) (8

Indeed, assuming the opposite and applying inequality (6) with ¢ = 20'/3, we see that

;—205—2051/3 n< 3 | My, <2 3 1);12051/311
Bp—1)p S3p-1 T 1\ p ’

hence,

3 p—1\* 1
20421+ <—> A —— )}
( 3p—1\ p ) (Bp—1p

contradicting (2).

Set Gy = Gy,15; from (8), we see that Gy satisfies the conditions of Theorem 1, so it
is p-chromatic.

Finally, from (6) and (7), we have

—1 -1\’ —1
5(Go)>pp n—2un —2u'3n — <pT) PULHTN AL, YA PVE

P
1 1/3
> |1 ———4a n,
4

completing the proof. [

3. A Ramsey property of K, |-free graphs
The main result of this section is the following theorem.

Theorem 3. Let r=2, p=2 be fixed. For every >0 there exists an ny = ny( p,r, &)
such that every graph G of order n=ny that is K, -free either satisfies bs")(G)>n/p,
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or contains an induced p-chromatic graph G, of order (1 — &)n and minimum degree
1
o(Gy) = (1 ——= 26)11.
p

Our main tool in the proof of Theorem 3 is the regularity lemma of Szemerédi
(SRL); for expository matter on SRL see [2,7]. For the sake of completeness we
formulate here the relevant basic notions.

Let G be a graph; if A, B=V(G) are nonempty disjoint sets, we write e(4, B) for
the number of 4 — B edges and call the value
_e(4,B)

|4]|B|
the density of the pair (4, B).

Let ¢>0; a pair (4, B) of two nonempty disjoint sets 4, B< V' (G) is called ¢-regular
if the inequality

|d(4,B) —d(X,Y)|<e
holds whenever X =4, Y< B, | X|>¢|A4|, and |Y|>¢|B|.
We shall use SRL in the following form.

d(4, B)

Theorem 4 (Szemerédi’s regularity lemma). Let [=1,e>0. There exists M = M (g, 1)
such that, for every graph G of sufficiently large order n, there exists a partition

V(G) = Uf:o V; satisfying |<k<M and:
() Vol <en, [Vi] = - = [Vil;
(1) all but at most ek* pairs (Vi, V;), (i,je[k]), are e-uniform.

We also need a few technical results; the first one is a basic property of e-regular
pairs (see [7, Fact 1.4]).

Lemma 1. Suppose 0<e<d<1 and (A, B) is an e-regular pair with e(A, B) = d|A||B].

If Yo Band (d — &) | Y|>¢|B| where r>1, then there are at most er|A|” r-sets R= A
with

<(d-e)Y].

()

ueR

The next lemma gives a lower bound on the number of r-cliques in a graph
consisting of several dense e-regular pairs sharing a common part.
Lemma 2. Suppose 0<c<d<1 and (d — &) *>¢. Suppose H is a graph and V(H) =
AU By U -+ U B, is a partition with |A| = |B|| = --- = |B,| and such that for every i€|t]
the pair (A, B;) is e-regular with e(A, B;) = d|A||Bi|. If m is the number of the r-cliques
in A, then at least
t|A|(m — er|A[)(d — €)'

(r + 1)-cliques of H have exactly r vertices in A.
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Proof. Seta = |A| = |Bi| = --- = |B,|. For every i€|t], applying Lemma 1 to the pair
(A4, B;) with Y = B; we conclude that there are at most era’~! r-sets R A with

( ﬂ N(u)) NB;)|<(d —¢)a,

ueR

and therefore, at least (m — era”) r-cliques Rc A satisfy

( ﬂ N(u)) NBi|>(d—¢)a.

Hence, at least #(d — ¢)" (m — era”)a (r + 1)-cliques of H have exactly r vertices in 4
and one vertex in (J; (4 Bi, completing the proof. [

The following consequence of Ramsey’s theorem has been proved by Erdds [5].

Lemma 3. Given integers p=2, r =2, there exist a ¢, >0 such that if G is a K, -free
graph of order n and n>r(K,, 1, K,) then G contains at least c,,n" independent r-sets.

We need another result related to the regularity lemma of Szemerédi, the so-called
Key Lemma (e.g. see [7, Theorem 2.1]). We shall use the following simplified version
of the Key Lemma.

Theorem 5. Suppose 0<e<d<1 and let m be a positive integer. Let G be a graph of
order (p+ )m and let V(G) = ViU --- U V41 be a partition of V(G) into p + 1 sets
of cardinality m so that each of the pairs (V;, V;) is e-reqular and has density at least d.
Ife<(d —¢)'/(p+2) then K, =G.

Proof of Theorem 3. Our proof is straightforward but rather rich in technical details,
so we shall briefly outline it first. For some properly selected ¢, applying SRL, we
partition all but en vertices of G in k sets V7, ..., Vj of equal cardinality such that
almost all pairs (V;, V;) are e-regular. We may assume that the number of dense
e-regular pairs (V;, V;) is no more than ‘%plkz, since otherwise, from Theorem 5 and

Turan’s theorem, G will contain a K, . Therefore, there are at least (1/2p + o(1))k?
sparse e-regular pairs (V;,V;). From Lemma 3 it follows that the number of
independent r-sets in any of the sets V7, ..., Vi is @(n"). Consider the size of the
r-book in G having for its base the average independent r-set in V;. For every sparse
e-regular pair (V;, V;) almost every vertex in V; is a page of such a book. Also each
e-regular pair (V;, V;) whose density is not very close to 1 contributes substantially
many additional pages to such books. Precise estimates show that either
bs")(G)>n/p or else the number of all e-regular pairs (V;, V;) with density close
to 11is (pz;p1 + o(1))k?. Thus the size of G is (”2;[)l + o(1))n* and therefore, according to

Theorem 2, G contains the required induced p-chromatic subgraph with the required
minimum degree.
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Details of the proof: Let ¢(p) be as in Theorem 2 and ¢, , be as in Lemma 3. Select

& ep)
5—m1n{32, 1 9)
set
. S\, -1 o - —1
dmln{<2> <%+2r+1+2p> ,1+p5<%+2r+1> , (10)
and let
. dar
8—mln{57m}. (11)

These definitions are justified at the later stages of the proof. Since c,,<r! we
easily see that 0 <2e<d<d<1. Hence, Bernoulli’s inequality implies

(d—ef =d’ —ped” ' >d’ —pe=2(p+1)e—pe=(p+2e. (12)
Applying SRL we find a partition V(G) = VouViu--- UV; so that |Vy|<en,
|Vi| = -+ =|Vk| and all but ¢k?* pairs (V;, V;) are eregular. Without loss of

generality we may assume |V;|>r(Kp,;1,K,) and k>1/e. Consider the graphs Hi,
Hy,, Hpnig and Hy; defined on the vertex set [k] as follows:

(i) (i,/) € E(Hyy) iff the pair (V;, V;) is not e-regular,
(i) (i,j)eE(Ho) iff the pair (V;, V;) is e-regular and

d(Vi, Vj)<d,

(iii) (7,/) € E(Hmia) iff the pair (V;, V;) is e-regular and
d<d(V;, V) <1 -4,

(iv) (i,j) € E(Hy;) iff the pair (V;, V}) is e-regular and
d(Vi, Vi)>1—36.

Clearly, no two of these graphs have edges in common; thus

k
E(Hirr) + E(Hlo) + E(Hmid) + E(Hhi) — (2 ) .

Hence, from d >2¢ and k> 1/¢, we see that

k 2
e(Hio) + e(Hmia) + e(Hyi) > < ) —ek® = k— - K — ek?
2 2 2
>k—2—sk2—sk2> L_a)e (13)

Since G is K,ii-free, from (12), we have e<(d—¢)"/(p+2); applying
Theorem 5, we conclude that the graph Hpyiqw Hyi is K,1i-free. Therefore, from
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uré
Turan’s theorem,

—1
e(Hmia) + e(Hpi) < (%) K2,

and from inequality (13) we deduce
1
e(Hyo) > (E—d>k2. (14)

Next we shall bound bs")(G) from below. To achieve this we shall count the
independent (r + 1)-sets having exactly r vertices in some V; and one vertex outside
V;. Fix ie[k] and let m be the number of independent r-sets in V. Observe that
Lemma 3 implies m=c,,|Vi|".

Set L = Ny, (i) and apply Lemma 2 with 4 = V;, B; = V}, for all je L, and

oy

Since, for every je L, the pair (V;, V) is e-regular and

en(Vi, Vj) = (1 = d)|Vil|Vj],

H=¢G

we conclude that there are at least
dig, (D) Vil m = ar| Vi) (1 = d =)'

independent (r + 1)-sets in G having exactly r vertices in V; and one vertex in
UjeL Bj :
Set now M = Ny, (i), and apply Lemma 2 with 4 = V;, B; = V; for all je M and

()

Since, for every je M, the pair (V;, V}) is e-regular and
e (Vi, Vj) 20| VillVjl,

H=G

we conclude that there are at least
it ()| Vil (m — er| Vi) (5 — &)

independent (r+ 1)-sets in G having exactly r vertices in V; and one vertex in
;<. Bj. Since

(yrn(ys)

there are at least

du, (D) Vil(m — er| Vi )(1 — d — &)" + dp,

mi

a(DIVil(m = er[Vi]")(6 — &)"
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independent (r + 1)-sets in G having exactly r vertices in 7; and one vertex outside
V;. Thus, taking the average over all m independent r-sets in V;, we conclude

i) (i, ()1 — d — )+ di ()6 — &)

bs?)(G)> |m|(1 -

pr

2 (1) (1 25 )l 001 = d = o 4 (06 o).

Cp.r
Summing this inequality for all i =1, ...,k we obtain
bs"(G) er\ (2e(Hy) + 2e(Hpiq) p
r 2€(H10) 2€(Hmid) ¥
l—|—+1 1— ——2(0—¢
> (1= (S)e) (-t + 23 0 -

2e(kI;I|o)<1 —2rd) + WG) r)

Loy 1)d>LiI'°)+ (1 - (L+ l>d>
Cp.r k Cpr

>(1-
0\ "2e(Hmida)
X (5) B (15)
Assume the assertion of the theorem false and suppose
bs"(G) <2, (16)
p
We shall prove that this assumption implies
| B
€(H]0)< <E+§)k27 (17)
e(Hmid)<5k2. (18)

Disregarding the term e(Hy,q) in (15), in view of (16) and (10), we have
~lp() (G
e(Hio) < (1 - (L+ 2+ l)d) bsG)

Cpr 2n

—170
< (1 - (L+2r+1)d) K
Cpr 2p

—172
(PR (1 e
1+pé) 2p 2p 2

and inequality (17) is proved.
Furthermore, observe that equality (10) implies

5 1
(L+1)d<<i+2r+1>d< PO <po<=,
s s I+ po
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and consequently,
(1 - (r+ 1>d> >3,
Cpr 2
Hence, from (15), taking into account (16) and (14), we find that

e(l’lzmid) @ < e(Huna) (2) r (1 - (é " 1) d)

gbs“’(ﬂ_ <1 _ <L+2r+ 1>d>e(Hlo)

(- ()3
() 3)

1/ r , (0 r )
<—|—4+2r+14+2p|dk-<|= k-.
2p\cpr 2

Therefore, inequality (18) holds also.
Furthermore, inequality (13), together with (17) and (18), implies

1 1 9 p—1 56
H, 1 2 (L 9%\2 g2 (P L 29)\ 12
e( h)>(2 d)k (2p+2>k ok (217 2)k,

and consequently, from the definition of Hy;, we obtain

2
¢(G) > e(Hy) (“ ;””) (1-26)> (% - 52—5> (1 - 26)(1 — o)

_p—l(1 5po

S —F)a —2)(1 —8)n* >

p—1( (5 o (P11 2
> pr (1 (p_1+3)5>n>(2p 46 |n”.

Hence, by (9), applying Theorem 2, it follows that G contains an induced
p-chromatic graph with the required properties. [

Following the basic idea of the proof of Theorem 3 but applying the complete Key
Lemma instead of Theorem 5, we obtain a more general result, whose proof,
however, is considerably easier than the proof of Theorem 3.

Theorem 6. Suppose H is a fixed ( p + 1)-chromatic graph. For every H-free graph G
of order n,

bs")(G)> G) + 0(1))11.
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Note that the graph K,(q +r — 1) is p-chromatic and its complement has no BSP,

so for every (p + 1)-chromatic graph H and every r,q we have
r(H,BY)=p(q+r—1)+1.
Hence, from Theorem 6, we immediately obtain the following theorem.

Theorem 7. For every fixed (p + 1)-chromatic graph H and fixed integer r> 1,
r(H, B))) = pg + o(q).

Note that it is not possible to avoid the o(g) term in Theorem 7 without additional
stipulations about H, since, as Faudree, Rousseau and Sheehan have shown in [6],
the inequality

r(Cs, BP)2q+2/q

holds for infinitely many values of q. However, when H = K| and q is large we can
prove a precise result.

4. Ramsey numbers r(K,, B) for large ¢

In this section we determine r(K,,,B(q")) for fixed p=3, r=2 and large q.

Theorem 8. For fixed p=2 and r>=2, r(KpH,BS[)) =plg+r—1)+1 for all
sufficiently large q.

Proof. Since K,(¢ + r — 1) contains no K, and its complement contains no Bff), we
have

r(Kpi1, BY) 2plg+r—1)+1.

Let G be a K, i-free graph of order n = p(q+r— 1)+ 1. Since n/p>gq, either
we’re done or else G contains an induced p-chromatic subgraph G| of order pg +
o(g) with minimum degree

3(Gi) = (1 —117+ 0(1))n.

Using this bound on 6(G) we can easily prove by induction on p that G, contains a
copy of K,(r). Fix a copy of K,(r) in G, and let A, As, ..., 4, be its vertex classes.
LetA=A,U---UA,and B = V(G)\A. If some vertex i€ B is adjacent to at least one
vertex in each of the parts 4, 4,, ..., 4, then G contains a K, . Otherwise for each

vertex ue B there is at least one v so that u is adjacent in G to all members of A4,. It
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follows by the pigeonhole principle that bs")(G) = s where

o[ o]

and we really are done. [

The proof using the regularity lemma that r(KpH,B(qr)) =plg+r—1)+1ifqgis
sufficiently large does indeed require that ¢ increase quite rapidly as a function of the
parameters p and r. This raises the question of what growth rate is actually required.
The following simple calculation shows that polynomial growth in p is not sufficient.

Theorem 9. For arbitrary fixed k and r,

r(Kn, BY))

mk+r71 -0

as m— O.

Proof. We shall prove that r(Km,B(r))>cmk+r/(log m)" for all sufficiently large m.

mk
Let N = | em**" /(logm)" | where ¢ is to be chosen, and set p = (C/m)logm where
C =2(k+r—1). Let G be the random graph G = G(N, 1 — p). The probability that
Km cG

m N m
[FD(chG)g (N) (1 _p)(z) < ( )epm(ml)/2< (&) epm/me(/cJﬁrfl)m
m m m

Neltp/2y,—(k+r=1)
_ (—m

>m: o(l), m- .

To bound the probability that Bi:z G, we use the following simple consequence
of Chernoff’s inequality [4]: if X = X| + X5 + --- + X, where independently each
X; = 1 with probability p and X; = 0 with probability 1 — p then

M
P(X;M)s("—pe)
M

for any M =np. Thus we find

k

— NN N —r)pe\"
P(B") <G)< < ’ )p,<r /2 <(7)1’) _

mk

Since the product of the first two factors has polynomial growth in m, to have
[P’(B(r>) = 0(1) when m— oo, it suffices to take ¢ = 1/(3C"), so that

mk
(N —r)p'e_(cm**/(logm)")((C/m)logm)’e e
mk mk X

making the last factor approach 0 exponentially. [
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