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It is shown that cosmological equations for homogeneous isotropic models deduced in the framework
of the Poincaré gauge theory of gravity by certain restrictions on indefinite parameters of gravitational
Lagrangian take at asymptotics the same form as cosmological equations of general relativity theory
for �CDM-model. Terms related to dark matter and dark energy in cosmological equations of standard
theory for �CDM-model are connected in considered theory with the change of gravitational interaction
provoked by spacetime torsion.
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1. Introduction

As it is well known, the notions of dark matter (DM) and dark
energy (DE) were introduced in order to explain observational
cosmological and astrophysical data in the framework of the gen-
eral relativity theory (GR). According to obtained estimations the
contribution of these invisible components to the energy of the
Universe is approximately equal to 96%. The origin problem of hy-
pothetical kinds of gravitating matter – DM and DE – is one of
the most principal problems of modern cosmology and gravita-
tion theory. Many attempts have been proposed with the purpose
of solving this problem (see [1–7] and references herein). In the
frame of GR the DE (or quintessence) as gravitating matter with
negative pressure provoking accelerating cosmological expansion
at present epoch is associated in many works with vacuum en-
ergy leading to cosmological constant in cosmological equations
that is expressed in the title “�CDM-model”. In other works the
quintessence is related to some hypothetical fields. The DM is con-
sidered usually as connected with some massive particles (WIMP),
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which appear in elementary particles theory including various gen-
eralizations of Standard Model and the search for which is realizing
in many experimental projects (see review [7]). At the same time
there is another treatment that explains effects associated in the
framework of the standard theory with DE and DM. This treatment
is connected with the search for some generalization of Einstein
gravitation theory, where there is no DE and DM, and the corre-
sponding effects are connected with the change of gravitational
interaction. At present there are different approaches in this direc-
tion connected, in particular, with extradimensional theories, f (R)

gravity, MOND, etc. Not always such theories are based on accept-
able fundamental physical principles.

The present Letter is devoted to the discussion of possible a
solution of DE- and DM-problems in the frame of the Poincaré
gauge theory of gravity (PGTG) (see [8–11]), which is a natural
generalization of GR and which offers opportunities that can solve
the principal problems of Einstein gravitational theory (see [12,13]
and references herein). The PGTG is based on well-known and ac-
ceptable physical principles including the local gauge invariance
principle, and it is the gravitation theory in 4-dimensional physical
spacetime with the structure of the Riemann–Cartan continuum.
Note that the PGTG is a necessary generalization of GR, if one
supposes that the Lorentz group, which is fundamental group in
physics, is included to gauge group corresponding to gravitational
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interaction. At the first time the simplest PGTG – the Einstein–
Cartan theory [14] – was applied with the purpose to solve one
of the problems of GR, the problem of cosmological singularity
in Refs. [15,16]. However, the possibilities of the Einstein–Cartan
theory are limited. As a natural generalization of Einstein–Cartan
theory is the PGTG based on gravitational Lagrangian Lg including
not only scalar curvature but invariants quadratic in gravitational
field strengths – curvature Fαβμν and torsion Sαμν tensors. By us-
ing sufficiently general expression of Lg regular isotropic cosmol-
ogy including inflationary cosmology was built and investigated in
the frame of PGTG (see [17–20] and references herein). As it was
shown, the character of gravitational interaction by certain physi-
cal conditions in the frame of PGTG is changed, and in the case of
usual gravitating matter with positive values of energy density and
pressure the gravitational interaction can be repulsive [13,17,19]
that offers opportunities to solve principal problems of GR, in par-
ticular, the problem of the beginning of the Universe in time in the
past (problem of cosmological singularity). The possible solution of
DE-problem in the frame of PGTG was discussed in [20]. Below
we will show that the PGTG offers opportunity to solve also the
DM-problem together with the DE-problem. In Section 2 the cos-
mological equations for homogeneous isotropic models (HIM) of
PGTG are given. In Section 3 the restrictions on indefinite parame-
ters of Lg leading to a possible solution of DM- and DE-problems
in cosmology are obtained. In conclusion some physical problems
in connection with proposed solution are discussed.

2. Cosmological equations of isotropic cosmology in PGTG

We will consider the PGTG based on sufficiently general fol-
lowing expression of gravitational Lagrangian (definitions and no-
tations of [20] are used below):

Lg = [
f0 F + F αβμν( f1 Fαβμν + f2 Fαμβν + f3 Fμναβ)

+ F μν( f4 Fμν + f5 Fνμ) + f6 F 2

+ Sαμν(a1 Sαμν + a2 Sνμα) + a3 Sα
μα Sβ

μβ
]
. (1)

The Lagrangian (1) includes the parameter f0 = (16πG)−1 (G
is Newton’s gravitational constant, the light velocity c = 1) and
a number of indefinite parameters: f i (i = 1,2, . . . ,6) and ak
(k = 1,2,3). Physical consequences of PGTG depend essentially on
restrictions on indefinite parameters f i and ak . Some such restric-
tions will be given below by investigation of HIM.

In the framework of PGTG any HIM is described by three func-
tions of time: the scale factor of Robertson–Walker metrics R and
two torsion functions S1 and S2 [21,22]. Gravitational equations
for HIM filled with spinless matter with two torsion functions cor-
responding to gravitational Lagrangian (1) were analyzed in [20].
These equations allow to obtain cosmological equations general-
izing Friedmann cosmological equations of GR and equations for
torsion functions. Unlike metric theories of gravity terms of Lg
quadratic in the curvature tensor do not lead to higher derivatives
in cosmological equations. Higher derivatives can appear because
of terms of Lg quadratic in the torsion tensor. In order to exclude
higher derivatives from cosmological equations we have to put the
following condition for indefinite parameters ak: 2a1 +a2 +3a3 = 0
[23]. Besides this condition the following restriction on f i was
used in [20]: f2 +4 f3 + f4 + f5 = 0; by this restriction gravitational
equations take a more symmetric form. Then the cosmological
equations for HIM include three following indefinite parameters:
the parameter α ≡ f /(3 f 2

0 ) ( f = f1 + f2
2 + f3 + f4 + f5 +3 f6) with

inverse dimension of energy density, the parameter b = a2 − a1
with the same dimension as f0 and dimensionless parameter
ε = (2 f1 − f2)/ f . Explicit form of cosmological equations is the
following [20]:
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where H = Ṙ/R is the Hubble parameter (a dot denotes the dif-
ferentiation with respect to time), ρ is the energy density, p is
the pressure and Z = 1 + α(ρ − 3p − 12(b + ε f0)S2

2). According to
gravitational equations the torsion function S1 take the following
form:

S1 = − α

4Z

[
ρ̇ − 3ṗ + 36ε f0 H S2

2 − 12(2b − ε f0)S2 Ṡ2
]
. (4)

Derivatives of the energy density and pressure can be excluded
from (4) by using the conservation law, which in the case of spin-
less matter minimally coupled with gravitation takes the same
form as in GR:

ρ̇ + 3H(ρ + p) = 0. (5)

The torsion function S2 satisfies the differential equation of the
second order:

ε
[

S̈2 + 3H Ṡ2 + (
3Ḣ − 4 Ṡ1 + 12H S1 − 16S2

1

)
S2

]
− 1

3 f0

(
ρ − 3p − 12bS2

2

)
S2 − (1 − b/ f0)

3α f0
S2 = 0. (6)

Cosmological equations (2)–(3) together with Eqs. (4) and (6) for
torsion functions describe the evolution of HIM by given equation
of state for gravitating matter.

3. Accelerating Universe without dark energy and dark matter

Now we will analyze the following question: by what restric-
tions on the indefinite parameters cosmological equations of PGTG
for HIM describe the evolution of the Universe in agreement with
actual observations without using notions of dark matter and dark
energy. By taking into account that various parameters of HIM have
to be small at the asymptotics, when values of energy density are
sufficiently small, we see from (6), that if |ε| � 1, the torsion func-
tion S2 has at asymptotics the following value:

S2
2 = 1 − b/ f0

12αb
+ ρ − 3p

12b
. (7)

Then we have at asymptotes: Z → (b/ f0), S1 → 0 and the cosmo-
logical equations (2)–(3) at asymptotics take the following form:

k

R2
+ H2 = 1

6 f0

[
ρ( f0/b) + 1

4
α−1(1 − b/ f0)

2( f0/b)

]
, (8)

Ḣ + H2 = − 1
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Effective cosmological constant in cosmological equations (8)–(9)
is induced by spacetime torsion function (7). According to (8)–(9)
the evolution of HIM at the asymptotics depends on two indefinite
parameters: α and b. Let us to compare (8)–(9) with Friedmann
cosmological equations of GR:

k

R2
+ H2 = 1

6 f0
ρtot, (10)

Ḣ + H2 = − 1

12 f0
(ρtot + 3ptot), (11)

where ρtot and ptot are total values of energy density and pres-
sure including contributions of three components: baryonic mat-
ter, dark matter and dark energy: ρtot = ρBM + ρDM + ρDE, ptot =
pBM + pDM + pDE. In the case of standard �CDM-model one uses at
present epoch for baryonic and dark matter the equation of state
of dust (pBM = pDM = 0), and for dark energy pDE = −ρDE. Accord-
ing to observational data, the Universe evolution is in agreement
with Friedmann cosmological equations (10)–(11) for flat model
(k = 0), if one supposes that the contribution of dark matter and
dark energy to energy density of the Universe approximately is
the following: ρDM0 = 0.23ρcr , ρDE0 = 0.73ρcr , where ρcr = 6 f0 H2

0
and values of physical parameters at present epoch are denoted
by means of the index “0”. By comparing cosmological equations
(8)–(9) with (10)–(11) we see that cosmological equations of PGTG
at asymptotics have quasi-Friedmannian structure and lead to the
same consequences as Friedmann cosmological equations of GR,
if one supposes that the energy density ρ in (8)–(9) corresponds
to all physical matter in the Universe, which is practically equal
to baryonic matter (by suppsing that the contribution of invis-
ible non-baryonic matter in the form of neutrino etc is suffi-
ciently small), by certain values of parameters b and α, namely
if b = f0(ρ0/(ρ0 + ρDM0)) and α = 1

4 ρDE0
(−1)(1 − b/ f0)

2( f0/b).
Obtained estimation of α corresponds to energy density of order
of average energy density in the Universe at present epoch and
differs from estimation of α used in our previous papers [17–20,
23], where the value of α corresponds to the scale of extremely
high energy densities at the beginning of cosmological expansion.
Previous estimation of α was obtained by investigation of HIM
with the only torsion function S1, and it was introduced in order
to satisfy the correspondence principle with GR by description of
such HIM at asymptotics, where values of energy density are suf-
ficiently small. However, as follows from our consideration given
above, such estimation is not necessary in the case of HIM with
two torsion functions. Moreover, in the case of obtained estima-
tion for parameters b and α the fine tuning problem of defining of
b in [20] disappears. Note that terms in cosmological equations
containing the parameter b describe the change of gravitational
interaction provoked by spacetime torsion. When effective cos-
mological constant in (8)–(9) was small in comparison with the
first term in the right-hand side of (8)–(9), gravitational attrac-
tion was larger in comparison with GR and Newton’s theory of
gravity. This fact could play the important role by formation of
the large scale structure of the Universe ensuring additional grav-
itational attraction, which is provoked in the frame of standard
theory by the dark matter. However, now when effective cosmolog-
ical constant dominates, gravitational interaction has the repulsive
character and leads to acceleration of cosmological expansion. Note
that if some non-baryonic invisible matter exists and gives certain
contribution to energy density ρ in cosmological equations (8)–
(9), in this case obtained estimation for parameters b and α will
be changed.

Cosmological equations (8)–(9) are valid only in the zeroth ap-
proximation with respect to small parameter ε. It is interesting
to analyze observational cosmological data by taking into account
corrections connected with ε in order to estimate more precisely
the role of spacetime torsion at present epoch of cosmological evo-
lution. By using obtained estimation for parameters α and b it
is interesting also to study HIM at the beginning of cosmologi-
cal expansion with the purpose to build totally regular Big Bang
scenario. However, these problems will be object of our further in-
vestigations.

4. Conclusion

We see that the PGTG leads to essential changes of gravitational
interaction not only at extreme conditions (extremely high energy
densities and pressures) in the beginning of cosmological expan-
sion, but also at present epoch. These changes allow us to explain
the cosmological observational data associated in the frame of GR
with the notions of “dark matter” and “dark energy” without us-
ing these notions. From the point of view of considered PGTG, the
notions of “dark matter” and “dark energy” play the role similar to
that of “ether” in physics before the creation of special relativity
theory by A. Einstein. Unlike GR, in the frame of PGTG Newton’s
law of gravitational attraction is not applicable at cosmological
scale. If we remember that the “dark matter” notion was intro-
duced by applying Newton’s law of gravitational attraction at the
galactic scales, the problem of the investigations of inhomogeneous
gravitating systems at galactic scales in the framework of PGTG
becomes very actual. Although the vacuum Schwarzschild solu-
tion for the metrics with vanishing torsion is an exact solution of
PGTG for any values of indefinite parameters of the gravitational
Lagrangian (1) that allows us to explain the usual gravitational
phenomena in the Solar system, for the above mentioned restric-
tions on indefinite parameters of Lg the Birkhoff theorem [24] is
not valid. This means that there are other solutions in this case,
and possibly we have to use in the Solar system the solution,
which deviates from the vacuum Schwarzschild solution. (In con-
nection with this let us to remind about the problem of Pioneer
anomaly). The search for the criteria that allow us to be able to
choose physically acceptable solutions is warranted and also im-
portant for PGTG.
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