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a b s t r a c t

This paper deals with discrete monotone iterative methods for solving semilinear
singularly perturbed parabolic problems. Monotone sequences, based on the accelerated
monotone iterative method, are constructed for a nonlinear difference scheme which
approximates the semilinear parabolic problem. This monotone convergence leads to
the existence-uniqueness theorem. An analysis of uniform convergence of the monotone
iterative method to the solutions of the nonlinear difference scheme and continuous
problem is given. Numerical experiments are presented.
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1. Introduction

We are interested in monotone iterative methods for solving semilinear singularly perturbed parabolic problems in the
form

ut − Lu + f (x, y, t, u) = 0, (x, y, t) ∈ ω × (0, T ], (1)
u(x, y, t) = g(x, y, t), (x, y, t) ∈ ∂ω × (0, T ],

u(x, y, 0) = ψ(x, y), (x, y) ∈ ω,

where ω is a connected bounded domain in R2 with boundary ∂ω. The differential operator L is given by

Lu = ε(uxx + uyy)+ b1(x, y, t)ux + b2(x, y, t)uy,

where ε is a small positive parameter, the functions b1, b2, f , g andψ are smooth in their respective domains, and f satisfies
the constraint

fu ≥ 0, (x, y, t, u) ∈ ω × [0, T ] × (−∞,∞), (fu ≡ ∂ f /∂u). (2)

This assumption can always be obtained by a change of variables. Indeed, introduce z(x, y, t) = exp(−λt)u(x, y, t), where λ
is a constant. Now, z(x, y, t) satisfies (1) with ϕ = λz +exp(−λt)f (x, y, t, exp(λt)z), instead of f , and we have ϕz = λ+ fu.
Thus, if λ ≥ −min fu, where a minimum is taken over the domain from (2), we conclude ϕz ≥ 0.

For ε ≪ 1, the problem is singularly perturbed and characterized by boundary layers (regions with rapid change of
solutions) near boundary ∂ω.

In the study of numerical methods for nonlinear singularly perturbed problems, the two major points to be developed
are: (i) constructing robust difference schemes (this means that unlike classical schemes, the error does not increase to
infinity, but rather remains bounded, as the small parameter approaches zero); (ii) obtaining reliable and efficient computing
algorithms for solving nonlinear discrete problems.
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For solving these nonlinear discrete systems, the iterative approach presented in this paper is based on the method of
upper and lower solutions and associatedmonotone iterates. By using upper and lower solutions as two initial iterations, one
can construct twomonotone sequences which converge monotonically from above and below, respectively, to a solution of
the problem. The above monotone iterative method is well known and has been widely used for continuous and discrete
elliptic and parabolic boundary value problems. Most of the publications on this topic involve monotone iterative schemes
whose rate of convergence is of linear rate (cf. [1–5]). Some accelerated monotone iterative schemes for solving discrete
elliptic boundary value problems are given in [6,7]. An advantage of this accelerated approach is that it leads to sequences
which converge either quadratically or nearly quadratically. In [8], an accelerated monotone iterative method for solving
discrete parabolic boundary value problems is presented. In the recent paper [9], a combination of the acceleratedmonotone
iterative method from [8] with monotone Picard iterates is constructed. In [8,9], the two important points in investigating
the monotone iterative method concerning a stopping criterion on each time level and estimates of convergence rates, in
the case of solving linear discrete systems on each time level inexactly, were omitted.

In [2], we investigate uniform convergence properties of themonotone iterativemethods from [10,11] applied to solving
the semilinear problems (1) of reaction–diffusion and convection–reaction–diffusion types. These monotone methods
possess linear convergence rate. In this paper, we extend the accelerated monotone iterative method from [8] to the case
when on each time level nonlinear difference schemes are solved inexactly, and investigate uniform convergence properties
of the proposed monotone iterative method.

The structure of the paper as follows. In Section 2, we introduce a nonlinear difference scheme for the numerical solution
of (1). Themonotone iterativemethod is presented in Section 3. Section 4 dealswith existence anduniqueness of the solution
to the nonlinear difference scheme. An analysis of uniform convergence of the proposed monotone iterative method to the
solution of the nonlinear difference scheme is given in Section 5. In Section 6, we investigate uniform convergence of the
monotone iterativemethod applied to the exact solution of (1) for the reaction–diffusion and convection–reaction–diffusion
problems. The final Section 7 presents results of numerical experiments where iteration counts are compared between the
proposedmonotone iterativemethod and themonotone iterativemethods from [10,11], whose rate of convergence is linear.

2. The nonlinear difference scheme

Onω, we introduce ameshωh
= ωh

∪∂ωh, whereωh is a set of interior mesh pointsωh
⊂ ω and ∂ωh is a set of boundary

mesh points ∂ωh
⊂ ∂ω. On [0, T ], a mesh ωτ is chosen in the form

ωτ = {t0 = 0 < t1 < · · · < tNτ−1 < tNτ = T }, τk = tk − tk−1.

For solving (1), consider the nonlinear two-level implicit difference scheme in the canonical form [12]

LU(p, tk)+ f (p, tk,U)− τ−1
k U(p, tk−1) = 0, (p, tk) ∈ ωh

× (ωτ \ {0}), (3)

with the boundary and initial conditions

U(p, tk) = g(p, tk), (p, tk) ∈ ∂ωh
× (ωτ \ {0}),

U(p, 0) = ψ(p), p ∈ ωh.

The difference operator L is defined by

LU(p, tk) = LhU(p, tk)+ τ−1
k U(p, tk),

LhU(p, tk) ≡ d(p, tk)U(p, tk)−

−
p′∈σ ′(p)

a(p′, tk)U(p′, tk),

where σ ′(p) = σ(p) \ {p}, σ(p) is a stencil of the scheme at an interior mesh point p ∈ ωh. We make the following
assumptions on the coefficients of the difference operator Lh:

d(p, tk) > 0, a(p′, tk) ≥ 0, p′
∈ σ ′(p), (4)

d(p, tk)−

−
p′∈σ ′(p)

a(p′, tk) ≥ 0, (p, tk) ∈ ωh
× (ωτ \ {0}).

We also assume that the mesh ωh is connected. It means that for two interior mesh points p̃ and p̂, there exists a finite
set of interior mesh points {p1, p2, . . . , ps} such that

p1 ∈ σ ′(p̃), p2 ∈ σ ′(p1), . . . , ps ∈ σ ′(ps−1), p̂ ∈ σ ′(ps). (5)

On each time level tk, k ≥ 1, introduce the linear problems

(L + c(p, tk))W (p, tk) = Φ(p, tk), p ∈ ωh, (6)
c(p, tk) ≥ 0, W (p, tk) = g(p, tk), p ∈ ∂ωh.

We now formulate the maximum principle for the difference operator L + c , and give an estimate to the solution of (6).
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Lemma 1. Let the coefficients of the difference operator Lh satisfy (4) and the mesh ωh be connected.

(i) If a mesh function W (p, tk) satisfies the conditions

(L + c(p, tk))W (p, tk) ≥ 0 (≤ 0), p ∈ ωh,

W (p, tk) ≥ 0 (≤ 0), p ∈ ∂ωh,

then W (p, tk) ≥ 0 (≤ 0) in ωh.
(ii) The following estimates to the solutions to (6) hold true

‖W (tk)‖ωh ≤ max


‖g(tk)‖∂ωh ,max

p∈ωh

|Φ(p, tk)|

c(p, tk)+ τ−1
k


, (7)

where

‖W (tk)‖ωh = max
p∈ωh

|W (p, tk)|, ‖g(tk)‖∂ωh = max
p∈∂ωh

|g(p, tk)|.

The proof of the lemma can be found in [12].

Remark 1. A difference scheme which satisfies the maximum principle from Lemma 1 is said to be monotone. The
monotonicity condition guarantees that the systems of algebraic equations based on such methods are well-posed.

3. The monotone iterative method

We say that on time level tk, k ≥ 1, V1(p, tk) is an upper solution with a given function V (p, tk−1) if it satisfies

LV1(p, tk)+ f (p, tk, V1)− τ−1
k V (p, tk−1) ≥ 0, p ∈ ωh,

V1(p, tk) ≥ g(p, tk), p ∈ ∂ωh.

Similarly, V−1(p, tk) is called a lower solution on a time level tk, k ≥ 1 with a given function V (p, tk−1), if it satisfies the
reversed inequalities.

We now construct an iterative method for solving (3) in the following way. On each time level tk, k ≥ 1, initial upper
and lower solutions V (0)α (p, tk) (α = 1 and α = −1 correspond to, respectively, the upper and lower cases) are calculated
by solving the linear problems

LW (0)
α (p, tk) = α|R(p, tk, S)|, p ∈ ωh, W (0)

α (p, tk) = 0, p ∈ ∂ωh, (8)

R(p, tk, S) ≡ LS(p, tk)+ f (p, tk, S)− τ−1
k Vα(p, tk−1),

V (0)α (p, tk) = S(p, tk)+ W (0)
α (p, tk), p ∈ ωh, α = 1,−1,

where S(p, tk) is defined on ωh and satisfies the boundary condition S(p, tk) = g(p, tk) on ∂ωh. For n ≥ 1, we calculate
upper and lower solutions {V (n)α (p, tk)}, α = 1,−1, by using the recurrence formulae

(L + c(n−1)(p, tk))Z (n)α (p, tk) = −R(p, tk, V (n−1)
α ), p ∈ ωh, (9)

R(p, tk, V (n−1)
α ) ≡ LV (n−1)

α (p, tk)+ f (p, tk, V (n−1)
α )− τ−1

k Vα(p, tk−1),

Z (n)α (p, tk) = 0, p ∈ ∂ωh,

V (n)α (p, tk) = V (n−1)
α (p, tk)+ Z (n)α (p, tk), p ∈ ωh,

Vα(p, tk) = V (nk)α (p, tk), p ∈ ωh,

Vα(p, 0) = ψ(p), p ∈ ωh,

where R(p, tk, V (n)α ) is the residual of the difference scheme (3) on V (n)α for upper α = 1 and lower α = −1 sequences,
respectively, and nk is a number of iterative steps on time-level tk. The mesh function c(n−1)(p, tk) is given by

c(n−1)(p, tk) = max
V

{fu(p, tk, V ), V
(n−1)
−1 (p, tk) ≤ V ≤ V (n−1)

1 (p, tk)}, (10)

where below in Theorem 1, we prove that V (n−1)
−1 (p, tk) ≤ V (n−1)

1 (p, tk), p ∈ ωh.

Remark 2. The acceleratedmonotone iterativemethod from [8] is based on (9), (10), where the residual in (9) is in the form

R(p, tk, V (n−1)
α ) = LV (n−1)

α (p, tk)+ f (p, tk, V (n−1)
α )− τ−1

k V ∗(p, tk−1),

where instead of Vα(p, tk−1) in (9), the exact solution V ∗(p, tk−1) of the difference scheme (3) is in use.
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We assume that V (n)1 (p, tk) ≥ V (n)
−1 (p, tk), p ∈ ωh, and define the sector

⟨V (n)
−1 (tk), V

(n)
1 (tk)⟩ = {V (n)

−1 (p, tk) ≤ V (p, tk) ≤ V (n)1 (p, tk), p ∈ ωh
}.

Introduce the notation

F(p, tk, V ) = c(n)(p, tk)V (p, tk)− f (p, tk, V ), (11)

and give a monotone property of F .

Lemma 2. If U, V ∈ ⟨V (n)
−1 (tk), V

(n)
1 (tk)⟩ such that U(p, tk) ≥ V (p, tk), and (10) holds, then

F(p, tk,U) ≥ F(p, tk, V ), p ∈ ωh. (12)

Proof. From (11), we have

F(p, tk,U)− F(p, tk, V ) = c(n)(p, tk)[U(p, tk)− V (p, tk)] − [f (p, tk,U)− f1(p, tk, V )].

By the mean-value theorem,

f (p, tk,U)− f (p, tk, V ) = fu(p, tk, E)[U(p, tk)− V (p, tk)],

where E ∈ ⟨V (tk),U(tk)⟩. Thus, from here, (10) and the assumptions of the lemma, we conclude (12). �

In the following theorem we prove the monotone property of the iterative method (8)–(10).

Theorem 1. Assume that the coefficients of the difference operator L in (3) satisfy (4) and the computational mesh ωh is
connected (5). The sequences {V (n)1 }, {V (n)

−1 }, generated by (8)–(10) converge monotonically

V (n−1)
−1 (p, tk) ≤ V (n)

−1 (p, tk) ≤ V (n)1 (p, tk) ≤ V (n−1)
1 (p, tk), p ∈ ωh, (13)

where k ≥ 1 and n ≥ 1.

Proof. We show that V (0)1 (p, tk) defined by (8) is an upper solution. From the maximum principle in Lemma 1 and mean-
value theorem, it follows thatW (0)

1 (p, tk) ≥ 0 on ωh. Now using the difference equation forW (0)
1 (p, tk), we have

L(S(p, tk)+ W (0)
1 (p, tk))+ f (p, tk, S + W (0)

1 )− τ−1
k V1(p, tk−1)

= R(p, tk, S)+ |R(p, tk, S)| + f (0)u (p, tk, E)W
(0)
1 (p, tk),

where S ≤ E ≤ S + W (0)
1 . Since fu ≥ 0 and W (0)

1 is nonnegative, we conclude that V (0)1 (p, tk) = S(p, tk) + W (0)
1 (p, tk) is an

upper solution. Similarly, we can prove that V (0)
−1 (p, tk) = S(p, tk)+W (0)

−1 (p, tk) is a lower solution,whereW (0)
−1 is nonpositive.

Thus, V (0)α (p, tk) are upper (α = 1) and lower (α = −1) solutions of (3) and satisfy (13).
Since V (0)1 is an upper solution, then from (9) we conclude that

(L + c(0)(p, t1))Z
(1)
1 (p, t1) ≤ 0, p ∈ ωh, Z (1)1 (p, t1) = 0, p ∈ ∂ωh,

where t1 = τ1. From Lemma 1, it follows that

Z (1)1 (p, t1) ≤ 0, p ∈ ωh. (14)

Similarly, for a lower solution V (0)
−1 , we conclude that

Z (1)
−1 (p, t1) ≥ 0, p ∈ ωh. (15)

We now prove that

V (1)
−1 (p, t1) ≤ V (1)1 (p, t1), p ∈ ωh. (16)

In the notation (11), by (9),

(L + c(0)(p, t1))V (1)α (p, t1) = F(p, t1, V (0)α )+ τ−1
1 ψ(p), p ∈ ωh,

V (1)α (p, t1) = g(p, t1), p ∈ ∂ωh, α = 1,−1.

LettingW (n)
= V (n)1 − V (n)

−1 , n ≥ 0, we have

(L + c(0)(p, t1))W (1)(p, t1) = F(p, t1, V
(0)
1 )− F(p, t1, V

(0)
−1 ), p ∈ ωh,

W (1)(p, t1) = 0, p ∈ ∂ωh.
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Since V (0)1 (p, t1) ≥ V (0)
−1 (p, t1), by Lemma 2, we conclude that the right-hand side in the difference equation is nonnegative.

The positivity property in Lemma 1 impliesW (1)(p, t1) ≥ 0, and this leads to (16).
We nowprove that V (1)1 (p, t1) and V (1)

−1 (p, t1) are upper and lower solutions, respectively. Using themean-value theorem,
from (9) we obtain

R(p, t1, V
(1)
1 ) = −(c(0)(p, t1)− fu(p, t1, E))Z

(1)
1 (p, t1), (17)

where E ∈ ⟨V (1)1 (t1), V
(0)
1 (t1)⟩. From here, (10) and (14)–(16), it follows that

c(0)(p, t1) ≥ fu(p, t1, E), p ∈ ωh.

From here and (14), we conclude that

R(p, t1, V
(1)
1 ) ≥ 0, p ∈ ωh, V (1)1 (p, t1) = g(p, t1), p ∈ ∂ωh.

Thus, V (1)1 (p, t1) is an upper solution. Similarly, we can prove that V (1)
−1 (p, t1) is a lower solution, that is,

R(p, t1, V
(1)
−1 ) ≤ 0, p ∈ ωh, V (1)

−1 (p, t1) = g(p, t1), p ∈ ∂ωh.

By induction on n, we can prove that {V (n)1 (p, t1)} is a monotonically decreasing sequence of upper solutions and
{V (n)

−1 (p, t1)} is a monotonically increasing sequence of lower solutions, which satisfy (13) for t1.
In the notation (11), by (9) with t2,

(L + c(0)(p, t2))V (1)α (p, t2) = F(p, t2, V (0)α )+ τ−1
2 V (n1)α (p, t1), p ∈ ωh,

V (1)α (p, t2) = g(p, t2), p ∈ ∂ωh, α = 1,−1.

From here, we conclude thatW (1)(p, t2) = V (1)1 (p, t2)− V (1)
−1 (p, t2) satisfies the difference problem

(L + c(0)(p, t2))W (1)(p, t2) = F(p, t2, V
(0)
1 )− F(p, t2, V

(0)
−1 )+ τ−1

2 [V (n1)1 (p, t1)− V (n1)
−1 (p, t1)],

p ∈ ωh, W (1)(p, t2) = 0, p ∈ ∂ωh.

Since V (0)1 (p, t2) ≥ V (0)
−1 (p, t2) and taking into account (13) with t = t1 and n = n1, by Lemma 2, we conclude that the

right-hand side in the difference equation is nonnegative. The positivity property in Lemma 1 implies W (1)(p, t2) ≥ 0, and
this leads to

V (1)
−1 (p, t2) ≤ V (1)1 (p, t2), p ∈ ωh.

The proof that V (1)1 (p, t2) and V (1)
−1 (p, t2) are, respectively, upper and lower solutions is similar to the proof of this result on

the time level t1. By induction on n, we can prove that {V (n)1 (p, t2)} is monotonically decreasing sequence of upper solutions
and {V (n)

−1 (p, t2)} is a monotonically increasing sequence of lower solutions, which satisfy (13) for t2.
By induction on k, k ≥ 1, we can prove that {V (n)1 (p, tk)} is a monotonically decreasing sequence of upper solutions and

{V (n)
−1 (p, tk)} is a monotonically increasing sequence of lower solutions, which satisfy (13). Thus, we prove the theorem. �

4. Existence and uniqueness of a solution to the nonlinear difference scheme

Applying Theorem 1, we investigate existence and uniqueness of a solution to the nonlinear difference scheme (3).

Theorem 2. Let the assumptions in Theorem 1 hold. Then the nonlinear difference scheme (3) has a unique solution.

Proof. From (13), it follows that lim V (n)1 (p, t1) = V1(p, t1), p ∈ ωh as n → ∞ exists, and

V1(p, t1) ≤ V (n)1 (p, t1), lim
n→∞

Z (n)1 (p, t1) = 0, p ∈ ωh. (18)

Similar to (17), we can prove that

R(p, t1, V
(n)
1 ) = −(c(n−1)(p, t1)− fu(p, t1, E))Z

(n)
1 (p, t1), n ≥ 1, (19)

where E ∈ ⟨V (n)1 (t1), V
(n−1)
1 (t1)⟩. From here, (18) and taking into account that the sequence {c(n)(p, t1)} is bounded with

respect to n, we conclude that V1(p, t1) solves (3) at t1. Using a similar argument, we can prove that the following limit

lim
n→∞

V (n)1 (p, t2) = V1(p, t2), p ∈ ωh,
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exists and solves (3) at t2, where according to Theorem 1, {V (n)1 (p, t2)} is a sequence of upper solutions with respect to
V1(p, t1).

By induction on k, k ≥ 1, we can prove that

V1(p, tk) = lim
n→∞

V (n)1 (p, tk), p ∈ ωh, k ≥ 1,

is a solution of the nonlinear difference scheme (3). Similarly, we can prove that the mesh function V−1(p, tk) defined by

V−1(p, tk) = lim
n→∞

V (n)
−1 (p, tk), p ∈ ωh, k ≥ 1,

is a solution of the nonlinear difference scheme (3).
We now show that

V1(p, tk) = V−1(p, tk), p ∈ ωh, k ≥ 1,

where V1(p, tk) and V−1(p, tk) are solutions to the difference scheme (3), which are defined above. Letting W (p, tk) =

V1(p, tk)− V−1(p, tk), from (3) we have

LW (p, t1)+ f (p, t1, V1)− f (p, t1, V−1) = 0, p ∈ ωh,

W (p, t1) = 0, p ∈ ∂ωh.

Using the mean-value theorem, we obtain

(L + fu(p, t1, E))W (p, t1) = 0, p ∈ ωh, W (p, t1) = 0, p ∈ ∂ωh,

where E ∈ ⟨V−1(t1), V1(t1)⟩. Since fu(p, t1, E) ≥ 0, by Lemma 1, we conclude that W (p, t1) = 0, p ∈ ωh. By induction on k,
k ≥ 1, we can prove thatW (p, tk) = 0, p ∈ ωh, k ≥ 1, and prove the theorem. �

5. Convergence analysis of the monotone iterative method

In this section, we investigate convergence properties of the monotone iterative method (8)–(10).

5.1. Convergence to the solution of the nonlinear difference scheme

5.1.1. Stopping criterion based on residual
We now choose the stopping criterion of the iterative method (8)–(10) in the form

‖R(tk, V (n)α )‖ωh ≤ δ, α = 1,−1, (20)

where δ is a prescribed accuracy, and set up Vα(p, tk) = V (nk)α (p, tk), p ∈ ωh, such that nk is minimal subject to (20).
We prove the following convergence result for the iterative method (8)–(10).

Theorem 3. Assume that the coefficients of the difference operator L in (3) satisfy (4), themeshωh is connected (5). The sequences
{V (n)α }, α = 1,−1, generated by (8)–(10), (20), converge uniformly in the perturbation parameter ε:

max
tk∈ωτ

‖Vα(tk)− V ∗(tk)‖ωh ≤ Tδ, α = 1,−1, (21)

where V ∗(p, tk) is the unique solution to (3). Furthermore, on each time level the sequences converge monotonically (13).

Proof. The monotone convergence of the sequence {V (n)α (p, tk)}, α = 1,−1, follows from Theorem 1. The existence and
uniqueness of the solution to (3) have been proved in Theorem 2.

The difference problem for Vα(p, tk) = V (nk)α (p, tk), k ≥ 1, α = 1,−1, can be represented in the form

LVα(p, tk)+ f (p, tk, Vα)− τ−1
k Vα(p, tk−1) = R(p, tk, Vα), p ∈ ωh,

Vα(p, tk) = g(p, tk), p ∈ ∂ωh, α = 1,−1.

From here, (3) and using the mean-value theorem, we get the difference problem for Wα(p, tk) = Vα(p, tk) − V ∗(p, tk),
α = 1,−1,

(L + fu(p, tk, Eα))Wα(p, tk) = R(p, tk, Vα)+ τ−1
k Wα(p, tk−1), p ∈ ωh, (22)

Wα(p, tk) = 0, p ∈ ∂ωh, α = 1,−1,

where E1 ∈ ⟨V ∗(tk), V1(tk)⟩ for upper solutions and E−1 ∈ ⟨V−1(tk), V ∗(tk)⟩ for lower solutions. From here, (7) and taking
into account that according to Theorem 1 the stopping criterion (20) can always be satisfied, we have

‖Wα(tk)‖ωh ≤ δτk + ‖Wα(tk−1)‖ωh , α = 1,−1.
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Taking into account that ‖Wα(t0)‖ωh=0, α = 1,−1, by induction on k, we conclude that

‖Wα(tk)‖ωh ≤ δ

k−
l=1

τl ≤ Tδ, k ≥ 1, α = 1,−1,

and prove the theorem. �

5.1.2. Stopping criterion based on upper and lower solutions
We nowmodify the stopping criterion (20) as follows

‖V (n)1 (tk)− V (n)
−1 (tk)‖ωh ≤ σ , (23)

where σ is a prescribed accuracy, and set up Vα(p, tk) = V (nk)α (p, tk), p ∈ ωh, such that nk is minimal subject to (23). In view
of themonotone property (13) and the uniqueness of the solution V ∗(p, tk) of the nonlinear difference scheme (3), it follows
that

V (n)
−1 (p, tk) ≤ V ∗(p, tk) ≤ V (n)1 (p, tk), p ∈ ωh.

This implies that with the stopping criterion (23), we have

max
tk∈ωτ

‖Vα(tk)− V ∗(tk)‖ωh ≤ σ , α = 1,−1.

5.1.3. Stopping criterion with fixed number of iterates on each time level
Without loss of generality, we assume that the boundary condition g = 0 in (1). This assumption can always be obtained

via a change of variables. From (8) with S = 0, it follows that V (0)α , α = 1,−1, are solutions of the linear problems

LV (0)α (p, tk) = α|f (p, tk, 0)− τ−1
k Vα(p, tk−1)|, p ∈ ωh, (24)

V (0)α (p, tk) = 0, p ∈ ∂ωh, α = 1,−1.

For the iterative method (9), (10), (24), we now choose the stopping criterion with the fixed number of iterative steps n∗ on
each time level (that is, n∗ is independent of k), and assume that time step τk satisfies the inequality

τk <
1
ck
, k ≥ 1, (25)

ck = max
p∈ωh

[
max

V
{fu(p, tk, V ), V

(0)
−1 (p, tk) ≤ V ≤ V (0)1 (p, tk)}

]
.

where constants ck, k ≥ 1 are independent of ε, ωτ and ωh.

Lemma 3. Let the assumptions in Theorem 3 and (25) be satisfied. Then for the sequences {V (n)α }, α = 1,−1, generated
by (9), (10), (24), the following estimates hold:

‖Z (n)α (tk)‖ωh ≤ qn−1
k ‖Z (1)α (tk)‖ωh , qk = τkck < 1, α = 1,−1. (26)

Proof. Using (7), from (9) we have

‖Z (n)α (tk)‖ωh ≤ τk‖R(tk, V (n−1)
α )‖ωh .

From (19), fu ≥ 0 and (10), we conclude that

‖R(tk, V (n−1)
α )‖ωh ≤ ck‖Z (n−1)

α (tk)‖ωh , α = 1,−1.

Thus,

‖Z (n)α (tk)‖ωh ≤ τkck‖Z (n−1)
α (tk)‖ωh , α = 1,−1,

and, by induction on n, we prove (26). �

Theorem 4. Let the assumptions in Theorem 3 and (25) be satisfied. Then the sequences {V (n)α }, α = 1,−1, generated
by (9), (10), (24) with the fixed number of iterative steps n∗ on each time level, converge uniformly in the perturbation
parameter ε:

max
tk∈ωτ

‖Vα(tk)− V ∗(tk)‖ωh ≤ Cqn∗−1, q = max
k≥1

qk < 1, α = 1,−1, (27)

where constant C is independent of ε, ωτ and ωh, qk is defined in (26), and V ∗(p, tk) is the unique solution to (3). Furthermore,
on each time level the sequences converge monotonically (13).
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Proof. We consider only the case of the upper sequence, since the case of the lower sequence can be proved in a similar
manner.

First, we show that constants ck, k ≥ 1 in (25) are independent of ε, ωτ and ωh. From (7) and (24) with k = 1, we have

‖V (0)α (t1)‖ωh ≤ τ1‖f (t1, 0)‖ωh + ‖ψ‖ωh = K1, (28)

where for sufficiently small τ1, constant K1 is bounded independently of ε, τl, l ≥ 1 and ωh. Thus, constant c1 in (25) is
independent of ε, τl, l ≥ 1 and ωh. From the last estimate and (13), we conclude that Vα(p, t1), α = 1,−1, are bounded
independently of ε, τl, l ≥ 1 and ωh. From here, (7) and (24) with k = 2, it follows that

‖V (0)α (t2)‖ωh ≤ τ2‖f (t2, 0)‖ωh + ‖Vα(t1)‖ωh = K2,

where for sufficiently small τ2, constant K2 is bounded independently of ε, τl, l ≥ 1 and ωh. Thus, constant c2 in (25) is
independent of ε, τl, l ≥ 1 and ωh. By induction on k, we prove the required result.

Similarly to (17), using the mean-value theorem, from (9) we obtain

R(p, tk, V
(n)
1 ) = −(c(n−1)(p, tk)− fu(p, tk, E))Z

(n)
1 (p, t1),

where E ∈ ⟨V (n)1 (tk), V
(n−1)
1 (tk)⟩. From here and (22), we get the difference problem for W (p, tk) = V1(p, tk) − V ∗(p, tk),

V1(p, tk) = V (n∗)
1 (p, tk),

(L + fu(p, tk, E))W (p, tk) = −(c(n∗−1)(p, tk)− fu(p, tk,H))Z
(n∗)
1 (p, tk)+ τ−1

k W (p, tk−1), p ∈ ωh, (29)

W (p, tk) = 0, p ∈ ∂ωh,

where E ∈ ⟨V ∗(tk), V1(tk)⟩ and H ∈ ⟨V (n)1 (tk), V
(n−1)
1 (tk)⟩. From here, (7), fu ≥ 0, c(n∗−1)(p, t1) ≤ c1 and taking into account

thatW (p, t0) = 0, we have

‖W (t1)‖ωh ≤ τ1c1‖Z
(n∗)
1 (t1)‖ωh ,

where c1 is defined in (25). From here and (26), we obtain the estimate

‖W (t1)‖ωh ≤ qn∗

1 ‖Z (1)1 (t1)‖ωh . (30)

Using (24) and the mean-value theorem, estimate Z (1)1 (p, t1) from (9) by (7),

‖Z (1)1 (t1)‖ωh ≤ τ1‖LV (0)1 (t1)‖ωh + c1τ1‖V
(0)
1 (t1)‖ωh + τ1‖f (t1, 0)− τ−1

1 ψ‖ωh

≤ (2τ1 + c1τ 21 )‖f (t1, 0)− τ−1
1 ψ‖ωh

≤ (2 + c1τ1)[τ1‖f (t1, 0)‖ωh + ‖ψ‖ωh ] ≤ A1.

Taking into account that c1 is independent of ε,ωτ andωh, for sufficiently small τ1, we conclude that constant A1 is bounded
independently of ε, ωτ and ωh. Thus, from here, q1 = c1τ1 in (26) and (30), we conclude that

‖W (t1)‖ωh ≤ B1τ1q
n∗−1
1 , B1 = c1A1, (31)

where constant B1 is independent of ε, ωτ and ωh.
From (29) with k = 2, fu ≥ 0, c(n∗−1)(p, t2) ≤ c2 and (26), by (7),

‖W (t2)‖ωh ≤ ‖W (t1)‖ωh + qn∗

2 ‖Z (1)1 (t2)‖ωh (32)

Similar to estimation of Z (1)1 (p, t1), using (24) and the mean-value theorem, estimate Z (1)1 (p, t2) from (9) by (7),

‖Z (1)1 (t2)‖ωh ≤ (2 + c2τ2)[τ2‖f (t2, 0)‖ωh + ‖V1(t1)‖ωh ] ≤ A2.

From here and (28) and taking into account that c2 is independent of ε,ωτ andωh, for sufficiently small τ2, we conclude that
constant A2 is bounded independently of ε, ωτ and ωh. Thus, from here, q2 = c2τ2 in (26), (31) and (32), we conclude that

‖W (t2)‖ωh ≤ B1τ1q
n∗−1
1 + B2τ2q

n∗−1
2 , B2 = c2A2, (33)

where constant B2 is independent of ε, ωτ and ωh.
By induction on k, we can prove

‖W (tk)‖ωh =

k−
s=1

Bsτsqn∗−1
s ,
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where all constants Bs are independent of ε, ωτ and ωh. Denoting

B = max
k≥1

Bk,

and taking into account that
∑k

s=1 τs ≤ T , we prove the estimate in the theorem with C = BT . �

5.2. Quadratic convergence rate

Wemodify the recurrence formulae in (9) such that

R(p, tk, V (n)α ) = LV (n)α (p, tk)+ f (p, tk, V (n)α )− τ−1
k V ∗(p, tk−1), (34)

where instead of V (p, tk−1) in (9), the exact solution V ∗(p, tk−1) of the difference scheme (3) is in use. As follows from
Remark 2, the iterative method (9), (10), (34) is essentially the accelerated monotone iterative method from [8]. The
accelerated monotone iterative method (9), (10), (34) converges quadratically, such that

‖W (n+1)(tk)‖ωh ≤ τkrk‖W (n)(tk)‖2
ωh ,

rk = max
p∈ωh

[
max

V
{|fuu(p, tk, V )|, V

(0)
−1 (p, tk) ≤ V ≤ V (0)1 (p, tk)}

]
where W (n)(p, tk) = V (n)1 (p, tk)− V (n)

−1 (p, tk). The proof of this result can be found in [8].

6. Uniform convergence of the monotone iterative method to the solution of (1)

In this section we assume that ω is the rectangular domain

ω = ωx
× ωy

= {0 < x < 1} × {0 < y < 1}.

On ω introduce nonuniform mesh ωh
= ωhx

× ωhy:

ωhx
= {xi, 0 ≤ i ≤ Nx; x0 = 0, xNx = 1; hxi = xi+1 − xi},

ωhy
= {yj, 0 ≤ j ≤ Ny; y0 = 0, yNy = 1; hyj = yj+1 − yj}.

6.1. The reaction–diffusion problem

Consider the reaction–diffusion problem in the form

ut − µ2(uxx + uyy)+ f (x, y, u) = 0, (x, y, t) ∈ ω × (0, T ], (35)
u(x, y, t) = 0, (x, y, t) ∈ ∂ω × (0, T ],

u(x, y, 0) = ψ(x, y), (x, y) ∈ ω.

Here we use µ2 instead of ε as the diffusion coefficient. This is to simplify the notation, since the solution of such problems
typically exhibits a boundary layer of width O(µ| lnµ|) near the boundary. In (3), we use the classical difference scheme
with the difference operator Lh in the form

LhU = −µ2(D2
x + D2

y )U, (36)

D2
x U

k
ij =

1
h̄xi


Uk
i+1,j − Uk

ij

hxi
−

Uk
ij − Uk

i−1,j

hx,i−1


, h̄xi = (hx,i−1 + hxi)/2,

D2
yU

k
ij =

1
h̄yj


Uk
i,j+1 − Uk

ij

hyj
−

Uk
ij − Uk

i,j−1

hy,j−1


, h̄yj = (hy,j−1 + hyj)/2,

where p = (xi, yj) ∈ ωh and Uk
ij = U(xi, yj, tk). The classical difference scheme satisfies the assumptions from (4).

The piecewise uniformmeshesωhx andωhy are defined in the manner of [13] and are referred to as Shishkin meshes. The
boundary layer thicknesses ςx and ςy are chosen as

ςx = min{0.25,m1µ lnNx}, ςy = min{0.25,m2µ lnNy}, (37)

where m1 and m2 are positive constants. Mesh spacings hxµ, hx, hyµ and hy are defined by

hxµ =
4ςx
Nx
, hx =

2(1 − 2ςx)
Nx

, hyµ =
4ςy
Ny
, hy =

2(1 − 2ςy)
Ny

. (38)
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The mesh ωhx is constructed thus: in each of the subintervals [0, ςx] and [1 − ςx, 1] the fine mesh spacing is hxµ while in
the interval [ςx, 1−ςx] the coarse mesh spacing is hx. The meshωhy is defined similarly. The difference scheme (3) with the
difference operator (36) on the piecewise uniformmesh (37), (38) converges µ-uniformly to the solution of the continuous
problem (35):

max
tk∈ωτ

‖U(tk)− u(tk)‖ωh ≤ C(N−1 lnN + τ), N = min{Nx,Ny}, τ = max
1≤k≤Nτ

τk, (39)

where constant C is independent of µ, N and τk, k ≥ 1 (see [14] for details). From here and Theorems 3–4, we conclude the
following theorem.

Theorem 5. Let the assumptions in Theorems 3–4 be satisfied and the nonlinear difference scheme (3) be based on the classical
difference approximation (36) and the piecewise uniform mesh (37), (38). Then the sequences {V (n)α }, α = 1,−1, generated by
the monotone iterative methods (8)–(10), (20); (9), (10), (23), (24) and (9), (10), (24)with n∗ fixed, convergeµ-uniformly to the
unique solution of the semilinear singularly perturbed reaction–diffusion problem (35).

Proof. The proof follows from Theorems 3–4 and (39). �

6.2. The convection–reaction–diffusion problem

Consider the convection–reaction–diffusion problem in the form

ut − ε(uxx + uyy)+ b1(x, y)ux + b2(x, y)uy + f (x, y, u) = 0, (40)
(x, y, t) ∈ ω × (0, T ], u(x, y, t) = 0, (x, y, t) ∈ ∂ω × (0, T ],

u(x, y, 0) = ψ(x, y), (x, y) ∈ ω,

where b1(x, y) ≥ β1 = const > 0, b1(x, y) ≥ β1 = const > 0 on ωh. For ε ≪ 1, the problem is singularly perturbed and
characterized by boundary layers of width O(ε| ln ε|) at x = 1 and y = 1.

In (3), we use the upwind difference scheme with the difference operator Lh in the form

LhU = −ε(D2
x + D2

y )U + b1D−

x U + b2D−

y U, (41)

D−

x Uk
ij = (Uk

i,j − Uk
i−1,j)/hx,i−1, D−

y Uk
ij = (Uk

i,j − Uk
i,j−1)/hy,j−1.

where p = (xi, yj) ∈ ωh, Uk
ij = U(xi, yj, tk) and the difference operators D2

x , D
2
y are defined in (36). The upwind difference

scheme satisfies the assumptions from (4).
The piecewise uniformmeshesωhx andωhy are defined in themanner of (37), (38) and are referred to as Shishkinmeshes.

The boundary layer thicknesses ςx and ςy are chosen as

ςx = min{0.5,m1ε lnNx}, ςy = min{0.5,m2ε lnNy}, (42)

wherem1 andm2 are positive constants. Mesh spacings hxε , hx, hyε and hy are defined by

hxε =
2ςx
Nx
, hx =

2(1 − ςx)

Nx
, hyε =

2ςy
Ny
, hy =

2(1 − ςy)

Ny
. (43)

Themeshωhx is constructed such that in the subinterval [1−ςx, 1] the finemesh spacing is hxε while in the interval [0, 1−ςx]
the coarse mesh spacing is hx. Themeshωhy is defined similarly. The difference scheme (3) with the difference operator (41)
on the piecewise uniform mesh (42), (43) converges ε-uniformly to the solution of the continuous problem (40):

max
tk∈ωτ

‖U(tk)− u(tk)‖ωh ≤ C(N−1 lnN + τ), N = min{Nx,Ny}, τ = max
1≤k≤Nτ

τk, (44)

where constant C is independent of ε, N and τk, k ≥ 1 (see [13] for details). Similar to Theorem 5, we have the following
theorem.

Theorem 6. Let the assumptions in Theorems 3–4 be satisfied and the nonlinear difference scheme (3) be based on the upwind
difference approximation (41) and the piecewise uniform mesh (42), (43). Then the sequences {V (n)α }, α = 1,−1, generated by
the monotone iterative methods (8)–(10), (20); (9), (10), (23), (24) and (9), (10), (24) with n∗ fixed, converge ε-uniformly to the
unique solution of the semilinear singularly perturbed convection–reaction–diffusion problem (40).

Proof. The proof follows from Theorems 3–4 and (44). �
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7. Numerical experiments

In this section, we compare convergence properties of the monotone iterative method (9), (10) and monotone iterative
method from [2]. The monotone iterative method from [2] is constructed in the assumption that

0 ≤ fu ≤ c∗, c∗
= const > 0. (45)

This method utilizes c∗ in (9) instead of c(n)(p, tk).
It is found that in all the numerical experiments the basic feature ofmonotone convergence of upper and lower sequences

is observed. In fact, the monotone property of the sequences holds at every mesh point in the domain. This is, of course, to
be expected from our theoretical analysis in Theorem 1.

7.1. Reaction–diffusion problem

As a test problem for (35), we consider the problem

ut − µ2(uxx + uyy)+ (u − 4)/(5 − u) = 0, (46)
(x, y, t) ∈ ω × (0, T ], ω = {0 < x < 1} × {0 < y < 1},
u(x, y, t) = 1, (x1, x2, t) ∈ ∂ω × (0, T ],

u(x, y, 0) = 0, (x, y) ∈ ω.

The steady state solution to the reduced problem (µ = 0) is ur = 4. For µ ≪ 1, the steady state solution increases sharply
from u = 1 on ∂ω to u = 4 on the interior, and the solution to the parabolic problem approaches this steady state with
time. Since fu = 1/(5 − u)2 > 0, condition (2) is satisfied.

We assume that Nx = Ny = N and the time mesh ωτ is uniform with τk = τ , k ≥ 1.
For the model problem (46), we solve the nonlinear difference scheme (3) with the difference operator Lh from (36) by

the monotone iterative method (9), (10), (20). The mesh function V (0)1 (p, t1) defined by

V (0)1 (ωh, t1) = 4, V (0)1 (∂ωh, t1) = 1 (47)

is clearly anupper solutionwith respect to the initial condition g(ωh, 0) = 0, g(∂ωh, 0) = 1.We initiate the iterativemethod
with V (0)1 (p, t1) and thus generate a sequence of upper solutions. At the next time level, tk+1, k ≥ 1, we require an initial
iterate that is an upper solution with respect to V1(p, tk). Since the boundary condition and function f (u) = (u− 4)/(5− u)
are independent of time, we may choose V (0)1 (p, tk+1) = V1(p, tk), p ∈ ωh. Now, from Theorem 1, it follows by induction on
k that the mesh function V−1(p, tk+1) defined by V−1(ω

h, tk+1) = 0, V−1(∂ω
h, tk+1) = 1 is a lower solution with respect to

V1(p, tk) and, thus, our computed mesh functions satisfy

0 ≤ V (n)1 (p, tk) ≤ 4, p ∈ ωh, 0 ≤ n ≤ n∗, 0 ≤ k ≤ Nτ . (48)

From here and fuu = 2/(5 − u)3, we conclude that fuu ≥ 0. This inequality and (10) imply that c(n)(p, tk) = fu(p, tk, V
(n)
1 ).

From (48), we can also conclude that fu = 1/(5−u)2 is bounded below and above by c∗ = 1/25 and c∗
= 1, respectively.

Thus, in the monotone iterative method from [2], c∗
= 1 is in use.

We take as our convergence tolerance δ = 10−5 in (20). All the discrete linear systems are solved by theICCG-solver [15].
In Table 1, for τ = 0.5, 0.1, 0.05 and for various values ofµ andN , we give the average (over ten time levels) convergence

iteration counts. The results, corresponding to themonotone iterativemethod (9), (10), (20) andmonotone iterativemethod
from [2], are given above and below the line, respectively. From the numerical data, it follows that for all values of τ ,N andµ
the monotone iterative method (9), (10), (20) converges faster than the correspondingmonotone iterative method from [2].
For µ ≤ 10−1, the average convergence iteration counts are not affected by the values of τ and N . Similarly, for τ ≤ 0.05,
the average convergence iteration counts are independent of µ and N . For τ and N are fixed and µ ≤ 10−2, the average
convergence iteration counts are uniform with respect to µ.

7.2. Convection–reaction–diffusion problem

As a test problem for (40), we consider the problem

ut − ε(uxx + uyy)+ ux + ux + (u − 4)/(5 − u) = 0, (49)
(x, y, t) ∈ ω × (0, T ], ω = {0 < x < 1} × {0 < y < 1},
u(x, y, t) = 1, (x, y, t) ∈ ∂ω × (0, T ],

u(x, y, 0) = 0, (x, y) ∈ ω.

Since fu = 1/(5 − u)2 > 0, condition (2) is satisfied.
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Table 1
Average convergence iteration counts for problem (46). The
results, corresponding to the monotone iterative method
(9), (10), (20) and monotone iterative method from [2], are
given above and below the line, respectively.

N 16 32 64 128 256

µ τ = 0.5

1 3.2
5.8

3.4
5.8

3.6
5.8

3.4
5.8

3.8
5.8

10−1 3.4
8

3.4
8

3.4
8

3.4
8

3.4
8

≤10−2 3
5.6

3.4
6.8

3.4
8

3.4
8

3.4
8

µ τ = 0.1

1 3.4
5.6

3.6
5.6

3.6
5.6

4.2
5.6

4.2
5.6

10−1 3.2
5.8

3.2
5.8

3.2
5.8

3.2
5.8

3.2
5.8

≤10−2 3
3.6

3
4

3
5

3
5.6

3.2
5.6

µ τ = 0.05

1 3.4
5

3.6
5

3.6
5

3.6
5

3.6
5

10−1 3
4.8

3
5

3.2
5

3.2
5

3.2
5

≤10−2 3
3

3
3.6

3
4

3
4.8

3
5

Table 2
Average convergence iteration counts for problem (49). The
results, corresponding to the monotone iterative method
(9), (10), (20) and monotone iterative method from [2], are
given above and below the line, respectively.

N 16 32 64 128 256

ε τ = 0.5

1 3
5.6

3.4
5.6

3.4
5.6

3.4
5.6

3.6
5.6

10−1 3.6
8.6

3.6
8.4

4
8.4

4.2
8.4

4.8
8.4

≤10−2 3.6
8.6

3.6
8.6

3.6
8.6

4.2
8.6

4.2
8.6

ε τ = 0.1

1 3.2
5.6

3.6
5.6

3.6
5.6

3.6
5.6

4
5.6

10−1 3.2
6

4.2
6

4.2
6

4.2
6

4.2
6

≤10−2 3.2
6

4.2
6

4.2
6

4.2
6

4.2
6

ε τ = 0.05

1 3.4
5

3.6
5

3.6
5

3.6
5

3.6
5

10−1 3.2
5

4.2
5

4.2
5

4.2
5

4.2
5

≤10−2 3
5

3.2
5

3.2
5

3.2
5

3.2
5

We assume that Nx = Ny = N and the time mesh ωτ is uniform with τk = τ , k ≥ 1.
For the model problem (49), we solve the nonlinear difference scheme (3) with the difference operator Lh from (41) by

the monotone iterative method (9), (10), (20). Similar to problem (46), we can show that if we initiate the iterative method
with the upper solution (47), then the sequence of upper solution, based on V (0)1 (p, tk+1) = V1(p, tk), p ∈ ωh, satisfies (48)
and c(n)(p, tk) = fu(p, tk, V

(n)
1 ).

From (48), we can also conclude that fu = 1/(5−u)2 is bounded below and above by c∗ = 1/25 and c∗
= 1, respectively.

Thus, in the monotone iterative method from [2], c∗
= 1 is in use.

We take as our convergence tolerance δ = 10−5 in (20). All the discrete linear systems are solved by the restarted
GMRES-solver [15].

In Table 2, for τ = 0.5, 0.1, 0.05 and for various values of ε andN , we give the average (over ten time levels) convergence
iteration counts. The results, corresponding the monotone iterative method (9), (10), (20) and monotone iterative method
from [2], are given above and below the line, respectively. From the numerical data, it follows that for all values of τ ,N and ε
the monotone iterative method (9), (10), (20) converges faster than the correspondingmonotone iterative method from [2].
For τ = 0.5 and ε fixed, the average convergence iteration counts increase slightly with increasing N . For τ = 0.1, 0.05 and
ε fixed, the average convergence iteration counts are independent of N for N ≥ 32. For τ and N are fixed and ε ≤ 10−2, the
average convergence iteration counts are uniform with respect to ε.

We draw the following conclusions from the numerical experiments:
• The proposed monotone method converges faster than the corresponding monotone iterative method from [2].
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• For τ and the diffusion coefficientµ or ε fixed, the average convergence iteration counts increase slightly with increasing
N or independent of N .

• For µ, ε ≤ 10−2, the average convergence iteration counts are uniform with respect to µ or ε.
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