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Abstract

Neglecting smaller amplitudes the time-dependent CP asymmetry in penguin-dominatedb → sqq̄ transitions (such asB →
φKS ) is expected to equal±sin(2β), an expectation not borne out by the present average experimental data. I comp
discuss the correction due to the smaller amplitudes in the framework of QCD factorization.
 2005 Elsevier B.V.

1. Introduction

The angleβ of the unitarity triangle has been determined to sin(2β) = 0.725± 0.037[1] from time-dependen
CP asymmetries inb → cc̄s transitions. If sub-leading decay amplitudes can be neglected as argued in[2], time-
dependent CP asymmetries in penguin-dominatedb → sqq̄ transitions should also take the value±sin(2β). There
now exist various measurements[3], whichon average point to the significantly smaller value 0.43±0.07. It is not
inconceivable that flavour-specific new flavour-violating interactions cause anomalous effects inb → s transitions
without resulting in inconsistencies with other measurements. This would be a rather spectacular reso
the apparent discrepancy. But before this conclusion can be drawn, a thorough study of the sub-leadin
amplitudes is necessary to ascertain the Standard Model expectation. This is undertaken here in the fram
QCD factorization[4].

The analysis is based on the next-to-leading order (NLO) factorization calculations performed in[5], where
numerical values of the time-dependent CP asymmetries for theφKS andη′KS final states have already been give
In this Letter I include a larger set of final states (see also the recent work[6–8]), and consider a more detailed err
estimation that includes a scan of the theoretical parameter space[9]. I also discuss constraints on the sub-lead
decay amplitudes that do not rely on factorization but are inspired by it. Another method to constrain the diff
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of time-dependent CP asymmetries inb → cc̄s andb → ss̄q transitions based on systematic approximations to
strong interactions relies on the assumption of SU(3) flavour symmetry. This results in bounds on the ma
of this difference, but the sign cannot be determined[10]. An estimate in a model of (long-distance?) final st
interactions is given in[6].

The time-dependent CP asymmetry in decays to CP eigenstates is given by

(1)
Br(B̄0(t) → f ) − Br(B0(t) → f )

Br(B̄0(t) → f ) + Br(B0(t) → f )
≡ Sf sin(�mBt) − Cf cos(�mBt),

with �mB theB0B̄0 mass difference. ThēB decay amplitude involves two weak couplingsVpbV
∗
ps and two strong

interaction amplitudesap
f . I write

(2)A(B̄ → f ) = VcbV
∗
csa

c
f + VubV

∗
usa

u
f ∝ 1+ e−iγ df ,

where

(3)df = εKM
au
f

ac
f

≡ εKM d̂f with εKM =
∣∣∣∣VubV

∗
us

VcbV ∗
cs

∣∣∣∣ ∼ 0.025.

A standard calculation now gives

(4)�Sf ≡ −ηf Sf − sin(2β) = 2 Re(df )cos(2β)sinγ + |df |2(sin(2β + 2γ ) − sin(2β))

1+ 2 Re(df )cosγ + |df |2 ,

(5)ACP,f ≡ −Cf = 2 Im(df )sinγ

1+ 2 Re(df )cosγ + |df |2 .

Hereηf denotes the CP eigenvalue off . (All final states discussed below haveηf = −1.) The quantity�Sf is the
central object of this Letter. One notes that (a)df is suppressed by a small ratio of CKM elements,εKM , leading
to the expectation that−ηf Sf ≈ sin(2β) (see above); (b) ifdf is small as expected, then to first order indf the
two asymmetriesSf andCf involve independent hadronic parameters, namely the dispersive and absorptive
of d̂f = au

f /ac
f .

2. Anatomy of �Sf in factorization

The hadronic amplitudesap
f , p = u, c are sums of “topological” amplitudes, referring to tree (T ,C), QCD pen-

guin (P p), singlet penguin (Sp), electroweak penguin (P
p
EW,P

p
EW,C ) and annihilation contributions. The relatio

to the “flavour” amplitudes used in QCD factorization[5] is T ↔ α1, C ↔ α2, P p ↔ α
p

4 + β
p

3 , Sp ↔ α
p

3 + β
p

S3,
and(P

p
EW,P

p
EW,C) ↔ (α

p

3,EW, α
p

4,EW) with the difference that theαi exclude form factors, decay constants and
CKM factors, while the topological amplitudes exclude only the CKM factor. In addition, a penguin amp
such asP c may be a sum of severalα

p

4 terms depending on the flavour flow to the final state. The expression
all relevant decay amplitudes in terms of flavour amplitudes are collected in Appendix A of[5]. Schematically, for
the strangeness-changing decaysB̄0 → MK̄0, the hadronic amplitude ratio is given by

(6)df ∼ εKM
{P u,C, . . .}
P c + · · · ,

where the dominant amplitudes have been indicated. Note that the amplitudesP u,C, . . . depend on the final statef .
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In the QCD factorization framework the topological amplitudes are computed in the form[4]

T ,C,P c,u, . . . =
∑
terms

C(µh) × {
FBM1 × T I(µh,µs)︸ ︷︷ ︸

1+αs+···
�fM2ΦM2(µs)

+ fBΦB(µs) �
[
T II (µh,µI )︸ ︷︷ ︸

1+···
�J II (µI ,µs)︸ ︷︷ ︸

αs+···

]
� fM1ΦM1(µs) � fM2ΦM2(µs)

}

(7)+ 1/mb-suppressed terms

reducing the hadronic input to form factorsFBM and light-cone distribution amplitudesΦX. The underbrace
indicate the order in perturbation theory to which the various short-distance kernels are computed at NL
numerical implementation of(7) also includes some 1/mb power corrections from scalar penguin operators,
from an estimate of annihilation topologies. The accuracy of the treatment is generically limited byΛQCD/mb ∼
(10–20)% at the amplitude level.

The actual uncertainties affect different observables to a different degree and must be estimated on a
case basis. The “colour-allowed” amplitudesT ,P

p
EW are rather certain, while the “colour-suppressed” amplitu

C,P
p
EW,C receive contributions from spectator scattering (the second line of(7)) enhanced by large Wilson co

efficients, and are inflicted by larger uncertainties. The QCD penguin amplitudes include uncertain anni
contributions, although the ratioP u/P c is less affected. Finally, the singlet amplitudeSp involves several specifi
decay mechanisms[11], which are difficult to compute quantitatively, though none of them seems to be of part
importance for the CP asymmetries. Eq.(6) indicates that�Sf involves some of the less certain amplitudes.

The numerical analysis below takes into account all flavour amplitudes following[5], but it suffices to focus
on a few dominant terms to understand the qualitative features of the result. Then, for the various final st
relevant hadronic amplitude ratio is given by

π0KS d̂f ∼ [−P u] + [C]
[−P c] , ρ0KS d̂f ∼ [P u] − [C]

[P c] ,

η′KS d̂f ∼ [−P u] − [C]
[−P c] , φKS d̂f ∼ [−P u]

[−P c] ,

(8)ηKS d̂f ∼ [P u] + [C]
[P c] , ωKS d̂f ∼ [P u] + [C]

[P c] .

The convention here is that quantities in square brackets have positive real part. (Recall from(4) that�Sf mainly
requires the real part of̂df .) In factorization Re[P u/P c] is near unity, roughly independent of the particular fi
state, hence�Sf receives a nearly universal, small andpositive contribution of about 2εKM cos(2β)sinγ ≈ 0.03.
On the contrary the magnitudes and signs of the penguin amplitudes’ real parts can be very different.
uncertainties, I find|Re[P c]| in the proportions

(9)
π0K : ρ0K : η′K : φK : ηK : ωK

1 : 0.5 : 2.2 : 0.8 : 0.5 : 0.5

Hence the influence of the colour-suppressed tree amplitudeC determines the difference in�Sf between the
different modes. For(π0, η,ω)KS the effect ofC is constructive, but for(ρ, η′)KS it is destructive. However
the magnitude of Re[Pc] is much larger forη′KS than forρKS , hence Re(d̂f ) remains small and positive for th
former final state, but becomes negative for the latter.

3. Factorization results

The result of the calculation of�Sf is shown inTable 1. The column labeled “�Sf (Theory)” uses the inpu
parameters (CKM parameters, strong coupling, quark masses, form factors, decay constants, moments of
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Table 1
Comparison of theoretical and experimental results for�Sf

Mode �Sf (Theory) �Sf [Range] Experiment[3] (BaBar/Belle)

π0KS 0.07+0.05
−0.04 [+0.02,0.15] −0.39+0.27

−0.29 (−0.38+0.30
−0.33/ − 0.43+0.60

−0.60)

ρ0KS −0.08+0.08
−0.12 [−0.29,0.02] –

η′KS 0.01+0.01
−0.01 [+0.00,0.03] −0.30+0.11

−0.11 (−0.43+0.14
−0.14/ − 0.07+0.18

−0.18)

ηKS 0.10+0.11
−0.07 [−1.67,0.27] –

φKS 0.02+0.01
−0.01 [+0.01,0.05] −0.39+0.20

−0.20 (−0.23+0.26
−0.25/ − 0.67+0.34

−0.34)

ωKS 0.13+0.08
−0.08 [+0.01,0.21] −0.18+0.30

−0.32 (−0.23+0.34
−0.38/ + 0.02+0.65

−0.66)

distribution amplitudes) summarized in Table 1 of[5]. In particular|Vub/Vcb| = 0.09± 0.02 andγ = (70± 20)◦
is used. The uncertainty estimate is computed by adding in quadrature the individual parameter uncertain
central values are in good agreement with those given in[6], which also uses the input from[5]. For the final states
ρ0KS andωKS they differ from those given in[7], where the leading order (naive factorization) approximatio
employed, and the electroweak penguin amplitudes are neglected. The next-to-leading order correction in
the present calculation has a large impact on the branching fractions of penguin-dominated modes and is c
a successful comparison of QCD factorization results with data. Nonetheless, the NLO correction to�Sf is never
larger than about 30%, since the amplitude enhancement partially cancels in the ratiod̂f . The NLO correction also
eliminates the large renormalization scale uncertainty present at leading order.

The result displays the anticipated pattern. The variation of the central value from the nearly universa
bution of approximatelyεKM is due to Re[C/P c], and the error comes primarily from this quantity. It is theref
dominated by the uncertainty in the hard-spectator scattering contribution toC, and the penguin annihilation con
tribution toP c. In general one expects the prediction of the asymmetrySf in factorization to be more accurate th
the prediction of the direct CP asymmetryCf , sinceSf is determined by Re(au

f /ac
f ) which is large and calculate

at next-to-leading order, whileCf is determined by Im(au
f /ac

f ), which is small and currently known only at leadin
order. The resultant error on�Sf is roughly of the size of�Sf itself. Since this is small, one arrives at accur
constraints, in particular for the final statesη′KS andφKS . It is striking that the theoretical prediction of�Sf is
positive, with the exception ofρ0KS , while the experimental data are all negative.

Quadratic addition of theoretical errors may not always lead to a conservative error estimate. Furth
the default parameters adopted in[5] do not lead to the best description of the data. As shown there, a diff
choice of a few parameters (defining certain “scenarios”) results in a very good description of data—h
some observables, in particular the colour-suppressed tree amplitudeC important to the present discussion, th
take values outside the range estimated by quadratic error estimation. To allow for this possibility I pe
random scan of the allowed theory parameter space. For any observable I take the minimal and maxim
attained in this scan to define the predicted range of this observable. However, in doing so I discard all th
parameter sets which give CP-averaged branching fractions not compatible within 3 sigma with the expe
data, that is I require 8.5 < 106 Br(π0K0) < 14.5, 0.3 < 106 Br(ρ0K0) < 9.9, 5.3 < 106 Br(φK0) < 11.9, 2.9 <

106 Br(ωK0) < 8.3, 106 Br(ηK0) < 6.0. No further condition is imposed, neither from the corresponding cha
decay modes, nor any other decay, or from direct CP asymmetries (since these depend on other hadronic p
as mentioned above). Note that I also do not require the theoretical parameters to reproduce theη′K0 branching
fraction. The reason for this is that in[5] the singlet contributionF2 to theB → η′ form factor is set to zero simpl
for lack of better information. Since a non-zeroF2 can affect the branching fraction significantly[11], requiring
theη′K0 branching fraction to reproduce the data forF2 = 0 would be overly restrictive on the remaining theo
parameter space. Nevertheless, one finds that the distribution ofB0 → η′K0 branching fractions generated by t
models that survive the other branching fraction restrictions has a (broad) maximum at 67×10−6 in nice agreemen
with experimental data.
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Fig. 1. Correlation between�Sf andCf (direct CP asymmetry) forf = φK0 (left) andf = ωK0 (right). Theory parameter models compatib
with the experimental branching fractions (as described in the text) are in grey (red), all others in black. Based on a sample of 50
parameter models.

The resulting ranges for�Sf from a scan of 200000 theoretical parameter sets is shown in the column la
“�Sf [Range]” inTable 1. It is seen that the ranges are in fact not much different from those obtained by a
parameter uncertainties in quadrature—except for theηKS final state, for which almost any value ofSf is possible.
To understand this exception, one must know that similarly large ranges can appear also for other fin
when no branching fraction restriction is imposed. These large values of�Sf originate from small regions of th
parameter space, where by cancellations the leading penguin amplitudePc becomes very small. This leads to lar
amplifications ofC/P c, and hence�Sf . Such small values ofP c always lead to very small branching fraction
hence they are excluded by observations except for the case ofηKS , where no lower limit on the branching fractio
exists at present.

The parameter scan contains more interesting pieces of information than the ranges of�Sf , since it allows
to establish correlations between�Sf and input parameters, between the�Sf for different final states, etc
in the framework of QCD factorization. For instance, one finds that the “good” models prefer a strange
mass around 80 MeV, smaller renormalization scales and a moderate annihilation contributionρA ≈ 0.7eiφA with
|φA| < 70◦, all of which affects the magnitude of the dominant QCD penguin amplitude. Space does n
mit a detailed discussion here, butFig. 1 shows the correlation between�Sf and the direct CP asymmetryCf

(see(1), (5)) takingf = φK0 andωK0 as examples. The distribution of points (each corresponding to one
oretical parameter set) does not reveal any particular correlation between the two observables, espec
the branching fraction restriction, as could have been guessed from the fact that they mainly involve in
dent hadronic parameters. The figure also shows that the requirement that the experimental branching
be reproduced within 3 sigma narrows the distribution considerably. Similar conclusions apply to all oth
states.

4. Discussion

Given the important role of�Sf in the detection of anomalousb → s flavour transitions, one may questio
the assumptions that go into the factorization approach or attempt to find independent validations. Also, g
current experimental status, it would already be interesting to know that�Sf should be positive, no matter i
precise value. Can one establish�S > 0 (except forρK ) with little assumptions on hadronic physics?
f S
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Recall from(4) that�Sf is roughly

(10)2εKM cos(2β)sinγ Re

(
au
f

ac
f

)
.

Large enhancements relative to the factorization predictions require an enhancement of the hadronic a
ratio. The first option is a strong suppression ofac

f , but this is excluded by the branching fraction measurem
(see also the discussion in the previous section). The second option is an enhancement ofau

f by a factor of several
Can this be excluded, or can at least the sign of Re(au

f /ac
f ) be determined?

The only approach to non-leptonic decays other than factorization based on a small expansion param
SU(3) flavour symmetry to relate amplitudes of final states belonging to the same SU(3) multiplet. In appli
of the method to�Sf one uses the branching fractions ofb → d transitions to bound|df | of the relatedb → s

transitions[10]. The best possible limit in this method is|df | < λ2 ≈ 0.05 (λ the Wolfenstein parameter), s
the theoretical limit of this method is|�Sf | � 0.07. In practice, depending on the values of theb → d branching
fractions and the final statef , the bound is considerably weaker, although the region of interesting values (ind
by the factorization results) may eventually be approached for some final states. Note that the sign of�Sf is not
determined by this method.1 (See, however, the last reference of[10], where additional information is supplie
through a general amplitude fit based on SU(3)and the further assumption that some amplitudes can be neglec

A limited amount of information can be obtained from final states related to the given one by isospin sym
or from other observables related to the given final state. As already mentioned above, the measureme
direct CP asymmetry (Cf ) is of limited use if it is small, since it constrains the imaginary part ofau

f /ac
f rather

than the real part. On the other hand, a very large direct CP asymmetry (forφKS , η′KS , π0KS ) would suggest tha
Re(df ) could also be large, but this is not rigorous. It would certainly imply large violations of factorization
hence cast doubt on the results inTable 1. No such large direct CP asymmetries have been observed to date
final states discussed here.

The asymmetrySf is more closely related to ratios of CP-averaged branching fractions, which also d
mainly on real parts of amplitude ratios. In the following I consider the pairs(MK̄0,MK−), including the charged
partners ofM for M = π,ρ. The decay amplitudes can be parameterized as

A
(
M−K̄0) = P + e−iγ P u,√

2A
(
M0K−) = [

P + P EW] + e−iγ
[
T + C + P u

]
,

A
(
M+K−) = [

P + P C,EW] + e−iγ
[
T + P u

]
,

(11)
√

2A
(
M0K̄0) = [−P + P EW − P C,EW] + e−iγ

[
C − P u

]
for M = π,ρ (assuming isospin symmetry), and

A
(
MK−) = [

P + P C,EW] + e−iγ
[
T + C + P u

]
,

(12)A
(
MK̄0) = P + e−iγ

[
C + P u

]

1 It may be noted that the application of the SU(3) approach to final states containingη, η′, ω andφ requires additional assumptions beyo
SU(3). In the SU(3) limit these mesons would be pure octet or singlet states, but reality is far from this limit, in particular in the caseω and
φ, which are believed to be pure up–down and strange quark states, respectively. In[10] this SU(3) breaking singlet–octet mixing effect is tak
into account by assuming that the operator matrix elements with the physical meson states are related to those with the putative SU(
a single mixing angle. This is an assumption that cannot be justified in any controlled approximation[12]. Rather one must introduce a separ
mixing angle for every operator. The existence of large mixing forω–φ andη–η′ should be taken as an indication that a SU(3) treatment m
be unreliable, since for every operator a separate, presumably large, mixing angle must be introduced. Phenomenological evidenc
the matrix elements of current operators may indicate that this SU(3) breaking effect is nearly universal and could be described b
mixing angle in the quark–flavour-basis[13], but little is known about the matrix elements of the effective weak Hamiltonian.
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Table 2
Estimates of thereal part of the amplitude ratiosx in scenario IV of[5]

Modes t c pu pEW pC,EW

πK −0.13 −0.06 0.02 0.13 0.03
ρK 0.27 0.13 0.01 −0.29 −0.07
η′K −0.03 −0.01 0.02 – 0.01
ηK 0.34 0.14 0.02 – −0.05
φK 0.01 0.00 0.02 – 0.01
ωK 0.23 0.11 0.02 – −0.08

for the remainingM = η(′), φ,ω. The notation is chosen so that it indicates the dominant contribution to
amplitude; the dependence ofP,P u, . . . on M is not spelled out. In(12) the CKM-suppressed penguin amplitu
P u is redundant and could be absorbed intoC. For M = φ the “tree” amplitudesT ,C are actually annihilation
amplitudes and thus very small, providedφ is a puress̄ state, as will be assumed here. It is clear from(12) that
nothing can be learned from the charged decay forM = η(′), φ,ω without additional assumptions, since it involv
two new amplitudes (the colour-suppressed electroweak penguinP C,EW, andT ). However, I shall now expan
the ratios of CP-averaged branching fractions under the premise that certain amplitude ratios are smal
end, note thatT ,C,P u which multiply e−iγ are proportional toεKM , while the electroweak penguin amplitud
are suppressed by the electromagnetic coupling. Definingx ≡ X/P and countingεKM ∼ λ2 with λ a counting
parameter of order 1/5, the natural magnitudes of the amplitude ratios aret, pEW ∼ λ, andc,pu,pC,EW ∼ λ2.
Estimates of the real parts of the amplitude ratios are given inTable 2using the scenario IV of[5] as input. In the
following discussion,c andpu are allowed to be enhanced to orderλ.

Turning first tof = η(′)K,φK,ωK , Eq. (12) implies that even when an enhancement of the amplitudesc, pu

by a factor of several to orderλ is allowed, they do not appear in the ratio of CP-averaged branching fractio
first order inλ. Thus, with an accuracy of a few percent,

(13)R(f ) ≡ τB0 Br(M0K−)

τB+ Br(M0K̄0)
≈ 1+ 2 cosγ Re(t).

Hence Re(t) can be determined from data, ifR(f ) is sufficiently different from 1 (to justify the neglect of th
orderλ2 terms), but�Sf ∝ Re(c + pu). The colour-allowed tree amplitudeT is believed to be well-predicted i
factorization, and has a small absorptive part. Assuming this, an accurate measurement ofR(f ) for f = η(′)K,ωK

provides an estimate of Re(P ), of which the sign should be reliable. Making the same assumption forC constrains
the contribution from Re(c) to �Sf , but in this case the assumption is already questionable. The contribution
Re(pu) is not constrained as long as it is of orderλ. However, one may argue thatif Re(pu) is enhanced to orde
λ by whatever mechanism, then—probably—the absorptive part Im(pu), and hence the direct CP asymmetry, w
also be of orderλ. Similar arguments can be applied to theπK andρK system(11). To linear order inλ

(14)R(f ) ≈
∣∣∣∣1+ pEW

1− pEW

∣∣∣∣
2(

1+ 2 cosγ Re(t + 2c)
)
.

The electroweak penguin amplitudes are now important. ForρK the corresponding prefactor reduces the bran
ing fraction ratio by a factor of three. In fact, the contribution is so large that the linear approximation be
inapplicable to theρK final state. ForπK , the complete set of three branching fraction ratios can be used in
ciple to determine the real parts oft , c andpEW simultaneously with a relative uncertainty of orderλ in the linear
approximation. However, the current experimentalπK data does not lead to useful results.

I conclude from this discussion that it is very difficult to constrain�Sf independent of theoretical assum
tions using only experimental data (other than the measurement of�Sf itself). With some plausible dynamica
assumptions bounds can be derived using SU(3), or the real parts and signs of amplitudes related to the
of interest can be determined and compared to the factorization calculations, thus providing cross-checks
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5. Conclusion

QCD factorization calculations of the time-dependent CP asymmetry in hadronicb → s transitions yield only
small corrections to the expectation−ηf Sf ≈ sin(2β). With the exception of theρ0KS final state the correctio
�Sf is positive, slightly strengthening the discrepancy with the current average experimental data. The ef
theoretical uncertainty is particularly small for the two final statesφKS andη′KS already analyzed in[5]; the
calculation of�Sf for the final statesρ0KS andηKS , however, is more susceptible to errors because of ampl
cancellations. The final-state dependence of�Sf is ascribed to the colour-suppressed tree amplitude.

It appears difficult to constrain�Sf theory-independently by other observables. In particular, the direc
asymmetries or the charged decays corresponding tof = MKS probe hadronic quantities other than those relev
to �Sf , if these observables take values in the expected range. Large deviations from expectations such
direct CP asymmetries would clearly indicate a defect in our understanding of hadronic physics, but ev
the quantitative implications forSf would be unclear. A hadronic interpretation of large�Sf would probably
involve an unknown long-distance effect that discriminates strongly between the up- and charm-penguin am
resulting in an enhancement of the up-penguin amplitude. No model is known to me that could plausibly p
such an effect.
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