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Abstract

(1) Let A be an operator on a space H of even finite dimension. Then for some decom-
position H = F ⊕ F⊥, the compressions of A onto F and F⊥ are unitarily equivalent.
(2) Let {Aj }nj=0 be a family of strictly positive operators on a space H. Then, for some

integer k, we can dilate each Aj into a positive operator Bj on ⊕kH in such a way that: (i)
The operator diagonal of Bj consists of a repetition of Aj . (ii) There exist a positive operator

B on ⊕kH and an increasing function fj : (0,∞)→ (0,∞) such that Bj = fj (B).
© 2003 Elsevier Science Inc. All rights reserved.
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0. Introduction

This paper is a continuation of a subsection of [2] entitled “commuting dilations”.
We recall our definitions and notations. A pair of positive (semi-definite) operatorsA
and B on a finite dimensional Hilbert space H, dimH = d , is said to be a monotone
pair of positive operators, or a positive monotone pair, if there exists an orthonormal
basis {ek}dk=1 such that

A =
d∑
k=1

µk(A)ek ⊗ ek and B =
d∑
k=1

µk(B)ek ⊗ ek,
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where the numbers µk(·) are the singular values arranged in decreasing order and
counted with their multiplicities and ek ⊗ ek is the rank one projection associated
with ek . On the other hand, if

A =
d∑
k=1

µk(A)ek ⊗ ek and B =
d∑
k=1

µd+1−k(B)ek ⊗ ek,

we say that (A,B) is an antimonotone pair of positive operators. It is easy to define
the notion of a monotone family {Aj }nj=0 of positive operators. Furthermore, this
notion can be extended to the notion of a monotone family of hermitian operators
{Aj }nj=0 by requiring that there is a (hilbertian) basis {ek} for which

Aj =
∑
k�1

λk(Aj )ek ⊗ ek, 0 � j � n,

where λk(·) are the eigenvalues arranged in decreasing order and counted with their
multiplicities. SettingA = ∑d

k=1(d − k)ek ⊗ ek , we note thatAj = fj (A) for some
increasing functions fj .

Positive, monotone pairs (A,B) well behave in respect to the compression to
a subspace E of H (we recall this classical notion in Section 1). For instance we
proved [2, Corollaries 2.2 and 2.3] that

λk(AEBE) � λk((AB)E)
and

λk(AEBEAE) � λk((ABA)E)
for all k. From the first inequality we derived

detAE detBE � det(AB)E,

while we showed that, in case of an antimonotone pair (A,B) and a hyperplane E,
we have the opposite inequality

detAE detBE � det(AB)E.

These results suggest the following question: Given a finite family of positive opera-
tors, how can we dilate them into a positive, monotone family? This paper precisely
deals with the construction of such monotone dilations. However it appears that the
dilations built up have the additional property to be total dilations. This notion is
discussed in Section 1; the main result herein is the proof of the following fact:

Any 2n-by-2n matrix A is unitarily equivalent to a matrix of the form(
B �
� B

)

in which B is some n-by-n matrix and the stars hold for unspecified entries.

We devote Section 2 to the study of monotone dilations. This section is divided
in two subsections; the first one presents results whose proofs have an algorithmic
nature while the second one gives more theoretical facts.
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1. Dilations and total dilations

Let B be an operator on a space H and let E be a subspace of H. Denote by
E the projection onto E. The restriction of EB to E, denoted by BE, is the compres-
sion of B to E. Therefore, in respect to the decomposition H = E ⊕ E⊥, we may
write

B =
(
BE �
� �

)
.

The notion of compression has a natural extension: If A is an operator on a space F
with dimF � dimH, we still say that A is a compression of B if there is an iso-
metry V : F → H such that A = V ∗BV . Thus, identifying A with VAV ∗ (equiv-
alently, identifying F and V (F)), we can write

B =
(
A �
� �

)
.

One also says that B dilates A or that B is a dilation of A.
Denote by ⊕kH the direct sum H ⊕ · · · ⊕ H with k terms. Given an operator

A on H we say that an operator B on ⊕kH is a total dilation of A, or that B totally
dilates A, if we can write

B =


A � · · ·
� A · · ·
...

...
. . .


 ,

that is if the operator diagonal of B consists of a repetition of A. Clearly this notion
has also a natural extension when A acts on any space F with dimF = dimH. Let
{Aj }nj=0 be a family of operators on H and let {Bj }nj=0 be a family of operators on

⊕kH. We say that {Bj }nj=0 totally dilates {Aj }nj=0 if we can write, in respect to a
(hilbertian) basis of H,

B0 =


A0 � · · ·
� A0 · · ·
...

...
. . .


 , . . . , Bn =



An � · · ·
� An · · ·
...

...
. . .


 .

We give five examples of total dilations:

Example 1.1. A 2n× 2n antisymmetric real matrix A totally dilates the n-dimen-
sional zero operator: in respect to a suitable decomposition

A =
(

0 −B
B 0

)

for some symmetric real n-by-n matrix B.



162 J.-C. Bourin / Linear Algebra and its Applications 368 (2003) 159–169

Example 1.2. Any operator A on H can be totally dilated into a normal operator
N on H ⊕ H by setting

N =
(
A A∗
A∗ A

)
.

Example 1.3. Denote by τ(A) the normalized trace (1/n)TrA of an operator A on
an n-dimensional space. Then the scalar τ(A) can be totally dilated into A. For an
operator acting on a real space and for a hermitian operator the proof is easy. When
A is a general operator on a complex space, this result follows from the Hausdorff–
Toeplitz Theorem (see [4, p. 20]).

Example 1.4. Any contraction A on a finite dimensional space H can be totally di-
lated into a unitary operatorU on ⊕kH for any integer k � 2. Indeed by considering
the polar decomposition A = V |A|, it suffices to construct a total unitary dilationW
of |A| and then to take U = (⊕kV ) ·W . The construction of a total unitary dilation
on ⊕kH for a positive contractionX on H is easy: Let {xj }nj=1 be the eigenvalues of
X repeated according to their multiplicities and let {Uj }nj=1 be k × k unitary matrices
such that τ(Uj ) = xj . Example 1.3 and an obvious matrix manipulation show that
⊕nj=1Uj totally dilates X.

Example 1.5. Let {Ak}nk=1 be a family of operators on H and let {Bk}nk=1 be the
family of operators acting on ⊕nH defined by

Bk =


Ak Ak−1 · · ·
Ak+1 Ak · · ·
...

...
. . .


 .

Then {Bk}nk=1 is a commuting family which totally dilates {Ak}nk=1. (We set A0 =
An, A−1 = An−1, . . . )

In the last example above, the dilations do not preserve properties such as po-
sitivity, self-adjointness or normality. Using larger dilations we may preserve these
properties:

Proposition 1.6. Let {Aj }nj=0 be operators on a space H. Then there exist opera-

tors {Bj }nj=0 on ⊕kH, where k = 2n, such that

(a) For i /= j, BiBj = 0.
(b) {Bj }nj=0 totally dilates {Aj }nj=0.
(c) If the Aj ’s are positive (respectively hermitian, normal) then the Bj ’s are of the

same type.
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Proof. Given a pair A0, A1 of operators, construct

S =
(
A0 A0
A0 A0

)
and T =

(
A1 −A1

−A1 A1

)
.

Then ST = T S = 0. We then proceed by induction. We have just proved the case of
n = 1. Assume that the result holds for n− 1. Thus we have a family C = {Cj }n−1

j=0

which totally dilates {Aj }n−1
j=0. Moreover C acts on a space G, dimG = 2n−1 dimH.

We dilate An to an operator Cn on G by setting Cn = An ⊕ · · · ⊕ An, 2n−1 terms.
We then consider the operators on F = G ⊕ G defined by

Bj =
(
Cj Cj
Cj Cj

)
for 0 � j < n and Bn =

(
Cn −Cn

−Cn Cn

)
.

The family {Bj }nj=0 has the required properties. �

If H is a space with an even finite dimension, we then say that the orthogo-
nal decomposition H = F ⊕ F⊥ is a halving decomposition whenever dimF =
1
2 dimH.

Theorem 1.7. Let A be an operator on a space H with an even finite dimension.
Then there exists a halving decomposition H = F ⊕ F⊥ for which we have a total
dilation

A =
(
B �
� B

)
.

Proof. Choose a halving decomposition of H for which we have a matrix represen-
tation of ReA of the following form:

ReA =
(
S 0
0 T

)
.

Consequently in respect to this decomposition we must have

A =
(
Y X

−X∗ Z

)
.

Let X = U |X| and Y0 = U∗YU.We have

(
U∗ 0
0 I

)
A

(
U 0
0 I

)
=

(
U∗ 0
0 I

) (
Y U |X|

−|X|U∗ Z

)(
U 0
0 I

)

=
(
Y0 |X|

−|X| Z

)
.
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Now observe that

1√
2

(
I −I
I I

)(
Y0 |X|

−|X| Z

)
1√
2

(
I I

−I I

)

=
(
(Y0 + Z)/2 �

� (Y0 + Z)/2
)
.

Thus, using two unitary congruence we have exhibited an operator totally dilated
into A. �

Remark 1.8. The proof of Theorem 1.7 is easy for a normal operator A: consider a
representation

A =
(
S 0
0 T

)

and use the unitary conjugation by

1√
2

(
I I

−I I

)
.

Applying this to X∗X, for an operator X on an even dimensional space, we note that
there exists a halving projection E such that XE and XE⊥ have the same singular
values (indeed EX∗XE and E⊥X∗XE⊥ are unitarily equivalent).

Problems 1.9. (a) Does Theorem 1.7 extend to infinite dimensional spaces? (b) Let
H, F be two finite dimensional spaces with dimH = k dimF for an integer k. Is
any operator A on H a total dilation of some operator B on F?

The author has the feeling that the two questions above have a positive answer.

2. Constructions of monotone dilations

Recall that the notion of a monotone family of positive or hermitian operators has
been discussed in the introduction.

2.1. Algorithmic constructions of monotone dilations

Given an operator A on H and an integer k > 0 we define the following total
dilations of A on ⊕kH:

A(k) =

A 0 · · ·

0 A · · ·
...

...
. . .


 and A[k] =


A A · · ·
A A · · ·
...

...
. . .


 .
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Therefore, denoting by Ik the k-by-k identity matrix and by Ek the k-by-k matrix
whose entries all equal to 1, we have A(k) = A⊗ Ik and A[k] = A⊗ Ek . Note that
(1/k)Ek is a (rank one) projection, consequently, when A is positive so is A[k]. For
k > 1 we introduce another total dilation of A on ⊕kH by setting

A〈k〉 =


A I−A

k−1 · · ·
I−A
k−1 A · · ·
...

...
. . .


 .

Thus we have

A〈k〉 =
(
I − A
k − 1

)
[k] +

(
kA− I
k − 1

)
(k).

If A is a positive operator satisfying I � A � (1/k)I the above relation shows that
A〈k〉 is a positive operator. Given two operators A, B on H one can check that A[k]
and B〈k〉 commute, in fact

A[k]B〈k〉 = A[k] = B〈k〉A[k].
If both A and B are positive, a more precise result holds.

Proposition 2.1. Let (A,B) be a pair of positive operators on H and assume that
I � B � (1/k)I for some integer k > 0. Then (A[k], B〈k〉) is a monotone pair of
positive operators which totally dilates (A,B).

Proposition 2.1 is just a restatement of Theorem 2.11 in [2]. The next result is
a generalization for more general families than pairs. It is convenient to introduce
some notations. First an expression like A(k)〈l〉[m] should be understood in the fol-
lowing way: begin by constructing B = A(k), then construct C = B〈l〉 and finally
construct C[m]. Second, given a sequence {kj }nj=1 of integers, we complete it with
k−1 = k0 = kn+1 = 1 and we set, for 0 � j � n:

k′j =
j−1∏
l=0

kl and k′′j =
n∏

l=j+1

kl (consequently k′0 = k′′n = 1).

Theorem 2.2. Let {Aj }nj=0 be positive operators on a space H. Assume that for j >
0 we have integers kj > 0 such that I � Aj � (1/kj )I . Then there exist positive
operators {Bj }nj=0 on ⊕kH, where k = ∏n

j=1 kj , such that:

(a) {Bj }nj=0 is a monotone family of positive operators.
(b) {Bj }nj=0 totally dilates {Aj }nj=0.

A suitable choice for each Bj is A(k′j )〈kj 〉[k′′j ].
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Multiplying by appropriate scalars, we note that the assumptions I � Aj �
(1/kj )I may be replaced by cond(Aj ) = ‖Aj‖‖A−1

j ‖ � kj (j > 0).

Proof. We proceed by induction. For n = 1, this is Theorem 2.11 in [2]. Assume
that the result holds for n− 1. Let A0 = {Aj }n−1

j=0. By the induction assumption there

is a monotone family C = {Cj }n−1
j=0 which totally dilates A0. Furthermore C acts on

a space G with dimG = ∏n−1
j=1 kj dimH = k′n dimH. Next, we dilate An into an

operator Cn on G by setting Cn = An(k′n). To prove the theorem it now suffices to
show that we can totally dilate the family C′ = {Cj }nj=0 on G into a monotone family
B = {Bj }nj=0 on a larger space F with dimF = kn dimG.

To this purpose we consider on F = G ⊕ · · · ⊕ G, kn terms, the following oper-
ators: for 0 � j � n− 1,

Bj =


Cj Cj · · ·
Cj Cj · · ·
...

...
. . .




and for j = n

Bn =


Cn

I−Cn
kn−1 · · ·

I−Cn
kn−1 Cn · · ·
...

...
. . .


 .

Because {Cj }n−1
j=0 is a monotone family, so is {Bj }n−1

j=0 (recall that Bj = Cj ⊗ Ekn for
j < n where Ep is, up to a scalar multiple, a rank one projection). Reasoning as in
the proof of Theorem 2.11 in [2] we obtain that (Bj , Bn), 0 � j < n, are monotone
pairs. Consequently {Bj }nj=0 is a monotone family (if {Xj }n−1

j=0 is a monotone family
and (Xj ,Xn) are monotone pairs, j < n, then {Xj }nj=0 is a monotone family). Fi-
nally a close look to our constructions reveals that the Bj ’s are given by the formulae
of the last part of the theorem. �

Corollary 2.3. Let {Aj }nj=0 be hermitian operators on a space H. Then we can
totally dilate them into a monotone family of hermitian operators on a larger space
F with dimF = 2n dimH.

Proof. We set A′
j = αjAj + 3

4I where αj > 0 is sufficiently small to have 1
2I �

A′
j � I . We apply Theorem 2.2 to dilate A′

j to B ′
j . The operators Bj = (1/αj )B ′

j −
(3/4αj )I are the wanted dilations. �

We may note that the proofs of the two preceding results have an algorithmic
nature. More precisely, let us consider a sequence of hermitians {Aj }nj=0. The Frobe-
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nius norm ‖Aj‖2 is easily computed. Setting αj = 1
4‖Aj‖2 and applying Theorem

2.2 as in the proof of Corollary 2.3 we may easily construct a monotone family totally
dilating {Aj }nj=0.

Remark 2.4. If A, B are positive noninvertible operators, it is not possible, in gen-
eral, to dilate them into a positive monotone pair. Let

A =
(

1 0
0 0

)
and B =

(
0 0
0 1

)
.

Suppose that (S, T ) is a positive, monotone dilation of (A,B). We should have the
matrix representations respectively to a basis (e1, . . . , en) of some space

S =




1 0 � · · ·
0 0 0 · · ·
� 0 � · · ·
...

...
...

. . .


 , T =




0 0 0 · · ·
0 1 � · · ·
0 � � · · ·
...

...
...

. . .


 .

Since (S, T ) is supposed to be positive, monotone we would have one of the follow-
ing relations: ker S ⊂ ker T or ker T ⊂ ker S. Say ker S ⊂ ker T , we would deduce
that T e1 = T e2 = 0 and we would reach a contradiction.

2.2. Theoretical constructions of monotone dilations

In the previous subsection we have constructed monotone dilations in a rather
explicit way by using matrix manipulations. Now we give more theoretical construc-
tions; the resulting dilations will act on more economical spaces but will not be total
dilations. Our first construction uses a standard dilation argument in connection with
the numerical range of an operator and we refer the reader to Chapter 1 of [4] for a
detailed discussion of the numerical range.

Proposition 2.5. Let A, B be two strictly positive operators on a space H. Then
we can dilate them into a monotone pair of strictly positive operators on a larger
space F with dimF = 6 dimH.

Proof. Invertibility of A and B ensures the existence of a real r > 0 such that

S =
(

A A− rI
A− rI A

)
and T =

(
B −B + rI

−B + rI B

)

are strictly positive operators. Moreover ST = T S. Hence N = S + iT is a normal
operator acting on G = H ⊕ H. Because S > 0 and T > 0, the spectrum of N ,
SpN , lies in the open quadrant of C,

Q = {z = x + iy | x > 0 and y > 0}.
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We may then find a triangle � = {x1 + iy1, x2 + iy2, x3 + iy3} inQ such that

x1 < x2 < x3 and y1 < y2 < y3 (∗)

and conv � ⊃ SpN . A standard dilation argument shows that there is a normal oper-
atorM acting on a space F ⊃ G, dimF = 3 dimG, such that SpM = � andMG =
N . Therefore

(ReM)H = (ReN)H = A and (ImM)H = (ImN)H = B.
From (∗) we deduce that (ReM, ImM) is a monotone pair dilating (A,B). �

At a time when it was not so clear to the author that a sequence of n+ 1 hermitians
could be dilated into a commuting family, Ando has pointed out to the author [1] the
fact that it was a straightforward consequence of Naimark’s Dilation Theorem. More
precisely this theorem entails that the multiplicative constant 2n in Proposition 1.6
can be replaced, in case of positive or hermitian operators, by n+ 2 (but then the
dilations are no longer total). We refer the reader to [3, p. 260] for a modern proof
of Naimark’s Theorem. Here the only thing we would need to know is the follow-
ing particular case: Given positive operators {Aj }nj=0 on H satisfying

∑
Aj = I ,

we can dilate them into a family {Qj }nj=0 of mutually orthogonal projections on a
larger space F = G ⊗ H in which dimG = n+ 2. Actually, rather than Naimark’s
Theorem, we only need the following much more elementary statement. Let us say
that an operator B essentially acts on a subspace E if both the range and the corange
of B are contained in E (equivalently, ranB ⊂ E and (kerB)⊥ ⊂ E).

Lemma 2.6. Fix an integer n and a space H. Then there exist a larger space F,
dimF = (n+ 1) dimH, and an orthogonal decomposition F = E0 ⊕ · · ·
⊕ En, in which dimEj = dimH for each j, such that: for every family of operators
{Aj }nj=0 on H there is a family {Bj }nj=0 of operators on F with Bj essentially
acting on Ej and Aj = (Bj )H, 0 � j � n. Moreover when the Aj ’s are hermitian
or positive, the Bj ’s can be taken of the same type.

Let us sketch the elementary proof of this lemma. First, choose subspaces {Ej }nj=0

of F = ⊕n+1H in such a way that for each j (a) dimEj = dimH, (b) the pro-
jection Ej from F onto Ej verifies: (Ej )H is a strictly positive operator on H.
Now, fix an integer j and observe that any vector h ∈ H can be lifted to a unique
vector hj ∈ Ej such thatHhj = h, whereH is the projection onto H. Consequently
any rank one operator of the form R = h⊗ h, h ∈ H, can be lifted into a positive
rank one operator T essentially acting on Ej such that TH = R. This ensures that
given a general (respectively hermitian, positive) operator A on H there exists a
general (respectively hermitian, positive) operator B essentially acting on Ej such
that BH = A.

Theorem 2.7. Let {Aj }nj=0 be hermitian operators on a space H. Then we can
dilate them into a monotone family of hermitian operators on a larger space F with
dimF = 2(n+ 1) dimH − 1.
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Proof. By Lemma 2.6 we may dilate {Aj }nj=0 into a commuting family of hermi-
tians {Sj }nj=0 on a larger space G with dimG = (n+ 1) dimH = d . Thus, there is

a basis {gk}dk=0 in G and real numbers {sj,k} such that

Sj =
d∑
k=0

sj,kgk ⊗ gk (0 � j � n).

We take for F a space of the form

F = E0 ⊕ E1 ⊕ · · · ⊕ Ed

in which dimE0 = 1 and g0 ∈ E0; and for k > 0, dimEk = 2 and gk ∈ Ek . Hence,
we have dimF = 2(n+ 1) dimH − 1.

For k > 0, let {e1,k; e2,k} be a basis of Ek and suppose that gk = (e1,k + e2,k)/
√

2
(∗). We set, for 0 � j � n,

Bj = sj,0g0 ⊗ g0 +
d∑
k=1

(rj,ke1,k ⊗ e1,k + tj,ke2,k ⊗ e2,k),

where the reals rj,k and tj,k are chosen in such a way that:

(1) sj,k = (rj,k + tj,k)/2, j = 0, . . . , n.
(2) rj,d < · · · < rj,1 < sj,0 < tj,1 < · · · < tj,d , j = 0, . . . , n.

From (1) and (∗) we deduce that Sj = (Bj )G so that Aj = (Bj )H. From (2) we infer
that {Bj }nj=0 is a monotone family. �

We close this paper with the final observation:

Remark 2.8. The results of Section 2 still hold for infinite dimensional spaces (and
then we simply have F = H ⊕ H). Also, we may consider real operators on real
spaces as well as complex operators on complex spaces.
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