Available online at www.sciencedirect.com

LINEAR ALGEBRA

AND ITS

Total dilations

Jean-Christophe Bourin

Les Coteaux, 8 rue Henri Durel, 78510 Triel, France
Received 23 July 2002; accepted 1 November 2002
Submitted by T. Ando

Abstract

(1) Let A be an operator on a space \mathscr{H} of even finite dimension. Then for some decomposition $\mathscr{H}=\mathscr{F} \oplus \mathscr{F}^{\perp}$, the compressions of A onto \mathscr{F} and \mathscr{F}^{\perp} are unitarily equivalent. (2) Let $\left\{A_{j}\right\}_{j=0}^{n}$ be a family of strictly positive operators on a space \mathscr{H}. Then, for some integer k, we can dilate each A_{j} into a positive operator B_{j} on $\oplus^{k} \mathscr{H}$ in such a way that: (i) The operator diagonal of B_{j} consists of a repetition of A_{j}. (ii) There exist a positive operator B on $\oplus^{k} \mathscr{H}$ and an increasing function $f_{j}:(0, \infty) \rightarrow(0, \infty)$ such that $B_{j}=f_{j}(B)$. © 2003 Elsevier Science Inc. All rights reserved.

AMS classification: 47A20 Keywords: Dilation; Positive operators

0. Introduction

This paper is a continuation of a subsection of [2] entitled "commuting dilations". We recall our definitions and notations. A pair of positive (semi-definite) operators A and B on a finite dimensional Hilbert space $\mathscr{H}, \operatorname{dim} \mathscr{H}=d$, is said to be a monotone pair of positive operators, or a positive monotone pair, if there exists an orthonormal basis $\left\{e_{k}\right\}_{k=1}^{d}$ such that

$$
A=\sum_{k=1}^{d} \mu_{k}(A) e_{k} \otimes e_{k} \quad \text { and } \quad B=\sum_{k=1}^{d} \mu_{k}(B) e_{k} \otimes e_{k},
$$

[^0]where the numbers $\mu_{k}(\cdot)$ are the singular values arranged in decreasing order and counted with their multiplicities and $e_{k} \otimes e_{k}$ is the rank one projection associated with e_{k}. On the other hand, if
$$
A=\sum_{k=1}^{d} \mu_{k}(A) e_{k} \otimes e_{k} \quad \text { and } \quad B=\sum_{k=1}^{d} \mu_{d+1-k}(B) e_{k} \otimes e_{k},
$$
we say that (A, B) is an antimonotone pair of positive operators. It is easy to define the notion of a monotone family $\left\{A_{j}\right\}_{j=0}^{n}$ of positive operators. Furthermore, this notion can be extended to the notion of a monotone family of hermitian operators $\left\{A_{j}\right\}_{j=0}^{n}$ by requiring that there is a (hilbertian) basis $\left\{e_{k}\right\}$ for which
$$
A_{j}=\sum_{k \geqslant 1} \lambda_{k}\left(A_{j}\right) e_{k} \otimes e_{k}, \quad 0 \leqslant j \leqslant n,
$$
where $\lambda_{k}(\cdot)$ are the eigenvalues arranged in decreasing order and counted with their multiplicities. Setting $A=\sum_{k=1}^{d}(d-k) e_{k} \otimes e_{k}$, we note that $A_{j}=f_{j}(A)$ for some increasing functions f_{j}.

Positive, monotone pairs (A, B) well behave in respect to the compression to a subspace \mathscr{E} of \mathscr{H} (we recall this classical notion in Section 1). For instance we proved [2, Corollaries 2.2 and 2.3] that

$$
\lambda_{k}\left(A_{\mathscr{E}} B_{\mathscr{E}}\right) \leqslant \lambda_{k}\left((A B)_{\mathscr{E}}\right)
$$

and

$$
\lambda_{k}\left(A_{\mathscr{E}} B_{\mathscr{E}} A_{\mathscr{E}}\right) \leqslant \lambda_{k}\left((A B A)_{\mathscr{E}}\right)
$$

for all k. From the first inequality we derived

$$
\operatorname{det} A_{\mathscr{E}} \operatorname{det} B_{\mathscr{E}} \leqslant \operatorname{det}(A B)_{\mathscr{E}},
$$

while we showed that, in case of an antimonotone pair (A, B) and a hyperplane \mathscr{E}, we have the opposite inequality

$$
\operatorname{det} A_{\mathscr{E}} \operatorname{det} B_{\mathscr{E}} \geqslant \operatorname{det}(A B)_{\mathscr{E}} .
$$

These results suggest the following question: Given a finite family of positive operators, how can we dilate them into a positive, monotone family? This paper precisely deals with the construction of such monotone dilations. However it appears that the dilations built up have the additional property to be total dilations. This notion is discussed in Section 1; the main result herein is the proof of the following fact:
Any $2 n$-by- $2 n$ matrix A is unitarily equivalent to a matrix of the form

$$
\left(\begin{array}{cc}
B & \star \\
\star & B
\end{array}\right)
$$

in which B is some n-by-n matrix and the stars hold for unspecified entries.
We devote Section 2 to the study of monotone dilations. This section is divided in two subsections; the first one presents results whose proofs have an algorithmic nature while the second one gives more theoretical facts.

1. Dilations and total dilations

Let B be an operator on a space \mathscr{H} and let \mathscr{E} be a subspace of \mathscr{H}. Denote by E the projection onto \mathscr{E}. The restriction of $E B$ to \mathscr{E}, denoted by $B_{\mathscr{E}}$, is the compression of B to \mathscr{E}. Therefore, in respect to the decomposition $\mathscr{H}=\mathscr{E} \oplus \mathscr{E}^{\perp}$, we may write

$$
B=\left(\begin{array}{cc}
B_{\mathscr{E}} & \star \\
\star & \star
\end{array}\right)
$$

The notion of compression has a natural extension: If A is an operator on a space \mathscr{F} with $\operatorname{dim} \mathscr{F} \leqslant \operatorname{dim} \mathscr{H}$, we still say that A is a compression of B if there is an isometry $V: \mathscr{F} \rightarrow \mathscr{H}$ such that $A=V^{*} B V$. Thus, identifying A with $V A V^{*}$ (equivalently, identifying \mathscr{F} and $V(\mathscr{F})$), we can write

$$
B=\left(\begin{array}{cc}
A & \star \\
\star & \star
\end{array}\right)
$$

One also says that B dilates A or that B is a dilation of A.
Denote by $\oplus^{k} \mathscr{H}$ the direct sum $\mathscr{H} \oplus \cdots \oplus \mathscr{H}$ with k terms. Given an operator A on \mathscr{H} we say that an operator B on $\oplus^{k} \mathscr{H}$ is a total dilation of A, or that B totally dilates A, if we can write

$$
B=\left(\begin{array}{ccc}
A & \star & \cdots \\
\star & A & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right)
$$

that is if the operator diagonal of B consists of a repetition of A. Clearly this notion has also a natural extension when A acts on any space \mathscr{F} with $\operatorname{dim} \mathscr{F}=\operatorname{dim} \mathscr{H}$. Let $\left\{A_{j}\right\}_{j=0}^{n}$ be a family of operators on \mathscr{H} and let $\left\{B_{j}\right\}_{j=0}^{n}$ be a family of operators on $\oplus^{k} \mathscr{H}$. We say that $\left\{B_{j}\right\}_{j=0}^{n}$ totally dilates $\left\{A_{j}\right\}_{j=0}^{n}$ if we can write, in respect to a (hilbertian) basis of \mathscr{H},

$$
B_{0}=\left(\begin{array}{ccc}
A_{0} & \star & \cdots \\
\star & A_{0} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right), \quad \ldots, \quad B_{n}=\left(\begin{array}{ccc}
A_{n} & \star & \cdots \\
\star & A_{n} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right)
$$

We give five examples of total dilations:
Example 1.1. A $2 n \times 2 n$ antisymmetric real matrix A totally dilates the n-dimensional zero operator: in respect to a suitable decomposition

$$
A=\left(\begin{array}{cc}
0 & -B \\
B & 0
\end{array}\right)
$$

for some symmetric real n-by- n matrix B.

Example 1.2. Any operator A on \mathscr{H} can be totally dilated into a normal operator N on $\mathscr{H} \oplus \mathscr{H}$ by setting

$$
N=\left(\begin{array}{cc}
A & A^{*} \\
A^{*} & A
\end{array}\right) \text {. }
$$

Example 1.3. Denote by $\tau(A)$ the normalized trace $(1 / n) \operatorname{Tr} A$ of an operator A on an n-dimensional space. Then the scalar $\tau(A)$ can be totally dilated into A. For an operator acting on a real space and for a hermitian operator the proof is easy. When A is a general operator on a complex space, this result follows from the HausdorffToeplitz Theorem (see [4, p. 20]).

Example 1.4. Any contraction A on a finite dimensional space \mathscr{H} can be totally dilated into a unitary operator U on $\oplus^{k} \mathscr{H}$ for any integer $k \geqslant 2$. Indeed by considering the polar decomposition $A=V|A|$, it suffices to construct a total unitary dilation W of $|A|$ and then to take $U=\left(\oplus^{k} V\right) \cdot W$. The construction of a total unitary dilation on $\oplus^{k} \mathscr{H}$ for a positive contraction X on \mathscr{H} is easy: Let $\left\{x_{j}\right\}_{j=1}^{n}$ be the eigenvalues of X repeated according to their multiplicities and let $\left\{U_{j}\right\}_{j=1}^{n}$ be $k \times k$ unitary matrices such that $\tau\left(U_{j}\right)=x_{j}$. Example 1.3 and an obvious matrix manipulation show that $\oplus_{j=1}^{n} U_{j}$ totally dilates X.

Example 1.5. Let $\left\{A_{k}\right\}_{k=1}^{n}$ be a family of operators on \mathscr{H} and let $\left\{B_{k}\right\}_{k=1}^{n}$ be the family of operators acting on $\oplus^{n} \mathscr{H}$ defined by

$$
B_{k}=\left(\begin{array}{ccc}
A_{k} & A_{k-1} & \cdots \\
A_{k+1} & A_{k} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right) .
$$

Then $\left\{B_{k}\right\}_{k=1}^{n}$ is a commuting family which totally dilates $\left\{A_{k}\right\}_{k=1}^{n}$. (We set $A_{0}=$ $A_{n}, A_{-1}=A_{n-1}, \ldots$)

In the last example above, the dilations do not preserve properties such as positivity, self-adjointness or normality. Using larger dilations we may preserve these properties:

Proposition 1.6. Let $\left\{A_{j}\right\}_{j=0}^{n}$ be operators on a space \mathscr{H}. Then there exist operators $\left\{B_{j}\right\}_{j=0}^{n}$ on $\oplus^{k} \mathscr{H}$, where $k=2^{n}$, such that
(a) For $i \neq j, B_{i} B_{j}=0$.
(b) $\left\{B_{j}\right\}_{j=0}^{n}$ totally dilates $\left\{A_{j}\right\}_{j=0}^{n}$.
(c) If the A_{j} 's are positive (respectively hermitian, normal) then the B_{j} 's are of the same type.

Proof. Given a pair A_{0}, A_{1} of operators, construct

$$
S=\left(\begin{array}{cc}
A_{0} & A_{0} \\
A_{0} & A_{0}
\end{array}\right) \quad \text { and } \quad T=\left(\begin{array}{cc}
A_{1} & -A_{1} \\
-A_{1} & A_{1}
\end{array}\right)
$$

Then $S T=T S=0$. We then proceed by induction. We have just proved the case of $n=1$. Assume that the result holds for $n-1$. Thus we have a family $\mathscr{C}=\left\{C_{j}\right\}_{j=0}^{n-1}$ which totally dilates $\left\{A_{j}\right\}_{j=0}^{n-1}$. Moreover \mathscr{C} acts on a space $\mathscr{G}, \operatorname{dim} \mathscr{G}=2^{n-1} \operatorname{dim} \mathscr{H}$. We dilate A_{n} to an operator C_{n} on \mathscr{G} by setting $C_{n}=A_{n} \oplus \cdots \oplus A_{n}, 2^{n-1}$ terms. We then consider the operators on $\mathscr{F}=\mathscr{G} \oplus \mathscr{G}$ defined by

$$
B_{j}=\left(\begin{array}{ll}
C_{j} & C_{j} \\
C_{j} & C_{j}
\end{array}\right) \quad \text { for } 0 \leqslant j<n \quad \text { and } \quad B_{n}=\left(\begin{array}{cc}
C_{n} & -C_{n} \\
-C_{n} & C_{n}
\end{array}\right)
$$

The family $\left\{B_{j}\right\}_{j=0}^{n}$ has the required properties.
If \mathscr{H} is a space with an even finite dimension, we then say that the orthogonal decomposition $\mathscr{H}=\mathscr{F} \oplus \mathscr{F}^{\perp}$ is a halving decomposition whenever $\operatorname{dim} \mathscr{F}^{=}=$ $\frac{1}{2} \operatorname{dim} \mathscr{H}$.

Theorem 1.7. Let A be an operator on a space \mathscr{H} with an even finite dimension. Then there exists a halving decomposition $\mathscr{H}=\mathscr{F} \oplus \mathscr{F}^{\perp}$ for which we have a total dilation

$$
A=\left(\begin{array}{cc}
B & \star \\
\star & B
\end{array}\right)
$$

Proof. Choose a halving decomposition of \mathscr{H} for which we have a matrix representation of $\operatorname{Re} A$ of the following form:

$$
\operatorname{Re} A=\left(\begin{array}{cc}
S & 0 \\
0 & T
\end{array}\right)
$$

Consequently in respect to this decomposition we must have

$$
A=\left(\begin{array}{cc}
Y & X \\
-X^{*} & Z
\end{array}\right)
$$

Let $X=U|X|$ and $Y_{0}=U^{*} Y U$. We have

$$
\begin{aligned}
\left(\begin{array}{cc}
U^{*} & 0 \\
0 & I
\end{array}\right) A\left(\begin{array}{cc}
U & 0 \\
0 & I
\end{array}\right) & =\left(\begin{array}{cc}
U^{*} & 0 \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
Y & U|X| \\
-|X| U^{*} & Z
\end{array}\right)\left(\begin{array}{cc}
U & 0 \\
0 & I
\end{array}\right) \\
& =\left(\begin{array}{cc}
Y_{0} & |X| \\
-|X| & Z
\end{array}\right) .
\end{aligned}
$$

Now observe that

$$
\begin{aligned}
& \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
I & -I \\
I & I
\end{array}\right)\left(\begin{array}{cc}
Y_{0} & |X| \\
-|X| & Z
\end{array}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
I & I \\
-I & I
\end{array}\right) \\
& \quad=\left(\begin{array}{cc}
\left(Y_{0}+Z\right) / 2 & \star \\
\star & \left(Y_{0}+Z\right) / 2
\end{array}\right) .
\end{aligned}
$$

Thus, using two unitary congruence we have exhibited an operator totally dilated into A.

Remark 1.8. The proof of Theorem 1.7 is easy for a normal operator A : consider a representation

$$
A=\left(\begin{array}{cc}
S & 0 \\
0 & T
\end{array}\right)
$$

and use the unitary conjugation by

$$
\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
I & I \\
-I & I
\end{array}\right)
$$

Applying this to $X^{*} X$, for an operator X on an even dimensional space, we note that there exists a halving projection E such that $X E$ and $X E^{\perp}$ have the same singular values (indeed $E X^{*} X E$ and $E^{\perp} X^{*} X E^{\perp}$ are unitarily equivalent).

Problems 1.9. (a) Does Theorem 1.7 extend to infinite dimensional spaces? (b) Let \mathscr{H}, \mathscr{F} be two finite dimensional spaces with $\operatorname{dim} \mathscr{H}=k \operatorname{dim} \mathscr{F}$ for an integer k. Is any operator A on \mathscr{H} a total dilation of some operator B on \mathscr{F} ?

The author has the feeling that the two questions above have a positive answer.

2. Constructions of monotone dilations

Recall that the notion of a monotone family of positive or hermitian operators has been discussed in the introduction.

2.1. Algorithmic constructions of monotone dilations

Given an operator A on \mathscr{H} and an integer $k>0$ we define the following total dilations of A on $\oplus^{k} \mathscr{H}$:

$$
A(k)=\left(\begin{array}{ccc}
A & 0 & \cdots \\
0 & A & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right) \quad \text { and } \quad A[k]=\left(\begin{array}{ccc}
A & A & \cdots \\
A & A & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right)
$$

Therefore, denoting by I_{k} the k-by- k identity matrix and by E_{k} the k-by- k matrix whose entries all equal to 1 , we have $A(k)=A \otimes I_{k}$ and $A[k]=A \otimes E_{k}$. Note that $(1 / k) E_{k}$ is a (rank one) projection, consequently, when A is positive so is $A[k]$. For $k>1$ we introduce another total dilation of A on $\oplus^{k} \mathscr{H}$ by setting

$$
A\langle k\rangle=\left(\begin{array}{ccc}
A & \frac{I-A}{k-1} & \cdots \\
\frac{I-A}{k-1} & A & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right)
$$

Thus we have

$$
A\langle k\rangle=\left(\frac{I-A}{k-1}\right)[k]+\left(\frac{k A-I}{k-1}\right)(k)
$$

If A is a positive operator satisfying $I \geqslant A \geqslant(1 / k) I$ the above relation shows that $A\langle k\rangle$ is a positive operator. Given two operators A, B on \mathscr{H} one can check that $A[k]$ and $B\langle k\rangle$ commute, in fact

$$
A[k] B\langle k\rangle=A[k]=B\langle k\rangle A[k] .
$$

If both A and B are positive, a more precise result holds.
Proposition 2.1. Let (A, B) be a pair of positive operators on \mathscr{H} and assume that $I \geqslant B \geqslant(1 / k) I$ for some integer $k>0$. Then $(A[k], B\langle k\rangle)$ is a monotone pair of positive operators which totally dilates (A, B).

Proposition 2.1 is just a restatement of Theorem 2.11 in [2]. The next result is a generalization for more general families than pairs. It is convenient to introduce some notations. First an expression like $A(k)\langle l\rangle[m]$ should be understood in the following way: begin by constructing $B=A(k)$, then construct $C=B\langle l\rangle$ and finally construct $C[m]$. Second, given a sequence $\left\{k_{j}\right\}_{j=1}^{n}$ of integers, we complete it with $k_{-1}=k_{0}=k_{n+1}=1$ and we set, for $0 \leqslant j \leqslant n$:

$$
k_{j}^{\prime}=\prod_{l=0}^{j-1} k_{l} \quad \text { and } \quad k_{j}^{\prime \prime}=\prod_{l=j+1}^{n} k_{l} \quad\left(\text { consequently } k_{0}^{\prime}=k_{n}^{\prime \prime}=1\right)
$$

Theorem 2.2. Let $\left\{A_{j}\right\}_{j=0}^{n}$ be positive operators on a space \mathscr{H}. Assume that for $j>$ 0 we have integers $k_{j}>0$ such that $I \geqslant A_{j} \geqslant\left(1 / k_{j}\right) I$. Then there exist positive operators $\left\{B_{j}\right\}_{j=0}^{n}$ on $\oplus^{k} \mathscr{H}$, where $k=\prod_{j=1}^{n} k_{j}$, such that:
(a) $\left\{B_{j}\right\}_{j=0}^{n}$ is a monotone family of positive operators.
(b) $\left\{B_{j}\right\}_{j=0}^{n}$ totally dilates $\left\{A_{j}\right\}_{j=0}^{n}$.

A suitable choice for each B_{j} is $A\left(k_{j}^{\prime}\right)\left\langle k_{j}\right\rangle\left[k_{j}^{\prime \prime}\right]$.

Multiplying by appropriate scalars, we note that the assumptions $I \geqslant A_{j} \geqslant$ $\left(1 / k_{j}\right) I$ may be replaced by $\operatorname{cond}\left(A_{j}\right)=\left\|A_{j}\right\|\left\|A_{j}^{-1}\right\| \leqslant k_{j}(j>0)$.

Proof. We proceed by induction. For $n=1$, this is Theorem 2.11 in [2]. Assume that the result holds for $n-1$. Let $\mathscr{A}_{0}=\left\{A_{j}\right\}_{j=0}^{n-1}$. By the induction assumption there is a monotone family $\mathscr{C}=\left\{C_{j}\right\}_{j=0}^{n-1}$ which totally dilates \mathscr{A}_{0}. Furthermore \mathscr{C} acts on a space \mathscr{G} with $\operatorname{dim} \mathscr{G}=\prod_{j=1}^{n-1} k_{j} \operatorname{dim} \mathscr{H}=k_{n}^{\prime} \operatorname{dim} \mathscr{H}$. Next, we dilate A_{n} into an operator C_{n} on \mathscr{G} by setting $C_{n}=A_{n}\left(k_{n}^{\prime}\right)$. To prove the theorem it now suffices to show that we can totally dilate the family $\mathscr{C}^{\prime}=\left\{C_{j}\right\}_{j=0}^{n}$ on \mathscr{G} into a monotone family $\mathscr{B}=\left\{B_{j}\right\}_{j=0}^{n}$ on a larger space \mathscr{F} with $\operatorname{dim} \mathscr{F}=k_{n} \operatorname{dim} \mathscr{G}$.

To this purpose we consider on $\mathscr{F}=\mathscr{G} \oplus \cdots \oplus \mathscr{G}, k_{n}$ terms, the following operators: for $0 \leqslant j \leqslant n-1$,

$$
B_{j}=\left(\begin{array}{ccc}
C_{j} & C_{j} & \cdots \\
C_{j} & C_{j} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right)
$$

and for $j=n$

$$
B_{n}=\left(\begin{array}{ccc}
C_{n} & \frac{I-C_{n}}{k_{n}-1} & \cdots \\
\frac{I-C_{n}}{k_{n}-1} & C_{n} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right) .
$$

Because $\left\{C_{j}\right\}_{j=0}^{n-1}$ is a monotone family, so is $\left\{B_{j}\right\}_{j=0}^{n-1}$ (recall that $B_{j}=C_{j} \otimes E_{k_{n}}$ for $j<n$ where E_{p} is, up to a scalar multiple, a rank one projection). Reasoning as in the proof of Theorem 2.11 in [2] we obtain that (B_{j}, B_{n}), $0 \leqslant j<n$, are monotone pairs. Consequently $\left\{B_{j}\right\}_{j=0}^{n}$ is a monotone family (if $\left\{X_{j}\right\}_{j=0}^{n-1}$ is a monotone family and (X_{j}, X_{n}) are monotone pairs, $j<n$, then $\left\{X_{j}\right\}_{j=0}^{n}$ is a monotone family). Finally a close look to our constructions reveals that the B_{j} 's are given by the formulae of the last part of the theorem.

Corollary 2.3. Let $\left\{A_{j}\right\}_{j=0}^{n}$ be hermitian operators on a space \mathscr{H}. Then we can totally dilate them into a monotone family of hermitian operators on a larger space \mathscr{F} with $\operatorname{dim} \mathscr{F}=2^{n} \operatorname{dim} \mathscr{H}$.

Proof. We set $A_{j}^{\prime}=\alpha_{j} A_{j}+\frac{3}{4} I$ where $\alpha_{j}>0$ is sufficiently small to have $\frac{1}{2} I \leqslant$ $A_{j}^{\prime} \leqslant I$. We apply Theorem 2.2 to dilate A_{j}^{\prime} to B_{j}^{\prime}. The operators $B_{j}=\left(1 / \alpha_{j}\right) B_{j}^{\prime}-$ $\left(3 / 4 \alpha_{j}\right) I$ are the wanted dilations.

We may note that the proofs of the two preceding results have an algorithmic nature. More precisely, let us consider a sequence of hermitians $\left\{A_{j}\right\}_{j=0}^{n}$. The Frobe-
nius norm $\left\|A_{j}\right\|_{2}$ is easily computed. Setting $\alpha_{j}=\frac{1}{4}\left\|A_{j}\right\|_{2}$ and applying Theorem 2.2 as in the proof of Corollary 2.3 we may easily construct a monotone family totally dilating $\left\{A_{j}\right\}_{j=0}^{n}$.

Remark 2.4. If A, B are positive noninvertible operators, it is not possible, in general, to dilate them into a positive monotone pair. Let

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{cc}
0 & 0 \\
0 & 1
\end{array}\right)
$$

Suppose that (S, T) is a positive, monotone dilation of (A, B). We should have the matrix representations respectively to a basis $\left(e_{1}, \ldots, e_{n}\right)$ of some space

$$
S=\left(\begin{array}{cccc}
1 & 0 & \star & \cdots \\
0 & 0 & 0 & \cdots \\
\star & 0 & \star & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right), \quad T=\left(\begin{array}{cccc}
0 & 0 & 0 & \cdots \\
0 & 1 & \star & \cdots \\
0 & \star & \star & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Since (S, T) is supposed to be positive, monotone we would have one of the following relations: $\operatorname{ker} S \subset \operatorname{ker} T$ or $\operatorname{ker} T \subset \operatorname{ker} S$. Say $\operatorname{ker} S \subset \operatorname{ker} T$, we would deduce that $T e_{1}=T e_{2}=0$ and we would reach a contradiction.

2.2. Theoretical constructions of monotone dilations

In the previous subsection we have constructed monotone dilations in a rather explicit way by using matrix manipulations. Now we give more theoretical constructions; the resulting dilations will act on more economical spaces but will not be total dilations. Our first construction uses a standard dilation argument in connection with the numerical range of an operator and we refer the reader to Chapter 1 of [4] for a detailed discussion of the numerical range.

Proposition 2.5. Let A, B be two strictly positive operators on a space \mathscr{H}. Then we can dilate them into a monotone pair of strictly positive operators on a larger space \mathscr{F} with $\operatorname{dim} \mathscr{F}=6 \operatorname{dim} \mathscr{H}$.

Proof. Invertibility of A and B ensures the existence of a real $r>0$ such that

$$
S=\left(\begin{array}{cc}
A & A-r I \\
A-r I & A
\end{array}\right) \quad \text { and } \quad T=\left(\begin{array}{cc}
B & -B+r I \\
-B+r I & B
\end{array}\right)
$$

are strictly positive operators. Moreover $S T=T S$. Hence $N=S+\mathrm{i} T$ is a normal operator acting on $\mathscr{G}=\mathscr{H} \oplus \mathscr{H}$. Because $S>0$ and $T>0$, the spectrum of N, $\operatorname{Sp} N$, lies in the open quadrant of \mathbf{C},

$$
Q=\{z=x+\mathrm{i} y \mid x>0 \text { and } y>0\} .
$$

We may then find a triangle $\Delta=\left\{x_{1}+\mathrm{i} y_{1}, x_{2}+\mathrm{i} y_{2}, x_{3}+\mathrm{i} y_{3}\right\}$ in Q such that

$$
\begin{equation*}
x_{1}<x_{2}<x_{3} \quad \text { and } \quad y_{1}<y_{2}<y_{3} \tag{*}
\end{equation*}
$$

and conv $\Delta \supset \operatorname{Sp} N$. A standard dilation argument shows that there is a normal operator M acting on a space $\mathscr{F} \supset \mathscr{G}, \operatorname{dim} \mathscr{F}=3 \operatorname{dim} \mathscr{G}$, such that $\mathrm{Sp} M=\Delta$ and $M_{\mathscr{G}}=$ N. Therefore

$$
(\operatorname{Re} M)_{\mathscr{H}}=(\operatorname{Re} N)_{\mathscr{H}}=A \quad \text { and } \quad(\operatorname{Im} M)_{\mathscr{H}}=(\operatorname{Im} N)_{\mathscr{H}}=B .
$$

From $(*)$ we deduce that $(\operatorname{Re} M, \operatorname{Im} M)$ is a monotone pair dilating (A, B).
At a time when it was not so clear to the author that a sequence of $n+1$ hermitians could be dilated into a commuting family, Ando has pointed out to the author [1] the fact that it was a straightforward consequence of Naimark's Dilation Theorem. More precisely this theorem entails that the multiplicative constant 2^{n} in Proposition 1.6 can be replaced, in case of positive or hermitian operators, by $n+2$ (but then the dilations are no longer total). We refer the reader to [3, p. 260] for a modern proof of Naimark's Theorem. Here the only thing we would need to know is the following particular case: Given positive operators $\left\{A_{j}\right\}_{j=0}^{n}$ on \mathscr{H} satisfying $\sum A_{j}=I$, we can dilate them into a family $\left\{Q_{j}\right\}_{j=0}^{n}$ of mutually orthogonal projections on a larger space $\mathscr{F}=\mathscr{G} \otimes \mathscr{H}$ in which $\operatorname{dim} \mathscr{G}=n+2$. Actually, rather than Naimark's Theorem, we only need the following much more elementary statement. Let us say that an operator B essentially acts on a subspace \mathscr{E} if both the range and the corange of B are contained in \mathscr{E} (equivalently, $\operatorname{ran} B \subset \mathscr{E}$ and $(\operatorname{ker} B)^{\perp} \subset \mathscr{E}$).

Lemma 2.6. Fix an integer n and a space \mathscr{H}. Then there exist a larger space \mathscr{F}, $\operatorname{dim} \mathscr{F}=(n+1) \operatorname{dim} \mathscr{H}, \quad$ and an orthogonal decomposition $\mathscr{F}=\mathscr{E}_{0} \oplus \cdots$ $\oplus \mathscr{E}_{n}$, in which $\operatorname{dim} \mathscr{E}_{j}=\operatorname{dim} \mathscr{H}$ for each j, such that: for every family of operators $\left\{A_{j}\right\}_{j=0}^{n}$ on \mathscr{H} there is a family $\left\{B_{j}\right\}_{j=0}^{n}$ of operators on \mathscr{F} with B_{j} essentially acting on \mathscr{E}_{j} and $A_{j}=\left(B_{j}\right)_{\mathscr{H}}, 0 \leqslant j \leqslant n$. Moreover when the A_{j} 's are hermitian or positive, the B_{j} 's can be taken of the same type.

Let us sketch the elementary proof of this lemma. First, choose subspaces $\left\{\mathscr{E}_{j}\right\}_{j=0}^{n}$ of $\mathscr{F}=\oplus^{n+1} \mathscr{H}$ in such a way that for each j (a) $\operatorname{dim} \mathscr{E}_{j}=\operatorname{dim} \mathscr{H}$, (b) the projection E_{j} from \mathscr{F} onto \mathscr{E}_{j} verifies: $\left(E_{j}\right)_{\mathscr{H}}$ is a strictly positive operator on \mathscr{H}. Now, fix an integer j and observe that any vector $h \in \mathscr{H}$ can be lifted to a unique vector $h_{j} \in \mathscr{E}_{j}$ such that $H h_{j}=h$, where H is the projection onto \mathscr{H}. Consequently any rank one operator of the form $R=h \otimes h, h \in \mathscr{H}$, can be lifted into a positive rank one operator T essentially acting on \mathscr{E}_{j} such that $T_{\mathscr{H}}=R$. This ensures that given a general (respectively hermitian, positive) operator A on \mathscr{H} there exists a general (respectively hermitian, positive) operator B essentially acting on \mathscr{E}_{j} such that $B_{\mathscr{H}}=A$.

Theorem 2.7. Let $\left\{A_{j}\right\}_{j=0}^{n}$ be hermitian operators on a space \mathscr{H}. Then we can dilate them into a monotone family of hermitian operators on a larger space \mathscr{F} with $\operatorname{dim} \mathscr{F}=2(n+1) \operatorname{dim} \mathscr{H}-1$.

Proof. By Lemma 2.6 we may dilate $\left\{A_{j}\right\}_{j=0}^{n}$ into a commuting family of hermitians $\left\{S_{j}\right\}_{j=0}^{n}$ on a larger space \mathscr{G} with $\operatorname{dim} \mathscr{G}=(n+1) \operatorname{dim} \mathscr{H}=d$. Thus, there is a basis $\left\{g_{k}\right\}_{k=0}^{d}$ in \mathscr{G} and real numbers $\left\{s_{j, k}\right\}$ such that

$$
S_{j}=\sum_{k=0}^{d} s_{j, k} g_{k} \otimes g_{k} \quad(0 \leqslant j \leqslant n)
$$

We take for \mathscr{F} a space of the form

$$
\mathscr{F}=\mathscr{E}_{0} \oplus \mathscr{E}_{1} \oplus \cdots \oplus \mathscr{E}_{d}
$$

in which $\operatorname{dim} \mathscr{E}_{0}=1$ and $g_{0} \in \mathscr{E}_{0} ;$ and for $k>0, \operatorname{dim} \mathscr{E}_{k}=2$ and $g_{k} \in \mathscr{E}_{k}$. Hence, we have $\operatorname{dim} \mathscr{F}=2(n+1) \operatorname{dim} \mathscr{H}-1$.

For $k>0$, let $\left\{e_{1, k} ; e_{2, k}\right\}$ be a basis of \mathscr{E}_{k} and suppose that $g_{k}=\left(e_{1, k}+e_{2, k}\right) / \sqrt{2}$ (*). We set, for $0 \leqslant j \leqslant n$,

$$
B_{j}=s_{j, 0} g_{0} \otimes g_{0}+\sum_{k=1}^{d}\left(r_{j, k} e_{1, k} \otimes e_{1, k}+t_{j, k} e_{2, k} \otimes e_{2, k}\right)
$$

where the reals $r_{j, k}$ and $t_{j, k}$ are chosen in such a way that:
(1) $s_{j, k}=\left(r_{j, k}+t_{j, k}\right) / 2, j=0, \ldots, n$.
(2) $r_{j, d}<\cdots<r_{j, 1}<s_{j, 0}<t_{j, 1}<\cdots<t_{j, d}, j=0, \ldots, n$.

From (1) and (*) we deduce that $S_{j}=\left(B_{j}\right)_{\mathscr{G}}$ so that $A_{j}=\left(B_{j}\right)_{\mathscr{H}}$. From (2) we infer that $\left\{B_{j}\right\}_{j=0}^{n}$ is a monotone family.

We close this paper with the final observation:
Remark 2.8. The results of Section 2 still hold for infinite dimensional spaces (and then we simply have $\mathscr{F}=\mathscr{H} \oplus \mathscr{H}$). Also, we may consider real operators on real spaces as well as complex operators on complex spaces.

References

[1] T. Ando, private communication.
[2] J.-C. Bourin, Singular values of compressions, restrictions and dilations, Linear Algebra Appl. 360 (2003) 259-272.
[3] K.R. Davidson, C^{*}-algebras by example, Fieds Institute Monographs 6, American Mathematical Society, 1996.
[4] R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991.

[^0]: E-mail address: bourinjc@club-internet.fr (J.-C. Bourin).
 0024-3795/03/\$ - see front matter © 2003 Elsevier Science Inc. All rights reserved. doi:10.1016/S0024-3795(02)00666-3

