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Abstract

Suppose thatX is a nonempty compact metrizable space andX1 ⊂ X2 ⊂ · · · is a sequence o
nonempty closed subspaces such that for eachk ∈ N, dimZ Xk � k < ∞. We show that there exists
compact metrizable spaceZ, having closed subspacesZ1 ⊂ Z2 ⊂ · · · , and a surjective cell-like ma
π :Z → X, such that for eachk ∈ N,

(a) dimZk � k,
(b) π(Zk) = Xk , and
(c) π |Zk :Zk → Xk is a cell-like map.

Moreover, there is a sequenceA0 ⊂ A1 ⊂ · · · of closed subspaces ofZ such that for eachk, Zk ⊂ Ak,
dimAk � k, π |Ak :Ak → X is surjective, and fork ∈ N, π |Ak :Ak → X is a UVk−1-map.
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1. Introduction

The objective of this paper is to prove the following theorem.

Theorem 1.1. Suppose thatX is a nonempty compact metrizable space andX1 ⊂ X2 ⊂ · · ·
is a sequence of nonempty closed subspaces such that for eachk ∈ N, dimZ Xk � k < ∞.
Then there exists a compact metrizable spaceZ, having closed subspacesZ1 ⊂ Z2 ⊂ · · · ,
and a surjective cell-like mapπ :Z → X, such that for eachk ∈ N,

(a) dimZk � k,
(b) π(Zk) = Xk, and
(c) π |Zk :Zk → Xk is a cell-like map.

Moreover, there is a sequenceA0 ⊂ A1 ⊂ · · · of closed subspaces ofZ such that for eachk,
Zk ⊂ Ak, dimAk � k, π |Ak :Ak → X is surjective, and fork ∈ N, π |Ak :Ak → X is a
UVk−1-map.

By dimZ we mean integral cohomological dimension [11,5]. This is sometimes c
Z-dimension. Our use of the term “strongly countable” in the title is meant to infer
parallel with the notion of strong countable dimension, which is standard in dime
theory.

Let us recall that a mapπ :Z → X is called cell-like if each of its fibersπ−1(x) is a cell-
like space [2], i.e., has the shape of a point [7]. On the other hand,π is called a UVk map
if each of its fibers has property UVk . This means that each embeddingπ−1(x) ↪→ A into
an ANRA has property UVk: for every 0� r � k and every neighborhoodU of π−1(x)

in A, there exists a neighborhoodV of π−1(x) in U such that every map ofSr into V

is nullhomotopic inU . (We actually shall use an inverse sequence characterization o
property later in the paper.) It is well known that cell-like compacta have property UVk for
all k.

The Edwards–Walsh resolution theorem [4,11] was the first in the category o
Theorem 1.1.

Resolution Theorem 1.2. If X is a metrizable compactum anddimZ X � m < ∞, then
there exists a metrizable compactumZ with dimZ � m and a cell-like map ofZ ontoX.

Later resolution theorems extended this one, [10] to the case thatX is a metrizable
space, and [6] to the case thatX is a Hausdorff compactum. An approach to extending
result to pairs was used in [8], and some of the ideas in the latter influenced our tech
Finally, the work in [1] (see Section 7), which provided an alternative proof of Theorem
was an important inspiration for the current research.

Theorem 1.1 would be made stronger if one could prove:
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Conjecture 1.3. Suppose thatX is a nonempty compact metrizable space andX1 ⊂

at will

nce
ote

of [9]

al
X2 ⊂ · · · is a sequence of nonempty closed subspaces such that for eachk ∈ N, dimZ Xk �
k < ∞. Then there exists a compact metrizable spaceZ, having closed subspacesZ1 ⊂
Z2 ⊂ · · · , and a surjective cell-like mapπ :Z → X, such that for eachk ∈ N,

(a) dimZk � k, and
(b) π−1(Xk) = Zk .

Moreover, there is a sequenceA0 ⊂ A1 ⊂ · · · of closed subspaces ofZ such that for eachk,
Zk ⊂ Ak, dimAk � k, π |Ak :Ak → X is surjective, and fork ∈ N, π |Ak :Ak → X is a
UVk−1-map.

2. Background

In this paper map will always mean continuous function, andQ will designate the
Hilbert cube. We are going to provide the reader with some background material th
make our later work more easily understood.

The following lemma is a form of the homotopy extension theorem with control.

Lemma 2.1. Let f :X → R be a map of a compact polyhedronX to a spaceR, X0 be a
closed subpolyhedron ofX, andU be an open cover ofR. Suppose thatF :X0 × I → R

is aU -homotopy off |X0. Then there exists aU -homotopyH :X × I → R of f such that
H |X0 × I = F :X0 × I → R.

There are also two facts from the theory of dimension dim andZ-cohomological
dimension, dimZ which will be used in the sequel. First is a formulation of the existe
of j -invertible maps (due to Dranishnikov [3]) which will be sufficient for our needs. N
that thej -invertibility of Dj in this lemma implies that for any metrizable compactumY

with dimY � j , and any embeddingg :Y → Q, there exists a maps :Y → Mj such that
Dj ◦ s = g.

Lemma 2.2. For eachj � 0, there exists aj -invertible mapDj :Mj → Q whereMj is a
metrizable compactum anddimMj � j .

The other one goes as follows. A proof of it may be deduced from Theorem 7.3
or Theorem 5.1 of [11].

Theorem 2.3. Let m ∈ N. Suppose thatX is a metrizable compactum,dimZ X � m, and
g :X → P is a map to a triangulated polyhedronP . Then for every finite-dimension
compactumY and maph :Y → X, there exists a mapf :Y → P (m) having the property
that for eachx ∈ Y , if g(h(x)) lies in a simplexσ of P , thenf (x) ∈ σ also.
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We state without proof the filtration version of Theorem 2.3, which is a straightforward
lt—

um

r

p us
on

long as

t

corollary of the approximate lifting property of cell-like maps and our main resu
Theorem 1.1.

Theorem 2.4. Suppose thatX is a metric compactum andX1 ⊂ X2 ⊂ · · · ⊂ Xm = X is
a sequence of closed subspaces such that for eachk � m, dimZ Xk � k andg :X → P is
a map to a triangulated polyhedron(P, τ ). Then for every finite-dimensional compact
Y , sequenceY1 ⊂ Y2 ⊂ · · · ⊂ Ym = Y of closed subspaces, and maph :Y → X such that
h(Yk) ⊂ Xk for everyk � m, there exists a mapf :Y → P (m) having the property that fo
eachk � m, f (Yk) ⊂ P (k), anddist(f, g ◦ h) < (m + 1) · mesh(τ ).

3. Preliminary results

Let the Hilbert cubeQ = ∏∞
i=1 I be endowed with the metricρ such that ifx = (xi),

y = (yi), thenρ(x, y) = ∑∞
i=1 2−i · |xi − yi|. As usual,I = [0,1]. For anyi ∈ N it will

be convenient to writeQ = I i × Qi in factored form. In this case, any subsetE of I i will
always be treated asE × {0} ⊂ Q. We shall usepi :Q → I i for coordinate projection.

The first type of result we want is a lemma which is technical, but which will hel
find certain maps and to understand their fibers. Once the correct conditions are found
the construction of said maps, then our Theorem 1.1 will follow readily.

We will use the following notation. Letx belong to a metric spaceX and letδ > 0. Then
by N(x, δ) we shall mean the closedδ-neighborhood ofx in X. Whenever(Pi, g

i+1
i ) is an

inverse sequence,Ti ⊂ Pi andgi+1
i (Ti+1) ⊂ Ti for eachi, then we shall write(Ti, g

i+1
i )

for the induced inverse sequence, using the same notation for the bonding maps as
no confusion can arise.

Lemma 3.1. Suppose that for eachi ∈ N we have selectedni ∈ N, a compact subse
Pi ⊂ Ini , 0< δi , 0 < εi , and a mapgi+1

i :Pi+1 → Pi so that:

(i) if u, v ∈ Q andρ(u, v) < εi+1, thenρ(pni (u),pni (v)) < δi ,
(ii) ni < ni+1,
(iii) 9 · 2−ni < εi ,
(iv) ρ(gi+1

i (x),pni (x)) < δi for all x ∈ Pi+1,
(v) δi < 21−ni , and
(vi) Pi+1 × Qni+1 ⊂ Pi × Qni .

Put X = ⋂∞
i=1 Pi × Qni , P = (Pi, g

i+1
i ), and Z = lim P. Then for eachz =

(a1, a2, . . .) ∈ Z ⊂ ∏∞
i=1 Pi , and associated sequence(ai) in Q,

(a) (ai) is a Cauchy sequence inQ whose limit lies inX, and
(b) the functionπ :Z → X given byπ(z) = limi→∞(ai) is continuous.

Fix x ∈ X and for eachi ∈ N , letBx,i = N(pni (x),2δi)∩Pi,B
#
x,i = N(pni (x), εi)∩Pi .

Then,
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(c) Bx,i ⊂ B# andgi+1(B# ) ⊂ Bx,i .

at

he

ow
x,i i x,i+1

If we letPx = (Bx,i, g
i+1
i ) andP#

x = (B#
x,i , g

i+1
i ), then,

(d) lim Px = lim P#
x , and

(e) π−1(x) = lim Px .

In addition, suppose we are given, for eachi ∈ N, a closed subspaceTi ⊂ Pi in such
a manner thatgi+1

i (Ti+1) ⊂ Ti . Put T = (Ti, g
i+1
i ) and Z′ = lim T ⊂ Z. For x ∈ X, let

Sx,i = Bx,i ∩ Ti , Tx = (Sx,i, g
i+1
i ); setπ̃ = π |Z′ → X. Then,

(f) π̃−1(x) = lim Tx , and
(g) if Sx,i 	= ∅ for eachi, thenπ̃ is surjective.

Proof. Observe that our choice of metric shows that for anyi ∈ N andx ∈ Q,

(1) ρ
(
pni (x), x

)
� 2−ni .

The triangle inequality along with (1) and(iv) and (v) of the hypothesis show th
ρ(ai, ai+1) = ρ(gi+1

i (ai+1), ai+1) � ρ(gi+1
i (ai+1),pni (ai+1)) + ρ(pni (ai+1), ai+1) <

δi + 2−ni < 21−ni + 2−ni = 3 · 2−ni , so

(2) ρ(ai, ai+1) < 22−ni ,

independently of choice ofz = (a1, a2, . . .) ∈ Z.
From (2) and (ii),(ai) is a Cauchy sequence. SinceX = ⋂∞

i=1 Pi × Qni , ai ∈ Pi ⊂
Pi × Qni for eachi, and (vi) is true, one concludes the validity of (a).

The functionπ :Z → X is continuous since (2) and (ii) show that it is the limit of t
uniformly convergent sequence of mapsπi |Z :Z → Ini ⊂ Q whereπi(z) = ai whenever
z = (a1, a2, . . .) ∈ Z; this yields (b).

To prove (c), first note that (iii) and (v) imply that 2δi < εi so thatBx,i ⊂ B#
x,i .

Next let u ∈ B#
x,i+1. Observe that,pni ◦ pni+1 = pni . Sinceρ(u,pni+1(x)) < εi+1, the

triangle inequality, (iv), and (i) show thatρ(gi+1
i (u),pni (x)) � ρ(gi+1

i (u),pni (u)) +
ρ(pni (u),pni ◦ pni+1(x)) < δi + δi = 2δi . Hencegi+1

i (u) ∈ Bx,i , giving us (c).
Item (d) is an immediate consequence of (c), so let us concentrate on (e). We n

want to prove thatπ−1(x) is precisely limPx . If (a1, a2, . . .) is a thread ofPx , then for
i ∈ N, ai ∈ Bx,i , so, by applying (1) and (v),ρ(ai, x) � ρ(ai,pni (x)) + ρ(pni (x), x) <

2δi + 2−ni � 22−ni + 2−ni . Hence, lim(ai) = x = π((ai)). Therefore, limPx ⊂ π−1(x).
Towards the opposite inclusion, suppose that a thread(a1, a2, . . .) of P lies in π−1(x).

Apply the triangle inequality, the fact that(ai) converges tox, (1), (2), (ii), and (iii)
to see that wheni > 1, ρ(ai,pni (x)) � ρ(ai, x) + ρ(x,pni (x)) �

∑∞
k=i ρ(ak, ak+1) +

2−ni <
∑∞

k=i 22−nk + 2−ni � 2 · 22−ni + 2−ni = 9 · 2−ni < εi . This putsai ∈ B#
x,i . So
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(a1, a2, . . .) ∈ lim P#
x = lim Px , showing thatπ−1(x) ⊂ lim Px . Henceπ−1(x) = lim Px as

),
s

t
is

ly
we had proclaimed. We leave to the reader the routine proof of (f) and (g).�
Corollary 3.2. Suppose in Lemma3.1 that for eachi ∈ N, Pi is a subpolyhedron ofIni

having triangulationτi with meshτi < δi and that for allk � 0, gi+1
i (P

(k)
i+1) ⊂ P

(k)
i . Let

Tk,i = P
(k)
i , Tk = (

Tk,i, g
i+1
i

)
, and Ak = lim Tk.

ThenA0 ⊂ A1 ⊂ · · · , and for eachk � 0,

(a) dimAk � k andπ |Ak :Ak → X is surjective.

Assume further that for eachx ∈ X and i ∈ N, there is a subpolyhedronPx,i of Pi

triangulated by a subset ofτi so that

Bx,i ⊂ Px,i ⊂ B#
x,i

and the inclusionBx,i ↪→ Px,i is null homotopic. Then

(b) π :Z → X is a cell-like map and
(c) for eachk ∈ N, π |Ak :Ak → X is a UVk−1-map.

If all the above statements are true,m � 0, and gi+1
i (P

(m+1)
i+1 ) ⊂ P

(m)
i for infinitely

manyi, then

(d) π |Am :Am → X is a cell-like map.

Proof. Surely dimAk � k. Apply Lemma 3.1 withTi = Tk,i and Sx,i = Bx,i for each
x ∈ X. ThenT becomesTk andZ′ = Ak. The facts: meshτi < δi , andpni (X) ⊂ Pi easily
can be used to check thatSx,i 	= ∅. So (g) of Lemma 3.1 shows that (a) is true.

Part (b) comes from (c) of Lemma 3.1 along with the fact that eachBx,i ↪→ Px,i is
null homotopic. This shows that the bonding maps inPx are null homotopic. To get at (c
suppose that 0� r � k − 1 andh :Sr → Sx,i+1 ⊂ Bx,i+1 ⊂ Px,i+1 is a map. Then there i
a nullhomotopyH of h such that imH is contained inP (k)

x,i+1 ⊂ B#
x,i+1. Applying the fact

thatgi+1
i (P

(k)
i+1) ⊂ P

(k)
i and (c) of Lemma 3.1, one sees that the bonding mapgi+1

i carries

imH into Sx,i and thereforegi+1
i induces a null-homomorphism ofπj , j < k. So all fibers

of π |Ak are UVk−1.
The proof of (d) is not much different from this. Leti ∈ N be chosen such tha

gi+1
i (P

(m+1)
i+1 ) ⊂ P

(m)
i . Using the fact that dimSx,i+1 � m, we may assume that there

a nullhomotopyH of the inclusion ofSx,i+1 into Bx,i+1 such that imH ⊂ P
(m+1)
x,i+1 . But

then,gi+1
i carries imH into Sx,i , providing a nullhomotopy. Since this occurs infinite

often in the inverse sequence describing the fiber ofπ |Am :Am → X abovex, the latter
map is cell-like. �
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4. Proof of Theorem 1.1

ence

r

y the
Proof of Theorem 1.1. Choose a functionν :N → N ∪ {0} such that for eachi ∈ N,

(i) ν(i) � i, and
(ii) ν−1(i − 1) is infinite.

One may assume thatX ⊂ Q. We are going to prove the existence of a certain sequ
Sj = {nj , (P

k
j )k∈N, εj , δj , (τ k

j )k∈N, g
j
j−1}, j = 1,2,3, . . . , of elements of the following

nature:

nj ∈ N; P 1
j ⊂ P 2

j ⊂ · · · ⊂ P∞
j are compact polyhedra ofInj ; εj , andδj ∈ R

+;
τ∞
j is a triangulation ofP∞

j andτ k
j = τ∞

j |Pk
j

is a triangulation ofPk
j ;

g
j

j−1 :P∞
j → P∞

j−1 is a simplicial map relative toτ∞
j andτ∞

j−1.

We shall require that for eachj � 1 andk ∈ N

(1)j,j>1 nj−1 < nj ;
(2)j,j�1 if j < k < ∞, thenPk

j = P∞
j andP r

j ⊂ intInj P r+1
j wheneverr � j ;

(3)j,j�1 X ⊂ intQ(P∞
j × Qnj ) ⊂ N(X, 2

j
), pnj−1(P

k
j ) ⊂ intInj−1 Pk

j−1, and, wheneve

k � j , Xk ⊂ intQ(P k
j × Qnj ) ⊂ N(Xk,

2
j
);

(4)j,j>1 if u, v ∈ Q andρ(u, v) < εj , thenρ(pnj−1(u),pnj−1(v)) < δj−1;
(5)j,j�1 9 · 2−nj < εj ;
(6)j,j�1 δj < 21−nj ;

(7)j,j�1 meshτ∞
j <

δj

2 ;

(8)j,j�1 if x ∈ Xk , then there exists a subpolyhedronPk
x,j of Pk

j , which is triangu-

lated by τ k
j , and so thatN(pnj (x),2δj ) ⊂ Pk

x,j ⊂ N(pnj (x), εj ) ∩ Pk
j and

N(pnj (x),2δj ) is contractible inPk
x,j ;

(9)j,j>1 wheneverx ∈ P∞
j and g

j

j−1(x) ∈ σ , where σ is a simplex ofτ∞
j−1, then

pnj−1(x) lies in N(σ,
δj−1

2 ) (and therefore, as it follows from here and(7)j−1,

ρ(g
j−1
j (x),pnj−1(x)) < δj−1/2+ δj−1/2= δj−1 for all x ∈ P∞

j );

(10)j,j>1 g
j

j−1(P
k
j ) ⊂ Pk

j−1; and

(11)j,j>1 g
j

j−1((P
ν(j−1)

j )(ν(j−1)+1)) ⊂ (P
ν(j−1)

j−1 )(ν(j−1)).

It is easy to check that the first step of the induction (j = 1) will be accomplished if we
choosen1 = 1, Pk

1 = In1 for all 1 � k � ∞, ε1 = 5, δ1 = 1
3. Select a triangulationτ∞

1
of P∞

1 with meshτ∞
1 < δ1/2 and putτ k

1 = τ∞
1 whenk < ∞.

Before proving the existence of such data, let us see why they would impl
conclusion of Theorem 1.1. For eachi ∈ N, let P∞

i = Pi . The conditions (i)–(v) of
Lemma 3.1 are clearly true. Condition(3)i implies (vi) and thatX = ⋂∞

i=1 P∞
i × Qni .

Surely Z = lim(Pi, g
i+1
i ) is a metrizable compactum, and we get the mapπ :Z → X

defined by the formula given in Lemma 3.1(b).
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To see thatπ is surjective, letTi = Pi = P∞. According to the notation of the last part

e

st one

of
at

itions

er

)
e

i

of Lemma 3.1, one sees that forx ∈ X, Sx,i = Bx,i = N(pni (x),2δi) ∩ Pi . From(3)i it is
sure thatpni (x) ∈ Pi and thereforepni (x) ∈ Bx,i , showing that the latter is not empty. Th
mapπ̃ is the same asπ in this setting, so (g) of Lemma 3.1 shows thatπ is surjective.

One then checks that all the hypotheses of Corollary 3.2 except for the very la
(which we do not need yet) are also satisfied. Thus (a)–(c) hold true, soπ is a cell-like map,
and we are assured of the existence of the subspacesA0 ⊂ A1 ⊂ · · · , Ak = lim(P

(k)
i , gi+1

i ),
as required by Theorem 1.1 so that whenk ∈ N, dimAk � k, andπ carriesAk in a UVk−1

manner ontoX.
Fix m ∈ N. In the last part of Lemma 3.1, instead of puttingTi = P∞

i , as we did pre-
viously, useTi = Pm

i . It is an easy consequence of(7)i that for x ∈ Xm, Sx,i 	= ∅. De-
fine Z′

m to be limTm whereTm = (Pm
i , gi+1

i ). PutZm = Am ∩ Z′
m = lim(Tm,i , g

i+1
i ) =

lim((Pm
i )(m), gi+1

i ). The ultimate condition of Corollary 3.2 is now operative because
(i) and (ii) of this section and(11). If we apply (d) of Corollary 3.2, then we find th
π |Zm :Zm → Xm is a cell-like map. Of course, dimZm � m andZ1 ⊂ Z2 ⊂ · · · , so our
proof of Theorem 1.1 will be complete once we have obtained the information in cond
(1)–(11).

Assume that we have completed the construction ofSi through indexi ∈ N. Choose an
open coverV of P∞

i having the property that meshV <
δi

2 . Then select a finer open cov
W such that any twoW-close maps of any space intoP∞

i areV-homotopic. Letτ be a
subdivision ofτ∞

i such that every simplex ofτ lies in an element ofW . Hence,

(12) meshτ < δi

2 .

If i > 1, choose a mapµ :P∞
i → P∞

i which is simplicial fromτ to τ∞
i and which is a

simplicial approximation to the identity onP∞
i . Then the mapλ = gi

i−1 ◦ µ is simplicial
from τ to τ∞

i−1. If we replacegi
i−1 by λ and τ∞

i by τ , then all the conditions (1)–(11
for index i still prevail (the only ones affected being(7)i–(8)i and(11)i ). So we assum
that these replacements have been made, but continue to usegi

i−1 andτ∞
i to denote the

respective bonding map and triangulation.
Using Lemma 2.2, find a(ν(i)+1)-invertible mapD :M → Q, with dimM � ν(i)+1,

and put

Y = D−1(Xν(i)) ⊂ M.

Note thatpni ◦ D|Y factors throughXν(i) and dimY � ν(i) + 1. Let

C1 = (
P

ν(i)
i

)(ν(i))
.

Since dimZ Xν(i) � ν(i), and dimY < ∞, Theorem 2.3,(3)i , and the fact thatτ∞
i refines

W show that there exists a mapf :Y → C1 such thatf is W-close topni ◦ D|Y . We may
assume thatf is defined on a closed neighborhoodN of Y in M, f (N) ⊂ C1, and that

(13) f is W-close topni ◦ D|N .

There exists a neighborhoodB of Xν(i) in Q such thatD−1(B) ⊂ N .



S. Ageev et al. / Topology and its Applications 140 (2004) 5–14 13

One may findm0 ∈ N such that ifm � m0, then X ⊂ pm(X) × Qm ⊂ N(X, 2 )

e

e
,

e

licial
i+1

and for all k � i + 1, Xk ⊂ pm(Xk) × Qm ⊂ N(Xk,
2

i+1). We may therefore choos

ni+1 > max{ni,m0} and compact subpolyhedraPk
i+1 of Ini+1, k � i + 1, so that(2)i+1–

(3)i+1 are true. We may also insure thatP
ν(i)
i+1 ⊂ B, i.e., that

(14) D−1(P
ν(i)
i+1 ) ⊂ N .

Let

C2 = (
P

ν(i)
i+1

)(ν(i)+1)
.

From (14) and the fact thatD is (ν(i) + 1)-invertible, there is a maps :C2 → M

enjoying,

(15) D ◦ s(x) = x for all x ∈ C2, and
(16) s(C2) ⊂ N .

Consider the mapϕ :C2 → C1 given by ϕ(x) = f (s(x)). For suchx, pni (x) =
pni (D(s(x))). From this and (13), one sees thatϕ andpni |C2 areW-close, so they ar
V-homotopic. From Lemma 2.1 we see thatpni |P∞

i+1 → P∞
i is V-homotopic to a map

which we shall denoteϕ :P∞
i+1 → P∞

i (an extension of the previously namedϕ). Let us
note from this that,

(17) ϕ is V-close topni |P∞
i+1.

With this, the part of(3)i+1 indicating thatpni (P
k
i+1) ⊂ intIni P k

i for eachk � i + 1, and
the fact that we could have chosenV as fine as we wish, we may assume that,

(18) ϕ(P k
i+1) ⊂ Pk

i for all 1 � k � ∞.

There existsεi+1 such that(4)i+1–(5)i+1 hold. Selectδi+1 and a triangulationτ∞
i+1 so

that (6)i+1–(8)i+1 are true. Makingτ∞
i+1 finer if necessary, choose a mapgi+1

i :P∞
i+1 →

P∞
i which is simplicial fromτ∞

i+1 to τ∞
i and which is a simplicial approximation toϕ.

Now it is easy to check the validity of(9)i+1 and(10)i+1; item (11)i+1 is a consequenc
of the fact thatgi+1

i is a simplicial approximation ofϕ, andϕ(C2) ⊂ C1.
At the end of the proof, for the reader’s convenience we formulate the simp

approximation theorem used above.�
Theorem 4.1. Suppose that(P, τP ) and (Q, τQ) are compact polyhedra,P0 < P and
Q0 < Q compact subpolyhedra. Then for every mapf :P → Q,f (P0) ⊂ Q0, there exist
a triangulationτ ′

P < τP and a simplicial mapf ′: (P, τ ′
P ) → (Q, τQ) such that

(19) dist(f ′, f ) < 2 · mesh(τQ), and
(20) f ′(P0) ⊂ Q0.
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