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Abstract

Suppose thak is a nonempty compact metrizable space ahdc X, C --- is a sequence of
nonempty closed subspaces such that for éaelY, dimy, X < k < oco. We show that there exists a
compact metrizable spa¢g having closed subspac&s C Z, C - - -, and a surjective cell-like map
7w :Z — X, such that for each € N,

(@) dimZ; <k,
(b) 7(Zy) = Xy, and
(c) m|Zy : Zy — Xy is a cell-like map.

Moreover, there is a sequendg C A1 C - - - of closed subspaces @fsuch that for each, Z;, C Ag,
dimAy <k, mw|Ay: A — X is surjective, and fok e N, m|A; 1 Ay — X isa UV Lmap.
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1. Introduction
The objective of this paper is to prove the following theorem.

Theorem 1.1. Suppose thaX is a nonempty compact metrizable space &ad- X> C - --
is a sequence of nonempty closed subspaces such that fok eadhdimy X; <k < oo.
Then there exists a compact metrizable spachaving closed subspac&s Cc Z> C -- -,
and a surjective cell-like map : Z — X, such that for eacl € N,

(@) dimZ; <k,
(b) 7(Zx) = Xy, and
(¢) m|Zy: Zr — Xy is a cell-like map.

Moreover, there is a sequendg C A1 C - - - of closed subspaces @fsuch that for each,
Zi C Ag, dimA, <k, m|Ag: Ay — X is surjective, and fok € N, 7|Ay: Ay —> X is a
UV* 1 map.

By dimz we mean integral cohomological dimension [11,5]. This is sometimes called
Z-dimension. Our use of the term “stroggtountable” in the title is meant to infer a
parallel with the notion of strong countable dimension, which is standard in dimension
theory.

Letus recallthata map: Z — X is called cell-like if each of its fibers ~1(x) is a cell-
like space [2], i.e., has the shape of a point [7]. On the other hatslcalled a UV map
if each of its fibers has property UVThis means that each embedding! (x) < A into
an ANR A has property UV: for every 0< r < k and every neighborhood of 7 ~(x)
in A, there exists a neighborhodd of 7 ~1(x) in U such that every map of” into V
is nullhomotopic inU. (We actually shall use an inverse sequence characterization of this
property later in the paper.) It is well known that cell-like compacta have properfyfoiv
all k.

The Edwards—Walsh resolution theorem [4,11] was the first in the category of our
Theorem 1.1.

Resolution Theorem 1.2. If X is a metrizable compactum amtimz X < m < oo, then
there exists a metrizable compactahwith dimZ < m and a cell-like map of onto X.

Later resolution theorems extended this one, [10] to the caseXthata metrizable
space, and [6] to the case th¥atis a Hausdorff compactum. An approach to extending the
result to pairs was used in [8], and some of the ideas in the latter influenced our techniques.
Finally, the work in [1] (see Section 7), which provided an alternative proof of Theorem 1.2,
was an important inspiration for the current research.

Theorem 1.1 would be made stronger if one could prove:
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Conjecture 1.3. Suppose thafX is a nonempty compact metrizable space ahdc
X, C ---is asequence of nonempty closed subspaces such that fok ea§hdimy, X <
k < oo. Then there exists a compact metrizable spA¢céaving closed subspacés C
Z> C ---, and a surjective cell-like map : Z — X, such that for each € N,

() dimZ; <k, and
(b) 7~ 1(Xp) = Z.

Moreover, there is a sequendg C A1 C - - - of closed subspaces Bfsuch that for each,
Zi C Ag, dimA, <k, m|Ag: Ay — X is surjective, and fok € N, 7|Ay: Ay —> X is a
UV* 1 map.

2. Background

In this paper map will always mean continuous function, @nhavill designate the
Hilbert cube. We are going to provide the reader with some background material that will
make our later work more easily understood.

The following lemma is a form of the homotopy extension theorem with control.

Lemma2.1l. Let f: X — R be a map of a compact polyhedrahto a spacer, Xg be a
closed subpolyhedron df, andi/ be an open cover ak. Suppose thaf': Xg x I — R

is al{-homotopy off | Xo. Then there exists &@-homotopyH : X x I — R of f such that
H| XoxI=F:XgxI— R.

There are also two facts from the theory of dimension dim d@rdohomological
dimension, dim which will be used in the sequel. First is a formulation of the existence
of j-invertible maps (due to Dranishnikov [3]) which will be sufficient for our needs. Note
that the j-invertibility of D; in this lemma implies that for any metrizable compactdim
with dimY < j, and any embedding:Y — Q, there exists a map:Y — M; such that
Djos=g.

Lemma 2.2. For eachj > 0, there exists g-invertible mapD; : M; — Q whereM; is a
metrizable compactum aim M ; < ;.

The other one goes as follows. A proof of it may be deduced from Theorem 7.3 of [9]
or Theorem 5.1 of [11].

Theorem 2.3. Letm € N. Suppose thak is a metrizable compacturdimz X < m, and
g:X — P is a map to a triangulated polyhedroR. Then for every finite-dimensional
compactun¥ and maph:Y — X, there exists a mag : ¥ — P having the property
that for eachx € Y, if g(h(x)) lies in a simplex of P, thenf(x) € o also.
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We state without proof the filtration version of Theorem 2.3, which is a straightforward
corollary of the approximate lifting property of cell-like maps and our main result—
Theorem 1.1.

Theorem 2.4. Suppose thak is a metric compactum an®f; C XoC---C X, =X is

a sequence of closed subspaces such that for kach:, dimz X; <k andg:X — P is

a map to a triangulated polyhedrai®, ). Then for every finite-dimensional compactum
Y, sequenc&y C Yo C --- C Y, =Y of closed subspaces, and mapY — X such that
h(Yy) C X, for everyk < m, there exists a map : Y — P having the property that for
eachk <m, f(¥x) c P® anddist(f, g o h) < (m + 1) - meskr).

3. Preiminary results

Let the Hilbert cubeQ = ]’[}’il I be endowed with the metrie such that ifx = (x;),
y =), thenp(x, y) = 372,27 - |x; — yi|. As usual,l = [0, 1]. For anyi € N it will
be convenient to write) = I’ x Q; in factored form. In this case, any subgebf I’ will
always be treated a8 x {0} C Q. We shall use; : 9 — I’ for coordinate projection.

The first type of result we want is a lemma which is technical, but which will help us
find certain maps and to understand thdiefs. Once the correct conditions are found on
the construction of said maps, then our Theorem 1.1 will follow readily.

We will use the following notation. Let belong to a metric spacé and lets > 0. Then
by N (x, 8) we shall mean the closédneighborhood ok in X. Whenever P;, g?“) isan

1
inverse sequencd; C P; andgj*l(T,-H) C T; for eachi, then we shall writg7;, gj*l)
for the induced inverse sequence, using the same notation for the bonding maps as long as
no confusion can arise.

Lemma 3.1. Suppose that for eache N we have selected; € N, a compact subset

P, CI",0<6,0<eg,andamapg ™: Pi1— P, so that

(i) ifu,ve Qandp(u,v) <ei+1, thenp(py, (u), py, (v)) <6,
(i) n; <mita,
(i) 927 <,
(V) p(g LX), pu;(x)) <5 forall x € Py,
(v) 8 <2 and
(VI) Pi+1 X eri+l C Pi X Qni .

Put X = 21 P x Qp, P= (Pi,gff*l), and Z = limP. Then for eachz =
(a1,az,...) € Z C [[72, Pi, and associated sequengg) in Q,

(a) (a;) is a Cauchy sequence i@ whose limit lies inX, and
(b) the functionr : Z — X given byr(z) =lim;_ «(a;) is continuous.

Fix x € X and foreach € N, let B, ; = N(py, (x), 25;)) N P;, le. = N(pn; (x),&)NP;.
Then,



S. Ageev et al. / Topology and its Applications 140 (2004) 5-14 9
(c) By; C BY andg!™(B¥ . ) C B.,.
If we letP, = (B, ;, g'™) andP¥ = (BY, g t™h, then,

(d) limP, =limP#, and
(e) 7 1(x) =limP,.

In addition, suppose we are given, for eacé N, a closed subspacE C P; in such
a manner thag' ™ (T;41) C T;. PutT = (T;,¢™) and Z' = lim T € Z. For x € X, let
Sei=BxiNT, Ty = (S g™); setx =x|Z' — X. Then,

(H #71(x)=limT,, and
(9) if Sy.; # ¢ for eachi, thens is surjective.

Proof. Observe that our choice of metric shows that for amyN andx € Q,

(l) P(Pn; (x), X) <27,

The triangle inequality along with (1) anﬁv) and (v) of the hypothesis show that

plai,ai11) = /O(g,+ (@i+1),ai+1) < p(gl (al+1) Pn; (ai+1)) + P(Pn, (@i+1),ai11) <
8 +27Mm <217 27 =3.27M 50

(2) /O(al ) al-‘rl) < 22—1’![ )

independently of choice af= (a1,a2,...) € Z.

From (2) and (ii),(a;) is a Cauchy sequence. Sinde= (2, Pi x Qy,, a;i € Pi C
P; x Qy, for eachi, and (vi) is true, one concludes the validity of (a).

The functionn : Z — X is continuous since (2) and (ii) show that it is the limit of the
uniformly convergent sequence of maps$Z :Z — 1" C Q wheren;(z) = a; whenever
7= (a1,az,...) € Z; thisyields (b).

To prove (c), first note that (iii) and (v) imply thats2< ¢; so thatB,; C Bf,l..
Next letu e Bf,i+1- Observe thatp,, o pu,.; = pr;. SiNCep(u, pn,,, (X)) < &i11, the
triangle inequality, (iv), and (i) show that (g™ (u), pu, (x)) < p(g ™ (), pu; () +
2Py ), Py © Py oy (X)) < 8 + 8 = 25 Henceg’*l(u) € By.i, giving us (c).

Item (d) is an immediate consequence of, (so let us concentrate on (e). We now
want to prove thatr ~1(x) is precisely limP,. If (a1, a2, ...) is a thread ofP,, then for
i €N, aj € By i, S0, by applying (1) and (V) (ai, x) < p(ai, pn;(x)) + p(pn; (%), x) <
28; + 27" < 227" 4 27" Hence, limMa;) = x = 7((a;)). Therefore, linP, c 7~ 1(x).

Towards the opposite inclusion, suppose that a thteadiy, .. .) of P lies in 7 —1(x).
Apply the triangle inequality, the fact thdt;) converges tax, (1), (2), (i), and (i)
to see that when > 1, p(a;, pn; (X)) < p(ai, x) + p(x, pn; (X)) < Y52 pla, ar+1) +
27 < YR 22 4 2T 2227 427 = 9. 27 < g;. This putsa; € BY ;. So
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(a1,az, ...) €limP# =lim P,, showing thatr ~X(x) c lim P,. Hencer ~(x) = lim P, as
we had proclaimed. We leave to the reader the routine proof of (f) and (g).

Corollary 3.2. Suppose in LemmaL1 that for eachi € N, P; is a subpolyhedron of"
having triangulationr; with meshr; < §; and that for allk > 0, gl’.“(P,.(f_)l) - Pl.(k). Let

Ty, = Pl-(k), Ty = (Tk,, , H_l), and A;=IlimTy.
ThenAg C A C ---, and for eachk > 0,
(@) dimA; <k andw|Ag: A — X is surjective.

Assume further that for eache X andi € N, there is a subpolyhedror, ; of P;
triangulated by a subset af so that

Bx,i C Px,i C Bf,i
and the inclusiorB, ; < P, ; is null homotopic. Then

(b) 7:Z — X is a cell-like map and
(c) foreachk e N, w|A: Ay — X is aUVF~1-map.

P(m+1)

w1 ) C P™ for infinitely

If all the above statements are true, > 0, and g'+l(
manyi, then

(d) mw|Ay: A — X is acell-like map.

Proof. Surely dimA; < k. Apply Lemma 3.1 with7; = T ; and S, ; = By, for each
x € X. ThenT becomed; andZ’ = A;. The facts: mesh < §;, andp,, (X) C P; easily
can be used to check th&g ; # ¢. So (g) of Lemma 3.1 shows that (a) is true.

Part (b) comes from (c) of Lemma 3.1 along with the fact that eBgh— P, ; is
null homotopic. This shows that the bonding map®jnare null homotopic. To get at (c),
suppose that & r <k —1 andh:S” — Sy i+1 C Bx,i+1 C Py.i+1 1S @a map. Then there is
a nullhomotopyH of i such that inH is contained |nP(k) 1 C Bx i+1- Applying the fact
thatg’*l(P("l) - P(") and (c) of Lemma 3.1, one sees that the bonding g‘iéib carries

im H into Sy ; and thereforg“rl induces a null-homomorphismaf;, j < k. So all fibers
of 7| A are UV 1,
The proof of (d) is not much different from this. Léte N be chosen such that

g‘*l(Pl(jf’fl)) C Pl.(’"). Using the fact that dinf, ;+1 < m, we may assume that there is

a nullhomotopyH of the inclusion ofS; ;41 into By ;+1 such that imHd C P(’Z’ﬁ) But

then, gH—l carries imH into Sy ;, providing a nullhomotopy. Since this occurs infinitely
often in the inverse sequence describing the fibet of,, : A,, — X abovex, the latter
map is cell-like. O
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4. Proof of Theorem 1.1

Proof of Theorem 1.1. Choose a functiom: N — N U {0} such that for eache N,

() v(@) <i,and
(i) v=1(G — 1) is infinite.

One may assume thatC Q. We are going to prove the existence of a certain sequence
S ={nj, (P]’.‘)keN, ej, 8, (r]’.‘)keN, gj 1}, j =1,2,3,..., of elements of the following
nature:

njeN:; P} c P?C--- C P{ are compact polyhedra df/; ¢;, ands; € R*;

77° is a triangulation ofP{° andr = 77°| ,« is a triangulation ofP’;
J

gj_l L P7° — P24 is asimplicial map relative to; andz;°;.
We shall require that for eagh> 1 andk e N

(l)j,j>l nj_1<nj,

(2)).j>1 if j <k < oo, thenPk = P& and P} Cint;n; P/ whenever < j;

(3)]»J>l X C |ntQ(Pjoo X Ql’l/‘) - N(X» %)1 pnj_l(Pf) - intlnj_l Pf—l’ and’ Whenever

@)j.j>1 ifu,ve Qandp(u,v) <ej, thenp(pn,_, W), pn;_,(v)) < 8;-1;

(®)j,j>1 927 <¢j;

(6);.>1 8 <2¥71;

(D j>1 meshrj‘?o < 5_2/';

(8)j,j>1 if x € Xy, then there exists a subpolyhedr@(j,j of PJ’.‘, which is triangu-
lated by t¥, and so thatV(p,, (x). 25;) C P, C N(pu,(x).£;) N P¥ and
N(pn;(x).28)) is contracti'ble inP)f’j;

(9).j>1 Wheneverx € P> and gj_l(x) € o0, whereo is a simplex oft?°,, then

Pnj_1(x) liesin N(o, 5-’7‘1) (and therefore, as it follows from here atit); _1,

p(gjf—l(x), Pnj_1(0) <8j-1/2+38j-1/2=§;-1 forallx € P);
(10)),j-1 &}_4(P}) C P}_y; and
j j—1 i i—1 -
(1D j>1 g}y (PYY™H)@G=D+D) (PP 0 (=D,

It is easy to check that the first step of the inductign=1) will be accomplished if we
choosen; =1, Pk =1" forall 1<k < oo, e1=5,81 = % Select a triangulatiom™
of P° with meshe® < §1/2 and putry = {° whenk < oo.

Before proving the existence of such data, let us see why they would imply the
conclusion of Theorem 1.1. For ea¢he N, let P> = P;. The conditions (i)—(v) of
Lemma 3.1 are clearly true. ConditiaB); implies (vi) and thatX = (72, P2 x Qy,.
Surely Z = Iim(P,-,gl’.'*l) is a metrizable compactum, and we get the mayZ — X
defined by the formula given in Lemma 3.1(b).
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To see thatr is surjective, letl; = P; = P°. According to the notation of the last part
of Lemma 3.1, one sees that for X, Sy ; = By, = N(py, (x),28;) N P;. From(3); it is
sure thafp,, (x) € P; and thereforgy,,, (x) € By, ;, Showing that the latter is not empty. The
maps is the same as in this setting, so (g) of Lemma 3.1 shows thais surjective.

One then checks that all the hypotheses of Corollary 3.2 except for the very last one
(which we do not need yet) are also satisfied. Thus (a)—(c) hold trueissa cell-like map,
and we are assured of the existence of the subspacesA; C - -+, Ax =Ilim (Pl.("), gl’f“),
as required by Theorem 1.1 so that wheaN, dimA; < k, andr carriesA; in a UVF—1
manner ontoX.

Fix m € N. In the last part of Lemma 3.1, instead of puttifig= P°, as we did pre-
viously, useT; = P/". It is an easy consequence @h; that forx € X,,, Sx; # ¢. De-
fine Z,, to be limT,, whereT,, = (P, g™). PutZ,, = A,y N Z}, = im(Tpni, g4 =

1
lim((P™)™, gf*l). The ultimate condition of Coroltg 3.2 is now operative because of
(i) and (ii) of this section and11). If we apply (d) of Corollary 3.2, then we find that
T\ Zy: Zm — X, is a cell-like map. Of course, dity, <m andZy C Zo C ---, SO our
proof of Theorem 1.1 will be complete once we have obtained the information in conditions
(1)-(11).

Assume that we have completed the constructio® ofhrough index € N. Choose an
open covel of P> having the property that me$h< % Then select a finer open cover
W such that any twd/V-close maps of any space inRf® areV-homotopic. Letr be a
subdivision ofr such that every simplex aflies in an element ofV. Hence,

(12) mesh < %’

If i > 1, choose a map: P> — P which is simplicial fromz to > and which is a
simplicial approximation to the identity oA>. Then the map. = gi_; o u is simplicial
from 7 to 72°;. If we replacegff_l by A andz>® by r, then all the conditions (1)—(11)
for index still prevail (the only ones affected beirn@);,—(8); and(11);). So we assume
that these replacements have been made, but continue tg_ysand ™ to denote the
respective bonding map and triangulation.

Using Lemma 2.2, find & (i) + 1)-invertible mapD : M — Q, withdimM <v(i) +1,
and put

Y =D 1(X,u) Cc M.
Note thatp,, o D|Y factors throughX, ;) and dimf < v(i) + 1. Let
C1= (Piv(i))(v(i))'

Since ding X ;) < v(i), and diml’ < oo, Theorem 2.3(3);, and the fact that refines
W show that there exists a mgfa Y — C1 such thatf is W-close top,, c D|Y. We may
assume thaf is defined on a closed neighborhodf Y in M, f(N) C C1, and that

(13) fisW-close top,, o D|N.

There exists a neighborhoddof X, in Q such thatb~%(B) c N.
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One may findmg € N such that ifm > mo, thenX C p,,(X) x O C N(X, 1+1)
and for allk <i+ 1, Xy C pn(Xk) X Qm C N(Xg, H—_l)' We may therefore choose
n;+1 > maxn;, mo} and compact subpolyhedn‘z;ijrl of I"i+1 k <i+ 1, so that(2); +1—
(3);41 are true. We may also insure thB;’f(’) C B, i.e., that

14) DY) N.

Let

Co= (P)".
From (14) and the fact thab is (v(i) + 1)-invertible, there is a map:C; - M
enjoying,

(15) Dos(x) =x forall x € C2, and
(16) s(C2) C N.

Consider the mag:C2 — C1 given by ¢(x) = f(s(x)). For suchx, p, (x) =
pn; (D(s(x))). From this and (13), one sees thatnd p,, |C> are W-close, so they are
V-homotopic. From Lemma 2.1 we see that|P%; — P is V-homotopic to a map,
which we shall denote: P, — P> (an extension of the previously namedl Let us
note from this that,

(17) ¢ is V-close top,, | P;Y,

With this, the part of(3);+1 indicating thatpn,( 1) Cintpy P" for eachk <i+1, and
the fact that we could have chosgras fine as we wish, we may assume that,

(18) ¢(PE ) c Pfforall 1<k <oo

There existg; 1 such that(4);1—(5);+1 hold. Select; ;1 and a triangulationr""1 SO

that (6);+1—(8);+1 are true. Maklngrojl finer if necessary, choose a mgﬁl o1
P which is simplicial fromz%; to 7 and which is a simplicial approximation to.
Now it is easy to check the validity 0{9),-+1 and(10);41; item (11); 41 is a consequence
of the fact thatgl’.Jrl is a simplicial approximation ap, ande(C2) C C1.
At the end of the proof, for the reader’s convenience we formulate the simplicial
approximation theorem used aboved

Theorem 4.1. Suppose thatP, tp) and (Q, rp) are compact polyhedraPy < P and
Qo < Q compact subpolyhedra. Then for every mampP — Q, f(Po) C Qo, there exist
atriangulationt), < tp and a simplicial mapf’: (P, t,) — (Q, tp) such that

(19) dis(f’, f) <2-mesHzp), and
(20) f'(Po) C Qo.
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