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A moving-wall boundary layer flow of a slightly rarefied gas free
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Abstract

In the current work, the boundary layer flow of a slightly rarefied gas free stream over a moving flat plate
is presented and solved numerically. The first-orderslip boundary condition is adopted in the derivation. The
dimensionless velocity and shear stress profiles are plotted and discussed. A theoretical derivation of the estimated
solution domain is developed, which will give a very close estimation to the exact solution domain obtained
numerically. The influences of velocity slip at the wall on the velocity and shear stress are also addressed.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

It was Blasius who solved the boundary layer problem for a free stream past a fixed flat plate using
a similarity transformation technique [1]. Klemp andAcrivos [2] studied the boundary layer flow for a
free stream past a moving semi-infinite flat plate. The similarity differential equation for this problem
was first derived as follows:

f ′′′(η) + f (η) f ′′(η) = 0, (1)
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with the non-homogeneous boundary conditions

η = 0, f = 0, f ′ = −λ, η = ∞, f ′ = 1, (2)

where f is the non-dimensional stream functionf = Ψ√
2U∞νx

, Ψ is the stream function,U∞ is the free

stream fluid velocity,ν is the fluid kinematic viscosity,η is the similarity variable defined asη = y
√

U∞
2νx ,

and λ is the ratio of the plate velocity to the free stream fluid velocity defined asλ = Uw

U∞ and it is
assumed that the flat plate is moving in the reverse direction of the free stream. In the abovementioned
derivation, the no-slip velocity condition is used at the wall. However, in many engineering applications
in micro-scale such as in Micro-Electro-Mechanical Systems (MEMS), compared to the characteristic
length of the micro-devices, the fluid behavior might be treated as a rarefied gas [3]. On the other hand,
for large-scale problems with low density, the fluid is also modeled as a rarefied gas, for example, in
outer space applications [4]. The behavior of a rarefied gas is determined by the Knudsen number,Kn,
which is defined as the ratio of the mean free path of the fluid molecules to a characteristic length of the
flow. The flow can be classified into four regimes according to the magnitude of the Knudsen number. If
Kn > 10 it is the free molecule flow, if 10> Kn > 0.1 it is the transition flow, if 0.1 > Kn > 0.01 it is
the slip flow, and ifKn < 0.01 it is the conventional viscous flow. For the flow in the slip regime, the fluid
motion still obeys the Navier–Stokes equations. The Blasius boundary layer flow with slip condition at
the wall was discussed in a recent publication [5]. The boundary layer problem for a moving flat plate,
however, has not been reported in the literature. Therefore, in this paper, the boundary layer flow of a
slightly rarefied gas free stream over a moving flat plate will be solved and discussed.

2. Mathematical formulation

Following the same logic as previous researchers [1,2], the equation governing the laminar
incompressible viscous boundary layer flow for a moving semi-infinite flat plate in a free stream of a
slightly rarefied gas in the slip regime can be shown as follows using the same dimensionless variables
f andη,

f ′′′ + f f ′′ = 0 (3)

with boundary conditions

f (0) = 0, f ′(0) = λ + f ′′(0)γ and f ′(∞) = 1 (4)

whereλ = Uw/U∞, which can be a positive number forUw > 0 with the same direction as the
free stream velocity and a negative number forUw < 0 opposite to the free stream velocity, and
γ = Uslip

U∞ = (
2
σ

− 1
)

Kn,xRe1/2
x is a dimensionless parameter withKn,x = l

x , and Rex = U∞x
2v

· · ·. In
the current derivations, it is assumed that the positivex points in the direction of the free stream. The slip
velocity at an isothermal wall can be obtained based on Maxell’s first-order approximation as [1,3]

Uslip =
(

2

σ
− 1

)
l
du

dy

∣∣∣∣
w

(5)

where σ is the tangential momentum accommodation coefficient andl is the mean free path. The
dimensionless parameterγ can also be arranged as

γ =
(

2

σ
− 1

)
η99%

l

δ
=

(
2

σ
− 1

)
η99%Kn,δ (6)
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whereδ is the boundary layer thickness defined asδ = η99%

√
2νx
U∞ in which η99% is the value satisfying

f ′(η99%) = 0.99. It is seen from Eq. (6) that this non-dimensional parameter shows the relationship
between the molecular mean free path to the boundary layer thickness. As pointed out by the previous
researchers [5], becauseγ is dependent onx , the boundary layer flow is not self-similar any more.
However, since the approach preserves the mass and momentum conservation, it is still valid to study the
behavior of velocity and stress within the fluid. A general analytical solution of Eq. (3) is not available.
In the following section, a shooting Runge–Kutta method [1] will be used to solve Eq. (3) with boundary
conditions Eq. (4).

3. Results and discussions

3.1. Estimation of the solution domain for λ < 1.0

By using the Crocco variable formulation [6], which is in terms of dependent variables like the
dimensionless shear stressg(= f ′′) and non-dimensional velocity as independent variableθ(= f ′), Eq.
(3) with the boundary conditions can be rewritten as

g(θ)g′′(θ) + θ = 0, (7)

whereλ+ f ′′(0)γ ≤ θ ≤ 1, g′(λ+ f ′′(0)γ ) = 0 andg(1) = 0. The following relationship can be simply
derived as

−1 − λ

γ
< f ′′(0) <

1 − λ

γ
. (8)

From another point of view, by integrating Eq. (3) twice, substituting the boundary conditions, and
rearranging the terms, we obtain

f ′ − f ′(0) = f ′′(0)

∫ η

0
e− ∫ t

0 f (ς)dςdt. (9)

It is found from Eq. (9) that

1 − λ − f ′′(0)γ = f ′′(0)

∫ ∞

0
e− ∫ t

0 f (ς)dςdt. (10)

From Eqs. (8) and (10), we know f ′′(0) > 0. Because it is known thatf ′′(η) = f ′′(0)e− ∫ η
0 f (t)dt, wecan

find that f ′′(η) > 0. Thus, f ′(η) is a monotonically increasing function andλ + f ′′(0)γ ≤ f ′(η) ≤ 1
for this flow configuration. Then we know thatf (η) < η. By substituting this relation into Eq. (10), we
can roughly estimate the value off ′′(0),

f ′′(0) <
1 − λ√
π/2 + γ

(11)

which givesanother estimation off ′′(0) resulting with further information more than Eq. (8).
It is also seen from Eq. (7) that the equation can be changed to another domain [6], say 0 ≤ ε ≤

1 − [λ + f ′′(0)γ ], by defining ε = θ − [λ + f ′′(0)γ ]. Through some manipulations, we can obtain

−α2

2
+ [1 − (λ + αγ )]3

6
+ λ + αγ

2
[1 − (λ + αγ )]2 > 0 (12)
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Fig. 1. f ′(η) and f ′′(η) at different slip parameters forλ = 0.5.

Fig. 2. f ′(η) at different slip parameters forλ = −0.3 for the twosolution branches.

whereα = f ′′(0). For eachγ , the solution domain can be estimated from Eq. (12) combined with
Eq. (11).

3.2. Numerical solutions

Since there is no analytical solution of Eq. (3) with the associated boundary conditions Eq. (4), a
shooting method will be used to convert the boundary value problem into an initial value problem. A
fourth-order Runge–Kutta integration scheme will be adopted to solve the relevant initial value problem.

The results of f ′′(η) and f ′(η) at λ = 0.5 andλ = −0.3 under differentγ are shown inFigs. 1–3. It
is found that for 0< λ < 1, sayλ = 0.5, there is only one solution. It is obvious that the slip velocity at
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Fig. 3. f ′′(η) at different slip parameters forλ = −0.3 for the twosolution branches.

the wall is increasing with the increase of slip parameter. The shear stress in the fluid is decreasing with
increasing slip parameters. Also, the shear stress is monotonically decreasing with the distance from the
wall increasing. However, different behavior appears whenλ < 0. There are two solutions in this range as
found in the literature forγ = 0 [2,6]. It is seen fromFig. 2 that the velocity varying behavior is greatly
different for the two solution branches. For both branches, the wall slip velocity has a similar trend to the
case for 0< λ < 1. However, the velocity variations in the fluid are very different for the two branches.
For the upper branch, the velocity in the fluid is increasing with increment ofγ for the whole domain.
For the lower branch, however, there will be an intercept among the velocity profiles for differentγ . The
shear stress in the fluid, however, is totally different from the cases of 0< λ < 1. There is always a
smaller shear stress near the wall for the lower solution branch. The maximum shear stress for the lower
solution branch always occurs in the fluid at a certain distance from the wall. But for the upper solution
branch, the maximum shear stress can appear on the wall, close to the wall, or at a certain distance from
the wall, which is dependent on the slip parameterγ . As shown inFig. 2 for the velocity andFig. 3 for
the shear stress, there will be two solutions forλC < λ < 0, whereλC is a critical value having a single
solution for this problem. Forγ = 0, the estimated and the exact value ofλC have been discussed [2,6].
A rough estimation ofλC can be obtained through Eq. (12) by numerical method for arbitraryγ . Exact
values ofλC have to be determined by numerical methods. Some examples are shown inFig. 4for certain
slip parameters. It is also seen that the value ofα is always less than a certain number, sayαC ≈ 0.4696,
which is the wall shear stress for the celebrated Blasius boundary layer solution for a fixed wall in a
free stream [1]. The solution domain and the estimated domain, namely Eq. (12) and (11), are plotted
side by side inFig. 5. It is found that Eq. (12) does give a certain range ofα. Further estimation of the
range ofα can be analyzed as follows. Definingβ = 1 − (λ + αγ ), and taking the equality of Eq. (12)
yield

β3

3
− β2

2
+ α2

2
= 0. (13)
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Fig. 4. Relationship betweenf ′′(0) andλ for different slip parametersγ .

Fig. 5. The exact solution domain (the solid line) and the theoretical estimation (the dotted line and dashed line).

Following the rules in Ref. [7], Eq. (13) can be changed into

φ3 − 3

4
φ + 3α2

2
− 1

4
= 0 (14)

whereφ = β − 1
2. It is seen fromFig. 5 that whenα is larger than a certain value, there is only one

real solution for Eq. (14). Therefore the estimated critical value can be obtained based on the following
condition [7]
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Fig. 6. The relationship betweenλC,e and the slip parameterγ .

(
3α2

2
− 1

4

)2

+ 4

27

(
−3

4

)3

= 0. (15)

Solving the above equation yields

αC,e =
√

3

3
. (16)

The same logic can also be applied to obtain the relationship betweenλC,e andγ , and the equation is
given as follows

λC,e = 1 − √
1 + 9γ 2 + 27γ 4 + 27γ 6

9γ 2
. (17)

The results are shown inFig. 6for differentγ . It is found that with the increase ofγ the solution domain
will be expanded in the negativeλ direction. For sufficiently largeγ , the relationship betweenλC,e and
γ will be asymptotic to linear dependence as

λC,e ≈ −
√

3

3
γ. (18)

The solution also exists forλ ≥ 1. Whenλ = 1, there is a trivial solution withf ′(η) = 1 and
f ′′(η) = 0 for arbitrary slip parameters. There is no slip velocity at the wall for this trivial solution.
For λ > 1, the solution is, to some extent, similar to the solution of the continuously stretching surface
problem with constant stretching speed as discussed before [8] for no-slip flow. A discussion on slip
flow past a stretching surface can be found in a recent publication [9]. However, the situation for the
continuously stretching surface is not exactly the same as the current situation. Some examples are
illustrated inFig. 7 for velocity and shear stress profiles atλ = 1.5. It is seen that the fluid velocity
will decrease with the increase of the slip parameter for a certain wall velocity. The shear stresses in the
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Fig. 7. f ′(η) and f ′′(η) at different slip parameters forλ = 1.5.

Fig. 8. Relationship betweenf ′′(0) andλ for different slip parametersγ for λ > 1.0.

fluid also decrease with increment of the slip parameter. The solution domains are also computed and
shown inFig. 8. It is found that there is only one solution forλ > 1. The influence of slip parameters on
the wall stresses is somehow similar to the cases of no-slip flow with blowing [8], but they are different
in nature.

As stated in the literatures [3,4,10], under certain circumstances, slip condition will give more
satisfactory results than no-slip condition for slightly rarefied gas with low density in outer space or
micro-scale flow in micro-devices. Based on the above discussion, it is seen that the slip condition
does change the velocity and stress field within the fluid. For positive wall motion, the wall slip will
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make the stress decrease, which is useful for both drag and heat loss reduction. However, for negative
wall movement, slip condition will give greatly different results from no-slip conditions. Wall stress
will change significantly with slip parameters. By choosing different slip parameters, the stress can be
reduced or enhanced. Because of the analogy between the wall stress and heat flux, heat transfer can also
be adjusted by changing slip parameter. Possible applications of the current results might be in the wall
stress control and heat transfer optimization of MEMS for micro-scale problem [3] or the flow control
for large-scale problems in the outer space [4,10].

4. Conclusion

In this paper, the governing equation for the momentum boundary layer of a slightly rarefied gas free
stream over a moving flat plate is derived using the first-order slip condition at the wall. The equation is
simplified by defining a dimensionless variable and solved numerically to obtain the velocity and shear
stress profiles. The solution domain is estimated theoretically. The ranges are obtained in exact forms. It
is found from the results that the wall slip velocity has a great influence on the velocity and shear stress
distributions within the fluid and on the wall.
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