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The E1B transcription unit of human adenovirus encodes at least five different proteins generated by
alternative splicing of a common E1B precursor mRNA. E1B-156R, -93R and -84R contain individual carboxy
termini but share a common amino terminus. To acquire data on the structure of the amino terminus we
performed biophysical analyses on E1B-93R. We show that E1B-93R is mostly unstructured and fulfills the
criteria of an intrinsically disordered protein (IDP). The intrinsic disorder in the amino terminus of these
proteins is evolutionary conserved in all seven human adenovirus species. As IDPs comprise a rapidly growing
family of proteins which, despite their lack of a well defined structure, often fulfill essential regulatory
functions, the observations described here might open up a new avenue for the understanding of the
regulation and functions of E1B proteins, in particular the multifunctional E1B-55K oncoprotein.
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Introduction

The gene products of the human adenovirus type 5 (HAdV5) early
transcription unit 1B (E1B) fulfill essential functions for viral replication
and adenovirus mediated cell transformation. The most prominent
proteins, the 19 kDa E1B-19K (GenBank: AAQ19286.1) and the 55 kDa
E1B-55K (GenBank: AAQ19287.1) are expressed from overlapping
reading frames of the 2.28 kb E1B-mRNA (Fig. 1). Apart from thismRNA
at least three additional mRNA forms are produced due to alternative
splicing between a common splice donor (SD1) and one of three splice
acceptor sites (SA1–3). The resulting mRNAs encode E1B-19K and E1B-
55K-related proteins comprised of the 79 aa E1B-55K N-terminus and
different C-termini. These factors are named E1B-156R (GenBank:
JF430399), -93R (GenBank: JF430400) and -84R (GenBank: JF430401)
due to their total number of amino acid residues (Anderson et al., 1984;
Green et al., 1982; Lewis and Anderson, 1987; Lucher et al., 1984; Sieber
and Dobner, 2007; Takayesu et al., 1994; Virtanen and Pettersson,
1985). While E1B-93R and E1B-84R contain unique C-termini, E1B-
156R is completed by the last 77 residues of E1B-55K. As these proteins
are structurally related by their N-terminus we termed them “E1BN
proteins”. This common N-terminus encompasses a characteristic
region that is recognized as a conserved domain by NCBI (pfam04623
Adeno_E1B_ 55K_N).

E1B-19K and E1B-55K fulfill important tasks in viral infection and
can individually cooperate with the adenoviral E1A (early transcrip-
tion unit 1A) proteins to convert primary rodent cells to a fully
transformed tumorigenic phenotype (Cuconati and White, 2002;
Shenk, 2001; White, 2001). E1B-55K performs its multiple functions
via interactions with a large number of viral and cellular proteins
(reviewed in (Blackford and Grand, 2009)). A central element for
many of these functions seems to be E1B-55K's ability to act as
substrate recognition unit for an E3-Ubiquitin-Ligase composed of
viral – E1B-55K and E4orf6 (gene product of HAdV5 early transcrip-
tion unit 4 open reading frame 6) – and cellular factors (Blanchette et
al., 2004; Harada et al., 2002; Querido et al., 2001). This complex is
able to recruit and promote degradation of several cellular proteins
including p53, Mre11 (meiotic recombination 11) DNA-Ligase IV and
Bloom's helicase (Baker et al., 2007; Mohammadi et al., 2004; Orazio
et al., 2011; Stracker et al., 2002). Further, we could recently show that
E1B-55K can promote degradation of cellular Daxx (death domain-
associated protein) independent of E4orf6 (Schreiner et al., 2010).

In contrast, notmuch is known about the E1BNproteins, apart from
the fact that their expression is regulated over the course of infection
(Chow et al., 1979; Montell et al., 1984; Sieber and Dobner, 2007;
Spector et al., 1978; Takayesu et al., 1994; Virtanen and Pettersson,
1985;Wilson andDarnell, 1981). In a former studywe could showfirst
functional data for an E1BN protein by demonstrating, that E1B-156R
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promotes transformation independent from repression of p53-
transactivation. Further we detected that E1B-156R interacts with
E4orf6 and the cellular protein Daxx (Sieber and Dobner, 2007).

The fact that four different proteins contain the same characteristic
N-terminus is intriguing and suggests that it could mediate important
functions and interactions shared by all of these proteins. However, so
far no function or interaction could definitely be assigned to this
region. In order to lay a foundation for future rational-driven studies
to uncover the role of the common E1B N-terminus, we set out to gain
information about its structure using E1B-93R as a model.

Here we show by CD and NMR spectroscopic as well as in silico
analyses that E1B-93R is an intrinsically disordered protein (IDP). The
performed studies further indicate that also the common N-terminus
within E1B-55K and the other E1BN proteins is likely intrinsically
disordered. As intrinsically disordered proteins and regions (IDRs) are
often found to mediate multiple protein/protein interactions (Dyson
and Wright, 2002; Uversky, 2002), these data underscore the
potential importance of this element in regulation and function of
E1B-55K and the E1BN proteins. Additionally we made the observa-
tion that E1B-93R induces metachromasia in Coomassie Brilliant Blue
(CBB) and appears negative in silver nitrate staining. Though both
features have already been observed with other proteins, our analyses
on E1B-93R and our in-depth review of published data revealed for
the first time a stunning link between these extraordinary stainings
and intrinsic disorder. As especially metachromasia seems only to
be induced by a specific fraction of IDPs, it can be used to define an
IDP subclass and thereby improve our understanding of the nature of
IDPs.

Results

Computational analysis of E1B-93R structure

Initially an analysis of the primary amino acid sequence of E1B-93R
with different protein structure prediction tools was performed. First
four separate secondary structure predictions were made. The
modern predictors used here achieve high levels of accuracy (SSPro
77% (Cheng et al., 2005); Porter 80% (Pirovano and Heringa, 2010);
NetSurfP 81% (Petersen et al., 2009); I-TASSER/PSIPRED 77% (Jones,
1999)). All predictions suggested a mainly unfolded protein with a
small content of structured elements. Predominant was an α-helical
stretch of 3 to 14 aa within a glycine/alanine-rich region at position
45–61 (Fig. 2A).

To predict the 3D-structure of E1B-93R I-TASSER was used. This
predictor uses a multistep protocol and combines threading (com-
parison with similar proteins of known structure) and ab initio (de
novo buildup of protein folds) modeling techniques. It predicts up to
five folding models that are ranked based on structural density of the
structure clustering (Zhang, 2008). For all these models a confidence
score (C-score) in the range from −5 (low confidence) to +2 (high
confidence) is given to assess the quality of the prediction. In general,
models with a C-score of N−1.5 are reasonably likely to have a correct
fold (Roy et al., 2010).

For E1B-93R the five predicted foldingmodels indicate thatmost of
the protein is coiled/disordered and that it contains only low levels of
structured elements (Fig. 2B). None of the predicted folds achieves a
C-score exceeding−4.0 indicating that no high-probability model for
a specific fold could be generated. On the one hand this is due to the
remarkable lack of suitable threading templates which indicates
unique characteristics for the E1B-93R sequence and limits the power
of I-TASSER. On the other hand this result points to a mainly flexible
protein with no defined fold.

As these observations would be characteristic for an IDP, further
analysis using four distinct prediction tools (IUPRED, DisPro, PONDR-
VLXT and RONN; Fig. 2C) for intrinsic disorder were conducted. All
these predictions indicated that E1B-93R is mainly or completely
intrinsically disordered. As intrinsic disorder is based on the local
primary amino acid sequence, the common N-terminus also found in
HAdV5 E1B-55K, E1B-156R and E1B-84R is also predicted to be
similarly intrinsically disordered in these proteins (Fig. 3A). Further, a
comparative alignment of IUPRED predictions for representatives of
each human adenovirus species indicates a high conservation of the
intrinsic disorder potential in the E1B-55K N-terminus among human
adenoviruses (Fig. 3B).
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The prediction of intrinsic disorder based on the primary amino
acid sequence is of good accuracy. In a study with PONDR-VLXT (N900
non-homologous proteins), prediction of IDRs with 40 or more
residues gave less than 6% false positives (Dunker et al., 2002). The
fact that the same set of in silico analyses performed for the ordered
fibre knob domain of HAdV5 (RCSB Protein data bank file 1KNB)
strongly reflects its actual structure (see Suppl. Fig. 1) emphasizes the
quality and applicability of these computational tools in this study. To
biophysically confirm the structural predictions for E1B-93R, the
protein was expressed, purified and analyzed by different, indepen-
dent techniques.

Expression, purification and identification of E1B-93R

E1B-93R was expressed in Escherichia coli as a GST-fusion protein.
Subsequent affinity purification was performed using glutathione
sepharose. The N-terminal GST-tag was then removed by proteolytic
thrombin cleavage while being associated with the affinity matrix.
Further application of gel filtration chromatography under native
sample conditions allowed the purification of E1B-93R to near
homogeneity. The protein was detected by SDS-PAGE and Western
blot analysis as it is not detectable by UV absorption, due to its amino
acid composition (theoretical extinction coefficient of 0 at 280 nm) (Gill
and von Hippel, 1989). The performed immunodetection with the E1B
N-terminal specific antibody 2A6 and a sequential Edman degradation
of the N-terminal sequence (residues 1–10; Performed by E. Hochmuth,
Department of Biochemistry I, University of Regensburg; data not
shown) confirmed the identity of the protein as E1B-93R.
E1B-93R shows aberrant mobility in SDS-PAGE

Although E1B-93R has a theoretical molecular mass of 9449.2 Da
(including the two additional residues from the thrombin cleavage
site) it migrates in SDS-PAGE like a globular protein of about 16 kDa
(Fig. 4A). This aberrant migration of E1B-93R has already been
observed by others in lysates from transfected or infected cells and is
also a known hallmark of IDPs (Lewis and Anderson, 1987; Receveur-
Brechot et al., 2006; Sieber and Dobner, 2007; Takayesu et al., 1994).

To confirm that this behavior is not caused by a covalent
interaction with another protein ESI mass spectrometry was
performed (E. Hochmuth, Department of Biochemistry I, University
of Regensburg). Here the purified E1B-93R shows a single peak
correlating to a mass of 9757.4 Da (Fig. 4B). This value indicates that
the aberrant mobility in the SDS-PAGE cannot be explained by a
covalent interaction with itself or another large factor, though smaller
modifications cannot be excluded.

Characteristics of E1B-93R in CBB and silver staining

E1B-93R exhibits a non-classical behavior in CBB R-250 and silver
nitrate staining. When partially purified GST-E1B-93R was subjected
to a 16 h thrombin cleavage and investigated by CBB R-250 staining,
the protein band corresponding to E1B-93R appeared pink instead of
the normal blue (Fig. 4A lanes 1 to 4 and 6). This so-called
metachromasia (Micko and Schlaepfer, 1978; Hattori et al., 1996)
was reproducibly seen for E1B-93R but not for GST. When protein
samples were used in silver nitrate staining the E1B-93R band (Fig. 4A
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lane 7) appeared negative (lighter stained than background). This effect
cannotbedue toan “overload”ofprotein,whichmight lead toabandwith
a bleached out center, as the equimolar GST-band showed the classical
yellow/brown color under the same conditions (Rabilloud et al., 1994).

Determination of E1B-93R concentration

To evaluate the concentration of purified E1B-93R Bradford
(Bradford, 1976) and bicinchoninic acid protein assays (BCA Assay,
Sigma)were performed. TheBradford assay gavenegative concentration
values (data not shown).As this assay is based onCBBG-250, the effect is
likely caused by the same mechanism as the observed metachromasia.
The BCA assay in contrast gave reasonable values. Though, it has to be
noted that the accuracy of themeasured valuesmight also be affected by
thepredicted intrinsically disordered nature of E1B-93R, as itwas shown
that concentrations of IDPs can often be largely and unpredictably
underestimated by all standard assays (e. g. Bradford assay, BCA assay,
comparison to a known reference in SDS-PAGE and UV-absorption)
(Szollosi et al., 2007). The concentrations given here are therefore
intended only for a direct comparison among each other.

Analyses of E1B-93R structure by CD and NMR spectroscopy

The successful purification of HAdV5 E1B-93R allowed the
elucidation of its secondary structure composition using CD and
NMR spectroscopy. The CD spectroscopic analysis of purified HAdV
E1B-93R (Fig. 5) performed at room temperature revealed a major
peak at about 198 nm, which is typical for a polypeptide in random-
coil conformation (Boulant et al., 2005). Negative ellipticity values at
212–245 nm further indicate the presence of residual ordered
secondary structures. A more detailed analysis of the secondary
structure content though is not feasible without knowledge of the
precise E1B-93R concentration (see above).

In order to consolidate these CD spectroscopic data the purified
E1B-93Rproteinwas further analyzedusingNMRspectroscopy.Here, the
1D NMR 1H-spectrum of 1 mM E1B-93R recorded at a frequency of
600 MHz (Fig. 6A) also identified the adenoviral protein as being mainly
unfoldedby a lack of characteristic resonances ofβ-strandNH- (N9 ppm)
and Hα-protons (≈4.8–5.9 ppm) as well as typical high field shifted
resonances of hydrophobic core CH3-protons (b0.8 ppm). The obtained
1D-spectrum is typical for an unfolded protein with a spectrum
consisting of a superposition of resonance lines at the known random-
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coil positions (see e. g. (Arnold et al., 2002)). The resonances of methyl
groups of the thirteen alanine residues can be identified at 1.40 ppm, the
Hγ-resonances of the seven valine residues and the Hδ of the leucine
residue can be detected between 0.89 and 0.94 ppm. The same is true for
other resonances as the ring resonancesof the twohistidine and the three
phenylalanine residues. Using the DSS (2,2-dimethyl-2-silapentane-5-
sulfonaic acid)-signal as internal standard, the integration of methyl
peaks of the alanine residues allows an estimation of protein concentra-
tion. The concentration obtained for the used sample correspondswithin
the limits of error to the value determined by BCA assay. Random-coil
spectra can also be obtained from protein aggregates where only a small
part of the protein is mobile but the other part is not visible in the NMR-
spectra. Therefore the analysis also excludes an unspecific aggregation of
E1B-93R since the majority of all resonances is visible as it should be the
case for a predominantly disordered, but not aggregated protein. In
addition to confirming of the CD spectroscopy data, these results also
correspond with results from 1H,1H TOCSY (total correlation spectros-
copy) and NOESY (nuclear Overhauser effect spectroscopy) experiments
showing the protein's coil conformation, a minorα-helical folded region
and no signals indicating β-sheet (Fig. 6B). Furthermore the very small
spread of resonance frequencies for amide protons together with the
scarcity of nuclear Overhauser effects in theNH-NH-region are typical for
a protein without significant stable secondary structure (Habchi et al.,
2010; Karlin et al., 2002; Longhi et al., 2003) (Fig. 6B).

To yield more detailed information about the protein's conforma-
tional properties and its local backbonemobility, respectively, the 1H,15N
NOE values were measured at a E1B-93R concentration of 1 mM for 83
backboneamidenitrogen atomsof E1B-93R.As expected, themajority of
residues exhibit reduced 1H,15N NOE values (b0.4) which is indicative
for the high conformational flexibility of a mainly unstructured protein
(Mayor et al., 2003; Sam et al., 2002;Wojciak et al., 2002). In contrast to
that, approximately 13 residues of E1B-93R (≈14%) appeared to be
relatively ordered as they showed slightly elevated 1H,15N NOE values
(Fig. 6C). Three of these signals are found in the range associated with
typical chemical shifts of glycine residue cross peaks in disordered
proteins (indicated in Figs. 6C and D) (Tamiola et al., 2010; Wang and
Jardetzky, 2002). As the chemical shift ranges for other amino acids are
not sowell separated, a clear association of the remaining10 signalswith
NOE valuesN0.4 is difficult. But, since the most dominantly predicted
α-helical region (Fig. 2A; around residue 51) is alanine-rich, the
approximate chemical shift range for alanines is also highlighted
(Figs. 6C and D) (Tamiola et al., 2010; Wang and Jardetzky, 2002). In
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in m°. Further, the scale free theoretical spectra of pure α-helix (black circles), β-sheet
he spectrum of E1B-93R corresponds best with that of pure random coil, but negative
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ranges expected for glycine (red; 8.31±0.83 ppm; 108.8±4.1 ppm) and alanine (black; 8.16±0.68 ppm, 123.9±3.5 ppm) residues in unstructured polypeptides are indicated with
standard deviations (Tamiola et al., 2010; Wang and Jardetzky, 2002). Only positive cross peaks are shown. D. Intramolecular flexibility of amino acid residues. 1H,15N NOEs of 83
identifiable NH-protons are shown with standard deviation. Cross peaks were ordered according to 15N chemical shifts. The 15N shift range of glycine (red) and alanine (black)
residues in disordered proteins are indicated as bars at the bottom of the diagram (Tamiola et al., 2010; Wang and Jardetzky, 2002). NOE values “0.0” and “0.4” are indicated by
dashed lines. These NMR analyses indicate that E1B-93R is mostly unstructured and overall highly flexible. The protein contains some structured elements – probably of α-helical
nature – that could consist of glycines and alanines.
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fact, all remaining 10 residues with NOEs indicative for some residual
structure fall into this range.

Taken together, the structural analysis of E1B-93R revealed that
E1B-93R is an overall intrinsically disordered protein with a small
ordered region of about 14% most likely representing an α-helical
folding.

Discussion

E1B-93R is an IDP

It was a long standing belief that a protein has to attain a stably
folded conformation to perform its physiological functions. However in
the last decade it became clear that many functional proteins contain
large unfolded regions or are lacking a defined secondary and tertiary
structure altogether (Romero et al., 1998). In fact, there is evidence that
considerable numbers of unfolded proteins or regions are found in all
living organisms and that they perform essential cellular functions
(Tompa, 2002). Due to their high flexibility IDPs can provide large
interaction surfaces and mediate interactions with high association/
dissociation rates. Often IDPs/IDRs interact with multiple partners and
acquire defined folds that are specific for the individual interactions
(Dyson andWright, 2002; Uversky, 2002). Due to this, intrinsic disorder
is often found in proteins that act as hubs in interaction networks
involved in regulatory and signaling events. Here their specific nature
enables them to form high-specificity, low-affinity interactions with
many structurally distinct partners (summarized in (Uversky, 2009)).

Our computational analyses predict a high level of intrinsic
disorder in E1B-93R. The data from CD spectroscopy and different
NMR techniques confirm this and indicate that E1B-93R is mostly
unstructured, highly flexible and lacking a hydrophobic core. These
data show together with other intrinsic features of the protein
(aberrant mobility in the SDS-PAGE, characteristic amino acid
composition, etc.) that E1B-93R is indeed an IDP (summarized in
Table 1).

NMR and CD data indicate further only low levels of secondary
structure, namely an α-helical content of about 14% (≈13 residues).
This observation does not contradict with the fact that E1B-93R is an
IDP, as even highly disordered proteins may still contain residual
amounts of secondary structures (Galea et al., 2008; Peng et al., 2005).
As IDPs exist as a dynamic ensemble of different structures, the
observed secondary structure content might be caused by an element
conserved in most or all of the possible states of the ensemble. The
likeliest candidate – even though it was not recognized as ordered
(Fig. 2C) – is located within the glycine/alanine-rich stretch (residues
45–61), as it contains the only α-helical element predicted by the
consensus of the secondary structure predictions (Fig. 2A). In concert
with this, all 13 signals with elevated 1H,15N NOEs (N0.4) are found in
Table 1
Comparison of features of intrinsically disordered proteins and E1B-93R.

Common features of IDPs E1B-93R

Depleted in V, L, I, F, W, Y, C, N 16.1% (average frequencya: 36.2%)
Enriched in Q, S, P, E, K, R, G, A 68.8% (average frequencya: 47.4%)
Often proline rich 11.8% (average frequencya: 4.6%)
Often glycine rich 15.1% (average frequencya: 8.0%)
Low absorbance at 280 nm theoretical value=0
Little secondary structure about 14% α-helix
High flexibility high flexibility
Hypervariable in sequence N-terminus is least conserved region in E1B-55K
Reduced mobility in SDS-PAGE expected: 9.3 kDab; observed 16 kDa

Knownhallmarks of intrinsicallydisorderedproteins (as summarized in(Receveur-Brechot
et al., 2006; Uversky, 2009)) (left) are reflected in the corresponding characteristics of
E1B-93R (right).

a Average frequency of the stated amino acids within globular proteins is given in
comparison (Tompa, 2002).

b Theoretical molecular weight computed by ProtParam at ExPASy proteomics serve.
the chemical shift range typical for glycine and alanine residues (3 and
10 residues, respectively) (Tamiola et al., 2010; Wang and Jardetzky,
2002) and therefore fit well to the primary sequence of the presumed
element.

The findings on E1B-93R correspond well to the observation that
many virusesmake extensive use of intrinsic disorder (Xue et al., 2010).
Further, it is already known that two human adenovirus proteins, the
DNA-binding protein (Dekker et al., 1998; Dunker et al., 2002; Tucker et
al., 1994; van Breukelen et al., 2000) and E1A (Ferreon et al., 2009; Pelka
et al., 2008), are at least partially disordered. The enrichment in viruses
is believed tobe caused, at least in part, by theneed for economic use of a
limited genome (Xue et al., 2010). Intrinsic disorder seems to support
this need, as it not only correlates withmultifunctionality, but alsowith
expression from overlapping and/or alternatively spliced reading
frames (Kovacs et al., 2010; Rancurel et al., 2009; Romero et al., 2006),
a setup also used in the E1B transcription unit (Fig. 1).

E1B-93R properties help to define a new IDP subclass

Wecould show that E1B-93R is an IDP, but its negative silver staining
and its extraordinary behavior in interaction with CBB help to further
characterize the protein (Fig. 4A). There exists a multitude of silver
staining techniques that differ in sensitivity and specificity (e. g.
(Chevallet et al., 2006; Friedman, 1982; Rabilloud, 1990)), though the
basic principle is always the same: proteins complex silver ions that are
subsequently reduced to form visual deposits of elemental silver. The
staining is thereforemostlydependent on the amountof bound ions and
the strength of their complexation, as a strong interaction inhibits the
reduction. A negative band therefore can be formed, if a very low
amount of silver ions (in comparison to the surrounding protein-free gel
matrix) is bound and/or the ions are strongly complexed (resumed by
(Rabilloud, 1990)). Such negative staining is rare, but known for some
human salivary proteins (Beeley et al., 1996; Marshall, 1984),
conalbumin (Morrissey, 1981), pepsin (Tal et al., 1985; Yüksel and
Gracy, 1985), histone H1 (Nielsen and Brown, 1984) and other factors
(Plowman et al., 2000; Zhou andWolk, 2002). As itwas claimed that the
silver stainability of proteins is determined by their “structural features”
rather than individual amino acids (Gersten et al., 1991), it is tempting
to speculate that intrinsic disorder might be the causative factor for
negative staining. Such a general link though cannot be established, as
the effect is observed for ordered (pepsin (Cooper et al., 1990)) as well
as disordered proteins (E1B-93R and histone H1 (Nielsen and Brown,
1984; Vila et al., 2000, 2001). But as different settings can induce
negative bands (e. g. little ion binding and/or strong complexation), it
seems that at least one such setting is fulfilled by a specific fraction of
IDPs, that includes H1 and E1B-93R.

One effect that might contribute to negative staining of IDPs is
linked to their reduced mobility in SDS-PAGE, which is caused by
reduced SDS binding and thereby a lower density of negative charges
on the protein (Tompa, 2002). As the negative charges of SDS are also
believed to tether silver ions to proteins, the same effect might
actually reduce the amount of complexed ions (Rabilloud, 1990) and
therefore diminish the staining of IDPs.

Another extraordinary feature of E1B-93R is the fact that it appears
pink in CBB staining of SDS-PAGE gels instead of the classical blue
coloration. This metachromasia has been described for a limited set of
proteins, namely collagen (McCormick et al., 1979; Micko and
Schlaepfer, 1978), histone H1 (see Suppl. Fig. 2), H2B (Duhamel et al.,
1980), H5 (Duhamel and Brendel, 1983), and parotid proline-rich
proteins (Bedi andBedi, 1995; Beeley et al., 1996; ShatzmanandHenkin,
1983). The underlying functional basis was claimed to be a strong
underrepresentation of hydrophobic amino acids that affects the
electronic transition of the bound dye and thereby induces the
discoloration (Hattori et al., 1996). As a depletion of hydrophobic
residues is also a hallmark of intrinsic disorder (Dunker et al., 2001), we
assume that both features might be connected on the level of primary
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protein structure. This model is heavily supported by the strong
correlation between metachromasia associated proteins and intrinsic
disorder. H1.0 (Vila et al., 2000, 2001), H5 (Graziano et al., 1990) and
also a basic salivary proline-rich protein (parotid o protein) (Loomis
et al., 1985) have already been described to be mostly intrinsically
disordered. Further, monomeric H2B was claimed to be an IDP and
recently shown to have only a limited secondary structure contend of
31% (Stump and Gloss, 2008; Uversky et al., 2000). Also monomeric
collagen is considered an IDP (Uversky et al., 2000) and shows the
indicative aberrant mobility in SDS-PAGE (Hayashi and Nagai, 1980).
The observation that similar to E1B-93R also collagen and histone H1
(Duhamel et al., 1981; Hattori et al., 1996) cannot be readily quantified
by the CBB-based Bradford assay, further supports the proposed
relationship.

Though induction of metachromasia seems to be indicative for
intrinsic disorder, the opposite is not valid for all IDPs, as many do not
show obvious metachromasia (personal correspondence P. Tompa;
Institute of Enzymology, Hungarian Academy of Sciences, Budapest,
Hungary). It has further been shown that while concentrations of IDPs
are often underestimated in Bradford assay the scope of error varies
widely among different proteins (Szollosi et al., 2007). We therefore
suggest that induction ofmetachromasia is specific for a subclass of IDPs
and that this can beused in the ongoing attempt of thefield to subdivide
IDPs into more distinguishable subclasses or “flavors” (Linding et al.,
2003; Vucetic et al., 2003). Further, the discovered connection to
intrinsic disordermight represent an answer to thequestion concerning
the structural basis of metachromasia — a question that has been
discussed for more than 30 years (Micko and Schlaepfer, 1978).

Intrinsic disorder in the common N-terminus of E1B-55K and the E1BN
proteins

The data collected here for E1B-93R can also be used to expand our
knowledge on E1B-55K and the other E1BN proteins due to the fact
that E1B-93R mainly consists of the common N-terminus, which is
also found in these proteins. As intrinsic disorder is defined by local
amino acid composition, the common N-terminus mandatorily has
comparable disorder potential in all of these proteins, which is also
reflected by the results of order/disorder predictions (Fig. 3A).
Another supporting fact is the observation that the N-terminus is
the least conserved region of E1B-55K (Kindsmuller et al., 2009) and
as intrinsically disordered regions are on average much more variable
than ordered domains, such hypervariability is valued as an indicator
for disorder (Brown et al., 2002). Consistently, order/disorder
analyses indicate that though the sequence is variable, the intrinsic
disorder potential in the N-terminus is highly conserved among
representatives of all human adenovirus species (Fig. 3B). These
considerations strongly indicate that the common N-terminus
represents an IDR.

The IDR in the common N-terminus is a likely candidate interaction site

As IDRs oftenmediatemultiple protein/protein interactions (Dunker
et al., 2005), the knowledge that the common N-terminus is such a
region identifies it as a likely candidate site for binding of interactors.
Further in silico analysis (ANCHOR; (Dosztanyi et al., 2009)) of the
N-terminus supports this idea, as it indicates that a large part of the
region is a disordered binding region (Fig. 2C; residues 8 to 64). Such
regions undergo disorder-to-order transition upon binding of globular
interaction partners (Dyson and Wright, 2002; Uversky, 2002) and are
predicted by a highly disordered sequential neighborhood, unfavorable
interchain energies and more favorable interaction energies with a
globular partner (Dosztanyi et al., 2009).

This study therefore can be used to focus the respective
investigations to identify interaction sites to this region. In fact,
there are already several cellular and viral proteins known to interact
with the E1B-55K at yet unknown sites. Among these factors are
cellular PML V (Wimmer et al., 2010), SSBP2 (Fleisig et al., 2007),WT1
(Maheswaran et al., 1998), and DNA Ligase IV (Baker et al., 2007) as
well as adenoviral E4orf3 (protein encoded by early transcription unit
4 open reading frame 3) (Leppard and Everett, 1999). Further we
could recently show that E1B-156R interacts with p53 and E4orf6
(Sieber and Dobner, 2007). As these two proteins are also supposed to
bind to the central part of E1B-55K (Rubenwolf et al., 1997; Yew and
Berk, 1992), which is not found in E1B-156R, additional sites sufficient
for interaction must exist either in the C-terminus of E1B-156R or
within the common N-terminus.

In conclusion, our studies do not only show that E1B-93R is a
defining member of a specific IDP subclass, but also suggest that the
N-terminus common to E1B-55K and all E1BN proteins is an IDR with
potential to mediate important interactions.

Materials and methods

Plasmid pGEX-2T-E1B-93R

The cDNA of E1B-93R was acquired from cytoplasmic mRNA of
H5dl309 (Jones and Shenk, 1979) infected HeLa cells (Gey et al., 1952)
by reverse transcription with oligo (dT) primers. The coding sequence
was gained by PCR from these cDNAs and inserted between the BamHI
and EcoRI sites of the expression vector pGEX-2 T (Pharmacia). The
resulting plasmid encodes an N-terminally GST-tagged E1B-93R
protein (GST-E1B-93R) with a thrombin cleavage site (“/”) in its six
amino acid linker (L V P R/G S).

Expression and purification of E1B-93R

E. coli TOPP™3 (Stratagene) transformed with pGEX-2T-E1B-93R
weregrownat37 °C in LysogenyBroth (LB)medium(cAmpicillin=0.1 g/l)
for production of unlabeled protein (Bertani, 1951; Bertani, 2004). At an
optical density (wavelength: 600 nm) of 0.6–0.8 protein expressionwas
induced with 0.5 mM isopropyl-β-D-thiogalactopyranoside for 5 h at
30 °C. Bacteria were then harvested by centrifugation and suspended in
20 ml PBS. After addition of 7.5 mg lysozyme, 10 μg/ml DNase I, 13 mM
MgCl2, 1.3 mM MnCl2 and 10min incubation on ice the cells were
sonicated (output 8; 80% duty cycle; 5 times; 1 min; 4 °C, Branson
Sonifier 450). NaCl andTriton-X-100were added to afinal concentration
of 0.5 M and 1%, respectively. The suspension was incubated on ice for
10 min and centrifuged (14,500g; 45 min; 4 °C). The supernatant was
incubated with 1 ml equilibrated (washed three times in PBS (pH 7.1–
7.2) and once in PBS with 0.5 M NaCl and 1% Triton-X-100) Glutathione
Sepharose™ 4Bmatrix (Amersham) for 1 h at 4 °Cwhile gently agitating.
The resin was washed twice (10 ml PBS (pH 7.1–7.2) with 1% Triton-
X-100 and 10 ml PBS; 500 g; 5 min; 4 °C). For structural studies the
matrix-associated fusion protein was cleaved with thrombin (50 U/ml
matrix, Amersham) in PBS (16 h at 22 °C) and eluted four times with
1.5 ml PBS each. Samples shown in Fig. 4 lanes 5 and 6 were eluated
(150 mM NaCl, 50 mM Tris, 50 mM glutathione) and dialyzed. The
sample in lane 6 was then treated with thrombin (2 U per mg protein;
16 h; 22 °C; gentle agitation). The eluted E1B-93R was further purified
by gel filtration chromatography (Äkta FPLC, Amersham Pharmacia
Bioscience). The gelfiltrationwas performed in sterilefiltered PBS buffer
(flow rate=1.5 ml/min) at 4 °C using a HiLoad™ 16/60 Superdex™200
column (Amersham). The eluted fractions were analyzed by SDS-PAGE
followed by Western blot analysis (Marton et al., 1990) with antibody
2A6 (Sarnow et al., 1982) or CBB R-250 staining (see below). E1B-93R
containing fractions were pooled. DTT and EDTA were added to final
concentrations of 5 mM and 0.5 mM, respectively. Finally, samples were
concentrated (Vivaspin 2 ml concentrators; molecular weight cut
off=3 kDa, Vivascience). Concentrations were estimated by Bradford
(Bradford, 1976) or Bicinchoninic Acid Protein assay (BCA assay, Sigma).
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CBB R-250 staining

SDS-PAGE gels were stainedwith 0.1% CBB R-250 (Merck) in acetic
acid:ethanol:water (10:40:50) for 25 min and then destained with
acetic acid:ethanol:water (10:45:45).

Silver nitrate staining

SDS-PAGE gels were fixed for 30 min in an acetic acid:ethanol:
water (15:30:55) mixture and sensitized for 10 min (4.1% sodium
acetate and 0.2% sodium thiosulfate pentahydrate in a 25:75 ethanol:
water mixture). After washing three times 5 min in water the gel was
incubated for 10 min in the silver nitrate solution (0.1% silver nitrate
and 0.025% formaldehyde in water). After washing three times 20 sec
with water, the gels were developed (2.5% disodium carbonate and
0.019% formaldehyde in water; pH 11.5). The reaction was stopped by
1.86% EDTA in water. All incubation steps were performed at room
temperature under mild agitation. Gels were stored in water.

ESI Mass spectrometry

Mass spectrometry was performed by E. Hochmuth, Department of
Biochemistry I, University of Regensburg. 500 pmol of purified protein
were subjected to a 20 min gradual buffer exchange (7–70% actonitril/
TFA buffer) on a reversed phase C4-column. E1B-93R in 70%
acetonitril/0.05% TFA buffer (pH 2) was measured at room temper-
ature with a SSQ 7000 Finigan MAT.

Circular dichroism spectroscopy (CD)

Circular dichroism spectra were recorded over a wavelength range
of 195.5–260 nm using an Aviv 62-DS spectropolarimeter (Aviv
Associates). Purified E1B-93R at a measured concentration of 7 μM
in PBS (according to BCA assay) was analyzed in a quartz cuvette.

NMR data collection and analysis

Purified HAdV5 E1B-93R protein was prepared to a final
concentration of 1 to 1.57 mM (according to BCA assay) in PBS (pH
7.1–7.2) supplemented with 5% D2O, 1% protease-inhibitor cocktail
(Sigma) and 0.1 mM of 2,2-dimethyl-2-silapentane-5-sulfonaic acid
(DSS) as an internal reference. For heteronuclear experiments
uniformly 15N enriched proteinwas produced by growing the bacteria
in a modified new minimal medium (Budisa et al., 1995) supple-
mented with 1 g/l (15N, 99%)-NH4Cl and 0.1 g/l ampicillin, as
described by Gronwald et al. (Gronwald et al., 2001). All NMR
experiments were recorded at 293 K on Bruker AVANCE 500 and 600
spectrometers operating at proton resonance frequencies of
500.13 MHz and 600.13 MHz, respectively. 1H chemical shifts were
referenced to DSS used as internal standard. 15N chemical shifts were
indirectly referenced to DSS as described by Wishard et al. (Wishart
et al., 1995). 1D 1H-spectra were recorded on 1 mM E1B-93R in PBS
(pH 7.1–7.2) with 5% D2O (600.13 MHz; 293 K; 16 scans; program:
zggpw5). Sensitivity enhanced 1H,15N heteronuclear single quantum
coherence experiments were recorded with 2048×1024 complex
data points using a sweep width of 14 ppm in the 1H dimension and
40 ppm in the 15N dimension. 2D 1H,15N NMR-spectra with and
without hetero NOE were measured with 1 mM 15N isotopically
labeled E1B-93R in PBS (pH 7.1–7.2) with 5% D2O at 293 K (128 scans;
program: hsqcnoef3gpsi). Heteronuclear 1H,15N NOEs were attained
according to Farrow et al. (Farrow et al., 1994). Homonuclear 2D
1H,1H NOESY- and 1H,1H TOCSY-spectra were recorded with samples
of 1.57 mM E1B-93R in PBS (pH 7.1–7.2) with 5% D2O at 293 K
(600.13 MHz; 32 scans; program: noesygpph19; 100 ms mixing and
500.13 MHz; 32 scans; program: mlevgpph19; 60 ms mixing, respec-
tively). Topspin 1.1 (Bruker Biospin) and Auremol (Gronwald and
Kalbitzer, 2004) were used to process and analyze the data.
Computational analyses

3D protein structures were predicted by I-TASSER (http://zhanglab.
ccmb.med.umich.edu/I-TASSER/) (Roy, Kucukural, and Zhang; Zhang,
2007; Zhang, 2008). Pairwise alignments of 3D structures were
performed by FATCAT (http://fatcat.burnham.org/fatcat/) (Ye and
Godzik, 2003). For prediction of intrinsic disorder the services of
IUPRED (www.iupred.enzim.hu) (Dosztanyi et al., 2005a,b), PONDR-
VLXT (www.pondr.com; [access to PONDR was provided by Molecular
Kinetics, 6201 La Pas Trail-Ste 160, Indianapolis, IN 46268; 317-280-8737;
main@molecularkinetics.com; PONDR is copyright©2004 by Molecular
Kinetics, all rights reserved]) (Peng et al., 2005), DISpro (http://scratch.
proteomics.ics.uci.edu/) (Cheng et al., 2005) and RONN (http://www.
strubi.ox.ac.uk/RONN) (Yang et al., 2005) were utilized. Secondary
structure predictions were performed by SSPro (http://scratch. prote-
omics.ics.uci.edu) (Cheng et al., 2005), Porter (http://distill.ucd.ie/
porter/), NetSurfP (Petersen et al., 2009) (http://www.cbs.dtu.dk/
services/NetSurfP/) and I-TASSER (uses PSI-PRED) web servers. Theo-
retical molecular weight was estimated with ProtParam at ExPASy
Proteomics Server (http://www.expasy.ch/cgi-bin/protparam). Disor-
dered binding regions were predicted by ANCHOR (http://anchor.
enzim.hu/) (Dosztanyi et al., 2009).

Supplementarymaterials related to this article can be found online
at doi:10.1016/j.virol.2011.07.012.
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