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Let F,, be a free group of a finite rank m > 2 and let X;,Y; be elements in F),.
A non-empty word w(xy,...,x,) is called a C-test word in n letters for F,, if,
whenever (X|,...,X,) =w(Y,,...,Y,) # 1, the two n-typles (X,,..., X,) and
(Y;,...,Y,) are conjugate in F,,. In this paper we construct, for each n > 2, a
C-test word v,(x, ..., x,) with the additional property that v,(X;,..., X,) = 1 if
and only if the subgroup of F,, generated by X|,..., X, is cyclic. Making use of
such words v,,(xq,...,x,,) and v,,, (x,...,x,, 1), we provide a positive solution
to the following problem raised by Shpilrain: There exist two elements u, u, € F,,
such that every endomorphism ¢ of F,, with non-cyclic image is completely
determined by ¢(u;), $(u,).  © 2002 Elsevier Science

1. INTRODUCTION

Let F, = {x,,...,x,,) be the free group of a finite rank m > 2 on the
set {xy,..., x,,}. The purpose of this paper is to present a positive solution
to the following problem raised by Shpilrain [1]:

Problem. Are there two elements u,, u, in F,, such that any endomor-
phism ¢ of F, with non-cyclic image is uniquely determined by
Y(u,), Y(u,)? (In other words, are there two elements u,,u, in F, such
that whenever ¢(u,) = ¢(u,), i = 1,2, for endomorphisms ¢,y of F,
with non-cyclic images, it follows that ¢ = ?)

In [2], Ivanov solved in the affirmative this problem in the case where i
is a monomorphism of F, by constructing a so-called C-test word

w,(xy,...,x,) for each n > 2. A C-test word is defined due to Ivanov [2] as
follows:
DEFINITION. A non-empty word v(x,,...,x,) is a C-test word in n

letters for F,, if for any two n-tuples (X,..., X,),(Y},...,Y,) of elements
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of F, the equality v(X,,..., X,) = v(Y,,...,Y,) # 1 implies the existence
of an element § € F,, such that Y, = SX,S~! forall i = 1,2,...,n.

According to the result of [2, Corollary 1], if v is a C-test word in m
letters for F,,, ¢ is an endomorphism, ¢ is a monomorphism of F,,, and
¢(v) = ¢(v), then we have ¢ = 7go 4, where S € F, is such that
(S, y(v)) is cyclic, and 7¢ is the inner automorphism of F, defined by
means of S. Notice that this assertion is no longer true if ¢ is extended to
an endomorphism of F, with non-cyclic image, since ¢(v) # 1 is no
longer guaranteed. The efforts to extend the result of [2, Corollary 1] to
the case where ¢ is an endomorphism of F,, with non-cyclic image have
led us to proving the following

THEOREM. For every n > 2 there exists a C-test word v,(x,...,x,) in n
letters for F,, with the additional property that v,(X,, ..., X,) = 1 if and only
if the subgroup {X,,..., X,) of F,, generated by X, ..., X, is cyclic.

We construct such a C-test word v,(x,..., x,) by combining Ivanov’s
C-test word w,(x, x,) and an auxiliary word u(x,, x,) defined below.
Here, let us recall Ivanov’s C-test word w,(x,, x,):

100 200 300 400
_[.8 .8 8 8 8 .8 —1[ 8 .8 -1
wy(xy,%,) = [xl,xz] xl[xl,xz] xl[xl,xz] X1 [xlaxz] X1

500 600 700 800
8 8 8 8 8 8 -1 8 8 -1
[xf, 5] oo [, 28] o[, 28] s ad, 28] a5 L
We define an auxiliary word u(x,, x,) as follows:

100 200 300
_ [ 448 .40 6[ 48 .40 6] 48 .40 6
(L.1) u(xy,x,) = [x1 , X5 ] )cl[x1 , X5 ] xl[)c1 , X5 ] X3
400 500 600
48 40 6[ .48 .40 5[ .48 .40 5
><[x1 , X5 ] xl[x1 , X5 ] xz[x1 , X5 ] x5

700 800
48 40 5[ 48 .40 5
><[x1 , X5 ] xz[x1 , X5 ] x;.

We then construct v,(x,,..., x,) as follows: If n = 2 then
(1.2) U5( X1, X5) = wy (X1, X,).

If n = 3 then

(1.3) v3( Xy, X, x3) = u(u(vy(xy, %2), 02( %2, %3)),

u(vy( x5, x3),0,(x3,x1))).
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Inductively, for n > 4, define

(1.4)  v(xp,e.x,) =u(u(v, ((x), X, %5,...,%, 1),

Un—l(xn—l’x2’x3""’xn—27xn))7
u(Un—l(xn—l’x27x3""’xn—2’xn)7
Uy (X5 X0, X350, X5, X1)))-

For instance,

(1.5)  04(xy, X0, x5, %) = u(u(vs(xy, X5, %3), 03( X3, X5, X4)),

U(U3(x3’ Xy, %4),03( %y, X, xl)))‘

In Section 2, we establish several technical lemmas concerning proper-
ties of Ivanov’s word v,(x,, x,) and the auxiliary word u(x,, x,) which will
be used throughout this paper. In Sections 3-5, we prove that, for each
n > 3, the word v,(x,,..., x,) constructed above is indeed a C-test word
with the property in the statement of the Theorem (the case n =2 is
already proved in [2]). We first treat the case n = 3 in Section 3 and then
proceed by simultaneous induction on »n with base n = 4 together with
several necessary lemmas in Sections 4 and 5.

Once the Theorem is proved, our Corollary 1, which is an extended
version of [2, Corollary 1] to the case where ¢ is an endomorphism of F,,
with non-cyclic image, follows immediately, as intended, by taking u =
U, (X, x,)

COROLLARY 1. There exists an element u € F,, such that if ¢ is an
endomorphism,  is an endomorphism of F, with non-cyclic image, and
&(u) = (), then ¢ also has non-cyclic image, more precisely, ¢ = 7¢° i,
where S € F,, is such that {S, y(u)) is cyclic, and 7 is the inner automor-
phism of F,, defined by means of S.

In Corollary 2, we provide a positive solution to the above-mentioned
Shpilrain problem:

COROLLARY 2. There exist two elements u,,u, € F,, such that any endo-
morphism  of F, with non-cyclic image is uniquely determined by
P(uy), P(u,).

The proof of Corollary 2 makes use of the words v,(x,,..., x,,) and

Ups (X150, X, 1) Its detailed proof is given in Section 6. The idea and
the techniques used in [2] are developed further in the present paper.
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2. PRELIMINARY LEMMAS

We begin this section by establishing some notation and terminology.
We let X,Y (with or without subscripts) be words in F,, throughout this
paper. By X = Y we denote the equality in F,, of words X and Y, and by
X =Y the graphical (letter-by-letter) equality of words X and Y. The
length of a word X is denoted by | X| (note |x,x; 'l = 2). We say that a
word X is a proper power if X =Y for some Y with /> 1 and that a
word A is simple if A is non-empty and cyclically reduced and is not a
proper power. If A is simple, then an A-periodic word is a subword of A*
with some &k > 0.

Now let us introduce several lemmas concerning properties of the word
v,(xy, x,) defined in (1.2). For proofs of Lemmas 1 and 2, see [2].

LEMMA 1 [2, Lemma 3].  If the subgroup {X,, X,) of FE,, is non-cyclic,
then v,(X,, X,) is neither equal to the empty word nor a proper power. If
(X,, X, is cyclic, then v,( X, X,) = 1.

LEMMA 2 [2, Lemma 4]. If the subgroup {X,, X,) of F,, is non-cyclic
and v(X,, X,) = v,(Y},Y,), then there exists a word Z € F,, such that

Y, =ZX,Z"" and Y,=ZX,Z .

LEMMA 3. If the subgroup {X,, X,) of F, is non-cyclic, then
0,( X, X,) 7 # 0)(Y,,Y,) for any words Y,,Y,.

Proof. By way of contradiction, suppose that v,(X,, X,)~" = v,(Y},Y,)
for some words Y,,Y,. If {Y,,Y,) is cyclic, then it follows from Lemma 1
that v,(Y;,Y,) = 1, so that v,(X, X,) =1, ie., (X, X,) is cyclic. This
contradiction to the hypothesis of the lemma allows us to assume that
(Y,,Y,) is non-cyclic. As in [2, Lemmas 1-4], let W be a cyclically reduced
word that is conjugate to v,(X;, X,), and let B be a simple word such that
[X§, X$1is conjugate to B (recall from [3, 4] that a commutator [ X, Y] of
words X and Y is not a proper power). Then according to [2, Lemma 2], W
has the form

W = R,T,R,T, - RyTy,

where R’s are B-periodic words with (i - 100 — 14)|B| < |R,| < i-100|B],
0 < |T)| < 6|Bl, and 3488|B| < |W| < 3648|B|. The same holds for
v,(Y,Y,), and we attach the prime sign ' to the notations for v,(Y},Y,).
Then the equality v,(X,, X,)™' = v,(Y},Y,) yields that W' is a cyclic
permutation of W', so that |[W~!'| =|W’|. At this point, apply the argu-
ments in [2, Lemma 4] to W™, W’ to get B~! = B’ and that R B’-over-
laps only with R; ! for each i = 1,2,...,8. But this is impossible, for if R’
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B’-overlapped only with R;!, then R/, would have to B'-overlap only
with R;”!| (indices modulo 8) by the order of indices in W~ ! = Ty 'Ry ! -
T, 'R;'Ty 'Ry and W' = R\T|R, T}, - RyT;. |1

We also establish several lemmas concerning properties of the auxiliary
word u(x,, x,) defined in (1.1).

LEMMA 4.  If the subgroup {X,, X,) of F,, is non-cyclic, then u(X,, X,)
is neither equal to the empty word nor a proper power. If {X,, X,) is cyclic,

then either u(X,, X,) is equal to the empty word provided X = X5° or
otherwise u(X,, X,) is a proper power.

Proof.  The proof of the first part is similar to that of [2, Lemma 3], and
the second part is immediate from definition (1.1) of u(x,, x,). |

LEMMA 5.  If the subgroup (X,, X,) of F,, is non-cyclic and u(X,, X,) =
u(Y,,Y,), then there exists a word Z € F,, such that

Y, =ZX,Z"' and Y,=ZX,Z .

Proof.  Applying the same argument as in [2, Lemma 4] to u(X,, X,)
and u(Y,,Y,), we deduce that Y’ = ZX°Z ' and Y; = ZX;Z ' for some
word Z € F,,. Since extraction of roots is unique in a free group, it follows
that Y, = ZX,Z ' and Y, = ZX,Z "', as required. |

LEMMA 6. If the subgroup {X,, X,) of F, is non-cyclic, then
u(X,, X,)~' # u(Y,,Y,) for any words Y|, Y,.

Proof.  Suppose to the contrary that u(X,, X,)~! = u(Y,,Y,) for some
words Y;, Y,. Then the subgroup {Y,,Y,) of F,, is non-cyclic, for otherwise
the equality u(X,, X,)”! =u(Y,,Y,) would yield that u(X,, X,) =
u(Y,,Y,) ' =u(Y;!,Y; "), contrary to Lemma 4. From here on, follow the
proof of Lemma 3 to arrive at a contradiction. [

LEMMA 7. If the subgroup {X,, X,) of F,, is non-cyclic, then, for each
i = 1,2, the subgroup {X;,u(X,, X,)) of F,, is also non-cyclic.

Proof. Suppose on the contrary that {X,, u(X,, X,)) is cyclic for some
i = 1,2. Then by Lemma 4 we have

(2.1) X, = u(X,, X,)”

for some non-zero integer /. Let U be a cyclically reduced word that is
conjugate to u(X,, X,), and let C be a simple word such that [ X;®, X;°]is
conjugate to C. By X, we denote a cyclically reduced word that is

conjugate to a word X in F,,. Then by the same argument as in [2, Lem-
ma 1],

max([X], [X3) < 6|C|,
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and also by the same argument as in [2, Lemma 2], U has the form
U=0,50,5, - Oy,
where Q, are C-periodic words with (i - 100 — 14)IC| < |Q;| < i - 100|C],
0 < |S;] < 6|C|, and 3488|C| < |U| < 3648|C|. This yields that
[X] < 61C| < 3488IC| < |U| = |u( Xy, X5)| <|u(X,, X,)7,
which contradicts equality (2.1). 1

In the following lemma, which will be useful in Sections 4-6, the word
0,(x,...,x,) with n > 3 is defined in (1.3)—(1.4).

LeEMMA 8. If both v,(X,, X,) and v,(Y,,...,Y,) with n > 3 are neither
equal to the empty word nor proper powers, then the subgroup {v,(X,, X,),
v,(Y,,...,Y)) of E, is non-cyclic.

Proof. Suppose on the contrary that {v,(X, X;),v,(Y},...,Y,)) is
cyclic. It then follows from the hypothesis of the lemma that

either v,(X,X,)=0v,(Y,,...,Y,) or
-1
v (X, X)) = 0,(Y,.. Y.

This implies, by definitions (1.3)-(1.4) of v,(x,,..., x,), the existence of
words Z,, Z, in F,, such that

either v,(X,,X,) =u(Z,,Z,) or Uz(Xl,Xz)_1=u(Zl,Z2).

But since an argument similar to that in Lemma 3 shows that the latter
equality cannot hold, the former must hold. From here on, follow the
argument in [2, Lemma 4] to obtain that

B “X,B*=7% and B °X;'B® =270,

where )f'l-, Zi are conjugates of X, Z; respectlvely, and B is a simple word

such that B = [X?, X$]. This ylelds X?=1,1ie, X, =1, contrary to the
hypothesis UZ(XI,X2) +1. 1

3. THE CASE n =3

In this section, we prove that v,(x,, x,, x;) is a C-test word with the
additional property that v,(X;, X,, X5) = 1 if and only if the subgroup
(X,, X,, X;) of F, is cyclic. We begin with lemmas that play crucial roles
in proving this assertion.
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LEmMA 9. If u(v,(X,, X,),v,(Y,,Y;)) =1, then v,(X, X,) =1 and
0,(Y,,Y,) = 1.

Proof. The hypothesis of the lemma implies by Lemma 4 that
0,(X,, X,)® = 0,(Y,,Y,)"%; hence if one of v,(X,, X,) and v,(Y,,Y,) is
equal to the empty word, then so is the other. So assume that v,(X;, X,)
#+ 1 and v,(Y},Y,) # 1. Notice that the equality v,(X,, X,)° = v,(Y],
Y,) ™ implies that (v,(X,, X,),v,(Y},Y,)) is cyclic. Hence, in view of
Lemmas 1 and 3, we have v,(X,, X,) = v,(Y,,Y,). This together with
0,(X, X,)® = 0,(Y,,Y,) " yields that v,(X,, X,) = v,(Y,,Y,) = 1, con-
trary to our assumption. ||

LEMMA 10. Suppose that the subgroup { X,, X,, X5) of F,, is non-cyclic.
Then v,( X, X,, X5) # 1. Futhermore, either vy(X,, X,, X;) is not a proper
power or it has one of the following three forms:

(A1) v3( Xy, Xy, X;) = Uz(Xz’Xs)%O and X, =1;
(A2) vs( Xy, Xy, Xs) = 0,( Xy, X)) and X, = 1;
(A3) v3( X1, Xy, X3) = 0y( X, X,)° and X, = 1.

Remark. In view of Lemma 1, v,(X,, X3), v,(X;5, X)), v,(X;, X,) in
(A1), (A2), (A3), respectively, are neither equal to the empty word nor
proper powers.

Proof. Recall from (1.3) that
v3( X, Xy, X;) = u(”(”z(Xl’Xz)’Uz(XZaXs))’
”(Uz(Xz’X3)’U2(X3’X1)))-

In the case where the subgroup (u(v,(X;, X)), v,(X,, X;)), u(v,(X,,
X3), v,(X;, X)) of F, is non-cyclic, the assertion that vy(X,, X,, X;) is
neither equal to the empty word nor a proper power, as desired, follows
immediately from Lemma 4. So we only need to consider the case where

(3.1) the subgroup { u(v,( X, X,),v,(X,, X3)),
”(Uz(Xzan),Uz(X3,X1))> is cyclic.

Here, if u(v,(X;, X,),0,(X,, X3)) = u(v,(X,, X;),v,(X;, X;)) = 1, then
Lemma 9 implies that v,(X,, X,) = v,(X,, X3) = v,(X;, X;) = 1; hence,
by Lemma 1, (X}, X,),{X,, X;), and {X;, X, are all cyclic. This yields
that (X, X,, X5 is cyclic, contrary to the hypothesis of the lemma. Thus,
at least one of the words u(v,(X,, X,),v,(X,, X3)) and u(v,(X,, X;),
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v,(X;, X)) has to be not equal to the empty word. We divide this situation
into three cases.

Case 1. u(v,(X,, X,),0,(X,, X3) # 1 and u(v,(X,, X3), v,(X5, X))
= 1.

It follows from u(v,(X,, X;),0,(X;, X)) =1 and Lemma 9 that
v,(X,, X3) = v,(X;, X;) = 1; s0, by Lemma 1, { X,, X;) and { X3, X, ) are
cyclic. Since (X, X,, X;) is non-cyclic, X; must be equal to the empty
word; hence we have

v3( X, Xy, X3) = u(u(vy( X, X,),1),1) = u(v,(X,, X,)™, 1)

2424

576
= 0,( X, X;) = 0,(X;, X,)

Therefore v5(X,, X,, X;) has form (A3) in this case.

Case II. u(vy(X,, X,),0,(X,, X3)) =1 and u(v,(X,, X3), v,(X;, X))
# 1.

Since u(v,(X,, X,),v,(X,, X3)) = 1, we have, by Lemmas 1 and 9, that
(X,, X,) and {X,, X;) are cyclic, so that X, = 1; thus

v3( X1, Xp, X3) = u(1, u(1,05(X;, X1))) = u(l,vz(X3,X1)20)
2020 400
= 0y(X;, X)) = 0y(X;, X))

Therefore v5(X,, X,, X3) has form (A2) in this case.

Case III.  u(v,(X,, X,), 0,(X,, X;3)) # 1 and u(v,(X,, X3), v,(X5, X))
# 1.

In this case, we want to prove
CLAIM. This case is reduced to the following two cases:

D) (v (X}, X,), 0,(X,, X3), 0,(X5, X)) is cyclic;
(i)  both {vy(X}, X,), 0,(X,, X3)) and {v,(X,, X;3),v,(X;5, X)) are
non-cyclic.

Proof of the Claim. Assuming at least one of {v,(X;, X,), v,(X,, X3))
and {(v,(X,, X3),0,(X;, X)) is cyclic, we want to show that Case (i)
occurs. Let us say that {v,(X,, X,), v,(X,, X3)) is cyclic (the case where
(0,(X,, X3),0,(X5, X)) is cyclic is analogous). If v,(X,, X;) = 1, then
u(v,(X,, X,), 0,(X,, X3)) = 0,(X;, X,)* and u(v,(X,, X3), v,(X;, X))
= 0,(X;, X))®. It then follows from (3.1) that {v,(X,, X,), v,(X;, X,)) is
cyclic, which means that Case (i) occurs. Now let v,(X,, X3) # 1. Then
since {v,(X,, X,),v,(X,, X3)) is cyclic, (3.1) yields by Lemma 7 that
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(0y(X;, X3),0,(X;5, X)) is also cyclic; hence (v,(X,, X,),v,(X,, X3),
v,(X5, X)) is cyclic; that is, Case (i) occurs as well. [I

We divide Case (i) further into subcases according to the number of
non-empty words among v,(X;, X,), v,(X,, X3), and v,(X;, X,). Here, we
note that if there exists only one non-empty word, then it has to be
v,(X,, X3), for otherwise we would have a contradiction of the hypothesis
of Case III. Therefore, Case III is decomposed into the following six
subcases.

Case III.1. vy,(X,, X,) = 0,(X;, X)) = 1 and v,(X,, X3) # 1.
In this case, it follows from Lemma 1 that {X,, X,) and {X;, X,) are
cyclic, so that X, = 1; hence we have

v3( Xy, Xy, X;) = u(u(l, 0,( X5, Xs))’ ”(Uz(Xz’ X;), 1))

20 24
=u(U2(X2,X3) s 05( X5, X5) )

20-24+24-20

960
= 0,(X,, X;3) =0,(X,, X5) .

Thus, v5(X;, X,, X;) has form (A1).

Case II12. vy,(X,,X,) =1 and {1 # v,(X,, X;), 1 # 0,(X;5, X)) is
cyclic.

Since v,(X;, X,) = 1, we have by Lemma 1 that { X, X, is cyclic. Also
since {1 # v,(X,, X3), 1 # v,(X5, X)) is cyclic, we have 1 # v,(X,, X;)
= 0,(X;, X;) by Lemmas 1 and 3. Apply Lemma 2 to this equality: there
exists a word S € F,, such that

X, =8X;8"' and X;=SX,5"1,

which yields that S7'X,S§ = SX,S7!, so that X, = §>X,S 2. It then
follows from { X;, X,) being cyclic that {S, X,, X,) is cyclic. This together
with the equality X; = SX,S! implies that (X,, X,, X;) is cyclic, con-
trary to the hypothesis of the lemma. Therefore this case cannot occur.

Case II1.3. v,(X,, X;) =1 and (1 # 0,(X,, X;), 1 # 0,(X5, X)) is
cyclic.

Repeat an argument similar to that in Case III.2 to conclude that this
case cannot occur.

Case II14. v,(X;, X,) =1 and {1 # v,(X}, X,), 1 # v,(X,, X3)) is
cylcic.

Also repeat an argument similar to that in Case III.2 to conclude that
this case cannot occur.
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Case II1.5. {1 # v,(X,, X,), 1 # 0,(X;, X3), 1 # v,(X;, X,)) is cyclic.
In this case, it follows from Lemmas 1 and 3 that
(3.2) L #0,( X, Xy) = 03( X5, X3) = 0,( X5, X)),

Applying Lemma 2 to these equalities, we have the existence of words T}
and T, in F,, such that

33) X, = T, X,T7", X,=TX,T;
33
X, = T,X.T,", X,=T,X,T;".

Combining (3.2) and (3.3) yields that (T, 'T,, X3, (T}, v,(X,, X;), and
(T,,v,(X;, X,)) are all cyclic. At this point, we apply Ivanov’s argument
(see [2, pp. 403—-404]) to obtain the following

Cram (Ivanov). T, = T,.

Proof of the Claim. Suppose on the contrary that T, # T,. It then
follows from (T 'T,, X;) being cyclic that

(3.4) X{ = (T7'T,)"

with nonzero integers /;, and /. It also follows from (7}, v,(X,, X3))
and (T,, v,(X;, X)) being cyclic that

T, = Uz(XzaXs)/3 and T, = Uz(X3’X1)4’
with integers /; and /, at least one of which is non-zero, so that
Ty T, = 0,( Xy, X3) 7 05( X5, X))

Hence, by (3.4),

_ /2
(3.5) X0 = [0y( Xy, X3) 7 0y( X5, X))

Note, by definition (1.2) of wv,(x,, x,), that the right-hand side of
equality (3.5) belongs to the subgroup [F,,,.#;], where .#; is the normal
closure in F, of the word Xj;. So inside the relation module .#; =
Ny /1 45,45] of the one-relator group

G = xp,...,x, | X537,
equality (3.5) can be expressed as

(4, - P)-X, =0,
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where P is an element of the augmentation ideal of the group ring Z(G)
of G over the integers and X3 is the canonical generator of the relation
module ‘/I/3 of G. By Lyndons result on the relation module % of a
one-relator group {x,,..., x,, || R) (see [4, 5]), which says that if O - "R=0
in # then Q is an element of the augmentation ideal of Z({x,,...,
x,, || R)), we must have #, = 0. This contradiction of /;, = 0 completes the
proof of the claim. |

If T, = T, = 1, then equalities (3.3) yield that X, = X, = X;, contrary
to the hypothesis of the lemma. If T, = T, # 1, then we derive from
equalities (3.3) that

X, = T}X, T3, X,=T!X,T73, and X, = T3X,T;?,

so that (T}, X,», {T,, X,), and (T, X;) are all cyclic; therefore, {X|,
X,, X5 is cyclic. A contradiction implies that this case cannot occur.

Case II1.6. Both (v,(X,, X,),v,(X,, X;)) and (v,(X,, X3),v,(X;,
X)) are non-cyclic.

In this case, in view of (3.1) and Lemmas 4 and 6, we have that
u(vy( X1, X3),05( X, X3)) = u(vy( Xz, X3), 05( X5, X)),
and so by Lemma 5 there exists a word 7' € F,, such that

(36) 1#0,( X, X,) = Toy(X,, X;)T™! and
' 1# 0,( Xy, X3) = Toy(X,, X,)T 7.

Apply Lemma 2 to these equalities: there exist words U, and U, in F,
such that

(3.7) X, = U1X2U1_1a X, = U1X3U1_1§
3.7
X, = U2X3U2’], X, = U, X,U; .

Combining the equalities in (3.6) and (3.7), we deduce that {U; 'U,, X;),
(T7'U,,v,(X,, X3)), and (T~ 'U,,v,(X;, X)) are cyclic. Here, apply
Ivanov’s argument used in Case I11.5 to get U; = U,. Then reasoning as in
Case II1.5, we conclude that this case cannot occur.

The proof of Lemma 10 is complete. [

Now we are ready to prove the Theorem for the case n = 3.

Proof of the Theorem (n = 3). The additional property that v,(X],
X,, X;) =1 if and only if the subgroup (X, X,, X;) of F,, is cyclic
follows immediately from definition (1.3) of v4(x,, x,, x;) and Lemma 10.
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So we only need to prove that v4(x;, x,,x;) is a C-test word; that is,
supposing 1 # v5(X,, X,, X;) = v5(Y},Y,,Y;), we want to prove the exis-
tence of a word Z € F,, such that

Y, =7ZX,Z™! foralli =1,2,3.
We begin by distinguishing two cases according to whether v,(X,, X,, X3)
is a proper power or not.
Case I. vy(X,, X,, X;) is a proper power.

Applying Lemma 10 to v,(X;, X,, X3) and v4(Y;,Y,,Y;), we have that
v4(X;, X,, X3) has one of three types (A1), (A2), and (A3); besides, by the
equality v,(X;, X,, X3) = 05(Y,Y,,Y3), v5(Y,,Y,,Y;) has the same type
as v5(X;, X,, X;) does, because the exponents in (A1), (A2), and (A3) are
all distinct. This gives us only three possibilities, (A1) & (A1), (A2) & (A2),
and (A3) & (A3), for the types of v,(X}, X;, X3) &v4(Y,,Y,, Y3).

If v,(X,, X,, X3) &v4(Y,,Y,,Y;) is of type (A1) & (A1) ((A2) & (A2) or
(A3) & (A3) is similar), then

X, =Y, =1 and 1+ 0,(X,,X;5)"" =0,(Y,,Y;)"".

Applying Lemma 2 to the equality 1 # v,(X,, X;) = v,(Y,,Y;), we have
that two 2-tuples (X,, X;) and (Y,, Y;) are conjugate in F,,, which together
with X; = Y; = 1 yields that two 3-tuples (X,, X,, X;) and (Y,,Y,,Y;) are
conjugate in F,,, as desired.

Case II. v4(X,, X,, X;) is not a proper power.
In this case, it follows from Lemma 4 that
(3.8) the subgroup (u(v,( X,, X,),0,( X5, X;3)),
u(v,(X,, X3),0,( X5, X;))) of F,, is non-cyclic.

This enables us to apply Lemma 5 to the equality v,(X,, X,, X3) =
v5(Y},Y,,Y;): for some word S € F,,, we have

1 # u(v,( Xy, X3),0,(X,, X3))

= Su(vy(Y,,Y,),05( Y5, Y3))S ™1,
1 # u(vy(X,, X3),0,(X;, X))

= Su(vy(Y,,Y3),0,(Y5,Y7))S .

(3.9)

Here, we consider two subcases.
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Case I1.1. One of {(v,(X,, X,),v,(X,, X;)) and {v,(X,, X3), v,(X;,
X)) is non-cyclic.

Let us say that {v,(X;, X,), v,(X,, X3)) is non-cyclic (the case where
(v, (X,, X3),0,(X;, X;)) is non-cyclic is analogous). Then, by Lemma 5,
the first equality of (3.9) implies the existence of a word W € F,, such that

(3.10) 1# 0,( X, X,) = Wo,(Y,,Y,)W™ ! and
1#0v,(X,,X;) = WUQ(YZ,Y3)W_I.

Apply Lemma 2 to these equalities: there exist words 7; and T, in F,,
such that

X, =T\, T;', X,=TY,T;
(3.11)
X, = T,Y,T;!, X,=T,Y,T,".

Now applying Ivanov’s argument introduced in Case II1.5 of Lemma 10 to
equalities (3.10)—(3.11), we get T, = T,, by which (3.11) yields the desired
result.

Case I1.2.  Both {v,(X,, X,), v,(X,, X;)) and {v,(X,, X;), v,(X;, X))
are cyclic.

In this case, if v,(X,, X;) # 1, then the subgroup {v,(X;, X,), v,(X,,
X3), v,(X5, X)) would be cyclic, contrary to (3.8). So v,(X,, X;) must be
equal to the empty word. On the other hand, equalities (3.9) imply by
Lemma 4 that both {v,(Y,,Y,), 0,(Y,,Y;)) and {v,(Y,,Y;),v,(Y;,Y,)) are
also cyclic. Then, for the same reason as with v,(X,, X3),v,(Y,,Y;) also
has to be equal to the empty word.

Thus, it follows from (3.9) that

1+ 0,(X,, X,)™ = S0,(Y,,Y,)**S™! and
1L+ 0,( X5, X)) = Soy(Y5,Y,)'S 71,
that is,
1# 0,(X,, X,) = Sv,(Y,,Y,)S™! and
1# 0,( X5, X)) = Su,(Y5,Y)S !,
which is a situation similar to (3.10). So from here on, we can follow the
proof of Case II.1 to obtain the desired result.

The proof of the Theorem for the case n = 3 is complete. [
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4. THE BASE n =4 OF SIMULTANEOUS INDUCTION

In this section, we prove the base step n = 4 of simultaneous induction
which we use in Lemmas 11-13 and the Theorem.

LEMMA 11 (n = 4). If both v,(X,, X,) and v,(Y,,Y,,Y;) are neither
equal to the empty word nor proper powers, then {v,(X,, X,),v5(Y},Y,,Y3))
is non-cyclic.

Proof. This is a special case of Lemma 8. ||

LEMMA 12 (n =4). If uw(v,(X,, X,, X3),05(Y,Y,,Y3) =1, vi(X,,
X,, X;) = vy(Y,,Y,,Y;) = 1.

Proof. By Lemma 4, the hypothesis of the lemma implies that
(4.1 Us(X17X25X3)6 = U3(Y17Y2’Y3)75a

so that if one of v,(X;, X,, X3) or v5(Y},Y,,Y;) is equal to the empty
word, then so is the other. Hence assume that v,(X,, X,, X3) # 1 and
05(Y, Y,,Yy) # 1.

If one of v,(X,, X,, X3) or v5(Y,,Y,,Y;) is a proper power, then so is
the other by (4.1), because 6 and 5 are relatively prime. Then by Lemma 10
v(X,, X, X3) & v4(Y,,Y,,Y;) has nine possible types, and we can easily
check that 6 times any of 960, 400, or 576 never equals 5 times any of
these, which means that equality (4.1) cannot hold in any case, a contradic-
tion.

If neither v,(X;, X,, X;) nor v4(Y,,Y,,Y;) is a proper power, then by
Lemma 6 we have v,(X;, X,, X;) = v5(Y},Y,,Y;), because (4.1) implies
that {v;(X,, X,, X3),05(Y},Y,,Y;)) is cyclic. This equality together with
(4.1) yields that v,(X;, X,, X3) = v4(Y},Y,,Y;) = 1, contrary to our as-
sumption. This completes the proof. |

LEMMA 13 (n = 4). Suppose that { X, X,, X3, X, is non-cyclic. Then
v (X,, X,, X5, X,) # 1. Furthermore, either v,(X;, X,, X;, X,) is not a
proper power or it has one of the following four forms:

B1) v, (X, X,, X5, X,) = 0,( Xy, X5 W00 and X, = X, = 1;

(A, Ay, A3, Ay 2( Ay, A; 1 2

B2) uv,(X,,X,,X;,X,) =0,(X{,X 000 gnd X, =X, = 1;
4l Ay, Ay, A3, Ay 2\ Ay, Ay 2 3

B3) v(X,X,,X;,X,) =0,(X;, X A0 and X, = X, = 1;
(A, Ay, A3, Ay 2( A3, Ay 2 4

1936
V(X5 Xy, X3, Xy) = 05( X, Xy, X3) and
X, =X;=X,# 1.

(B4)
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Remark. In view of Lemmas 1 and 10, v,(X,, X3), v,(X;, X)),
v,(X;, X)), and v5(X;, X,, X;) in (B1), (B2), (B3), and (B4), respectively,
are neither equal to the empty word nor proper powers.

Proof. Recall from (1.5) that

u (X, Xo, X3, Xy) = uu(vs( Xy, X,, X3),03( X5, Xy, Xy)),
”(U3(X3’ X5, Xy), 03( Xy, Xs, Xl)))'

If (u(vy(X,, X,, X3), 05(X5, Xy, X)), u(v,(X;, X,, X)), v(X,, X,, X))
is non-cyclic, then the assertion that v,(X,, X,, X3, X,) is neither equal to
the empty word nor a proper power, as desired, follows directly from
Lemma 4. So we only need to consider the case where

(4.2) (u(vs( Xy, Xy, X5), 05( X5, X5, XL)),
u(v5( X3, X5, X,),05( Xy, X5, X1))) is cyclic.

Here, to avoid a contradiction of the hypothesis that {X;, X,, X5, X,) is
non-cyclic, at least one of u(v;(X;, X,, X3), v:(X;, X,, X)) or u(vy(X;,
X,, X,), v5(X,, X,, X,)) has to be not equal to the empty word. So we have
three cases to consider.

Case 1. u(vy(X,, X,, X3),0,(X;5, X,, X)) # 1 and u(vy(X;, X,, X)),
v(X,, X,, X)) = 1.

In this case, we have, by Lemma 12 (n = 4) and the Theorem (n = 3),
that both (X3, X,, X,) and {X,, X,, X;) are cyclic. Since {X,, X,, X,
X, is non-cyclic, X, and X, must be equal to the empty word; hence we
have

v (X, Xy, X5, Xy) = M(M(U3(Xl’ X,, X3), 1)’ 1)

24-24

24
= ”(Ua(X1>X2>X3) >1) = 05( X, X5, X;5)

= 0,(X;, X,)7* by form (A2).

Therefore, v,(X;, X,, X5, X,) has form (B3) in this case.

Case II. u(v,(X,, X,, X3),05(X;, X5, X)) =1 and u(vy(X;, X,, X)),
v(X,, X,, X)) # 1.

In this case, by Lemma 12 (n = 4) and the Theorem (n = 3), we have
that both (X, X,, X;) and {X;, X,, X,) are cyclic, so that X, = X; = 1;
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thus

(X1, Xo, X5, Xy) = u(L,u(l,v5(X,, X5, X))

20 20-20
u(1,05( Xy, X5, X))7) = 05(X,, X5, X,)
= 0,( X, )(4)400'400 by form (A2).

Therefore, v,(X;, X,, X3, X,) has form (B2) in this case.

Case III. uw(vy(X,, X,, X3), 05(X;, X,, X)) # 1 and w(v,(X;, X,,
X)), (X, X,, X})) # 1.

By reasoning as in Case III of Lemma 10, we break this case into the
following six subcases.

Case III.1. vy(X,, X,, X;) =0v(X,, X,, X;) =1 and 0vy(X;, X,, X))
# 1.

It follows from the Theorem (n = 3) that {( X, X,, X;) and (X, X,, X,
are cyclic, so that X; = X, = 1; hence we have

va( X1, Xy, X5, Xy) = u(u(l, 03( X5, X, X,)), u(v;( X5, X5, X,), 1))

20 24
:”(Ua(X37X2’X4) 03( X5, X5, X) )

20-24 +24-20
= 05( X5, X5, Xy)

960-400

=0,(X,, X3) by form (A2).

Thus, v,(X;, X,, X5, X,) has form (B1).

Case II12. v(X,,X,,X;) =1 and (1 # vy(X;, X,, X,), 1 # v5(X,,
X,, X)) is cyclic.

Since v,;(X;, X,, X3) = 1, we have, by the Theorem (n = 3), that
(4.3) (X, X,, X3 is cyclic.

Also since (1 # v5(X;, X,, X)), 1 # v5(X,, X,, X,)) is cyclic, in view of
Lemmas 10 and 11 (n = 4), this case is reduced to the following two cases:
(1 both v4(X;, X,, X,) and v5(X,, X,, X,) are proper powers;

(i) neither v,(X;, X,, X,) nor v5(X,, X,, X,) is a proper power.

Case (i) is divided further into subcases according to the types of
v4(X;5, X5, X,) & v5(X,, X,, X;) by Lemma 10. Of nine possible types of
0y(X5, X5, X,) & vy(X,, X,, X)), (A3) & (A1), (A3)&(A2), and (A3)&
(A3) cannot occur, for if v;(X;, X,, X,) were of type (A3), then X, = 1,
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which together with (4.3) yields a contradiction of the hypothesis of the
lemma. Also, (A1) & (A1) and (A2) & (A1) cannot occur, for if vy(X|,
X,, X,) were of type (A1), then X, = 1, again a contradiction. Moreover,
(A1) & (A2) cannot occur, for this implies that X; = X, = 1, so that
v4(X;, X,, X,) = 1, a contradiction. Also, (A2) & (A3) cannot occur, for
this implies that X, = X, = 1, so that v,(X,, X,, X;) = 1, a contradiction
as well.

For this reason, in Case (i), we only need to consider (A1) & (A3) and
(A2) & (A2) for the types of v,(X;, X,, X,) & v4(X,, X,, X,). Therefore,
Case 111.2 is decomposed into the following three subcases.

Case I11.2.1. v,(X;, X,, X,) & v5(X,, X, X)) is of type (A1) & (A3).

In this case, it follows from Lemma 10 that X; = X, = 1, v,(X;, X,,
X,) = 0,(X,, X)), and vy(X,, X,, X}) = v,(X,, X,)”"%. Since {v5(X;,
X,, X, v5(X,, X,, X,)) is cyclic by the hypothesis of Case III.2, we have
that {(v,(X,, X,),v,(X,, X,)) is cyclic, so that 1 # v,(X,, X,) = v,(X,,
X,) by Lemmas 1 and 3. Apply Lemma 2 to this equality: there is a word
S € F,, such that

(4.4) X,=8X,S' and X, =SX,5'.

If S = 1, then from (4.4) we have X, = X,, which together with (4.3) yields
a contradiction of the hypothesis of the lemma. Now let § # 1. We derive
from (4.4) that

X, =8°X,8"? and X,=S%X,5?,

so that ¢S, X,) and (S, X,) are cyclic; thus {(X,, X,) is cyclic. This,
together with (4.3), also yields a contradiction (because X, # 1). There-
fore, we conclude that this case cannot occur.

Case I11.2.2. v,(X;, X,, X,) & v5(X,, X,, X,) is of type (A2) & (A2).

It follows from Lemma 10 that X, = 1, v5( X5, X,, X,) = v,(X,, X3)*,
and 0;5(X,, X5, X)) = 0,(X,, X)* Since (v5(X;, X, X)), v5(X,, X5,
X)) is cyclic, {v,( Xy, X3),v,(X;, X,)) is cyclic; hence, by Lemmas 1 and
3, 1 # v,(X,, X3) = v,(X;, X,). Then by Lemma 2 there exists a word
U € F,, such that

(4.5) X,=UX,U"' and X,=UX,U".

If U =1, then it follows from (4.5) that X, = X, = X;, which together
with (4.3) yields a contradiction of the hypothesis of the lemma. Now let
U # 1. We have from (4.5) that UX,U~! = U~ 'X,U. This equality implies
by (4.3) that U, X, X,, X3 is cyclic; thus, by the first equality of (4.5), we
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have that {X,, X,, X3, X, is cyclic. A contradiction implies that this case
cannot occur.

Case I11.2.3. Neither v4(X;, X,, X,) nor v,(X,, X,, X;) is a proper
power.

Since {(v4(X;, X,, X,),v;(X,, X,, X)) is cyclic, we have, by Lemma 6,
that

1 # 05(X;, Xy, Xy) = 03( Xy, Xy, X))

Apply the Theorem (n = 3) to this equality: there is a word T € F,, such
that

(46)  X,=TX, 7', X,=TX,T', and X,=TX,T .

The second equality of (4.6) implies that (T, X, ) is cyclic; hence, by (4.3),
(T, X,, X,, X5 is cyclic (because X, # 1). Then by the third equality of
(4.6), we have that (X, X,, X;, X, is cyclic. A contradiction implies that
this case cannot occur.

Case II13. v4(X;, X,, X)) =1 and {1 # v5(X;, X,, X3), 1 # v5(X,,
X,, X,)y is cyclic.

Repeat arguments similar to those in Case III.2 to conclude that this
case cannot occur.

Case III4. vy(X,, X,, X)) =1 and {1 # v5(X;, X,, X3), 1 # v,(X;,
X,, X,)) is cyclic.

Also, repeat arguments similar to those in Case III.2 to conclude that
this case cannot occur.

Case II1.5. (1 # vy3(X,, X,, X3), 1+ 0y(X;, X,, X)), 1# 05(X,, X,,
X)) is cyclic.

In this case, we want to prove
CramMm. 1 # v5(X,, Xy, X3) = 05(X5, X, X,) = 05(X,, X5, X)).

Proof of the Claim. If none of these is a proper power, then the
assertion follows immediately from Lemma 6. So assume that one of these
is a proper power. Then, in view of Lemmas 10 and 11 (n = 4), the other
two also have to be proper powers; thus two of X, X;, and X, must be
equal to the empty word, unless X, = 1. However, if two of X, X;, and
X, were equal to the empty word, then we would have a contradiction of
the non-triviality of v,(X|, X,, X3), v5(X;, X,, X)), or v,(X,, X,, X)).
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Hence we must have X, = 1. Then

400
v3( Xy, Xy, X)) = 0p( X5, X))

400
(4.7) v3( X5, Xy, Xy) = 0,( Xy, X5)

b

400
v3( Xy, Xy, Xp) = 0a( X, Xy) 5

hence the hypothesis of Case IIL5 implies that {v,(X;, X)), v,(X,, X3),
v,(X;, X,)) is cyclic. It then follows from Lemmas 1 and 3 that v,(X;,
X)) = v,(X,, X;) = v,(X,, X,), which together with (4.7) proves the claim.
1

Now apply the Theorem (n = 3) to the equalities in the Claim: there
exist words Z, and Z, in F,, such that

(4.8) X, = ZlX3Zf1, X, = Zlezl_la X5 = ZIX4ZI_1;
4.8
X5 = Z2X4Z2_1, X, = ZZXZZZ_I, X, = Z2X1Z2_1.

We deduce from these equalities that {Z,, X,), {Z,, X,), {Z,Z5,Z{Z,,
X)), (Z,723,Z}Z,, X;), and {Z,Z3,Z}Z,, X,) are all cyclic. Here, if
either Z,Z3 #+ 1 or Z}Z, # 1, then we would have that (X, X,, X3, X,)
is cyclic, a contradiction. Hence we must have that Z,Z7 = Z?Z, = 1, that
is, Z, = Z, = 1; thus, by (4.8),

X, =X, =X,.
In addition, it follows from the Claim that

vi( X1, Xy, X3, Xy) = u(u(vs( X1, Xy, X3), 03( X1, X, X5)),
M(U3(X],X2,X3),U3(X1,X2,X3)))
= ”(Uz(Xp X, X3)44’ v3( X, X, X3)44)
= 0y(X,, X, X3)44~24+44~zo

= Us(Xl’Xz’X3)l936-
Therefore, in this case, v,(X;, X,, X5, X,) has form (B4).

Case II1.6. Both (v,(X|, X,, X3),05(X;, X,, X)) and (v3(X;, X,,
X)), v(X,, X,, X,)) are non-cyclic.
In view of (4.2) and Lemmas 4 and 6, we have that

u(vs( Xy, Xy, X3),05(Xs, Xy, X))
= u(vy(X;, X,, X,),05( X, X5, X))).
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Then by Lemma 5 applied to this equality, there is a word W € F,, such
that

1# 0y( X, X5, X;) = Wos( X5, X,, X)W and
1+ 05( X3y Xy, X,) = Wos(Xa, Xy, X)W,

Applying the Theorem (n = 3) to these equalities yields the existence of
words V, and V, in F,, such that

X, =XV, X=XV, X, =X
X, =mxVv;, X=XV, X, =VXV'.

This is the same situation as (4.8); hence, reasoning as in Case IIL5, we
have X, = X; = X,. But then v,(X,, X,, X3) = v;(X;, X,, X,) = v5(X],
X,, X,), which yields a contradiction to the hypothesis of Case IIL6.
Therefore, we conclude that this case cannot occur.

The proof of Lemma 13 (n = 4) is now complete. |

Proof of the Theorem (n = 4). The additional property that v,(X,, X,,
X;, X,) = 1if and only if the subgroup { X;, X,, X5, X, of F,, is cyclic is
immediate from definition (1.5) of v,(x,, x,, x5, x,) and Lemma 13 (n = 4).
Now we want to prove that v,(x,, x,, x5, x,) is a C-test word, that is,
supposing 1 # v,(X;, X,, X5, X,) = v,(Y,Y,,Y;,Y,), we want to prove the
existence of a word Z in F,, such that

Y, =7ZXZ"! foralli =1,2,3,4.

We consider two cases corresponding to whether v,(X,, X,, X;, X,) is a
proper power or not.

Case I. v,(X,, X,, X;, X,) is a proper power.

Apply Lemma 13 (n = 4) to v,(X,,..., X,) and v,(Y,,...,Y): v,(X,,
..., Xy) has one of the four types (B1)—(B4); furthermore, by the equality
v (X, .., X)) = 0,Y,,...,Y),0,(Y,,...,Y,) has the same type as v, (X,
..., Xy) does, since the exponents in (B1)-(B4) are all distinct. This gives
us only four possibilities, (B1) & (B1),...,(B4) & (B4), for the types of
0l Xy X)) & 0Y,, . Y.

If v,(X,,..., X,) &v,(Y,,..., Y is of type (B1) & (B1) ((B2) & (B2) or
(B3) & (B3) is analogous), then

X, =X,=Y,=Y,=1 and 1+ 0,(X,,X,)""" =0,(Y,,v;)""*".

Applying Lemma 2 to the equality 1 # v,(X,, X;) = v,(Y,,Y;), we have
that two 2-tuples (X,, X;) and (Y, Y;) are conjugate in F,,, which together
with X, = X, =Y, =Y, = 1 yields the desired result.



ON CERTAIN C-TEST WORDS FOR FREE GROUPS 529

If v(X,,..., X)) &v,(Y,,...,Y,) is of type (B4) & (B4), then
X, =X,=X,, Y,=Y,=Y, and
1+ 03( Xy, Xy, X3) ' = 03(Y), Yy, ¥3)

The equality 1 # v;(X}, X,, X3) = v,(Y},Y,,Y;) yields, by the Theorem
(n = 3), that two 3-tuples (X, X,, X3) and (Y,Y,,Y;) are conjugate in
F,,. Then the result follows from X, =X; =X, and Y, =Y, =Y.

Case II. v,(X,, X,, X5, X,) is not a proper power.
In view of Lemma 4, it follows that
(4.9) <”(U3(X1’Xz’X3)aU3(X37X27X4))a
u(v5( X3, X5, X,),05(X,, X,, X;))) is non-cyclic.

This enables us to apply Lemma 5 to the equality v,(X,,...,X,) =
v,(Yy,...,Y,): there exists a word S € F,, such that

L+ u(v;( Xy, X5, X3),05( X5, X5, Xy))
= Su(v3(Y1,Y,,Y;),05(Y3,Y,, ¥,))S 71,
L+ u(v;( X5, Xy, Xy), 03( Xy, X5, X))
= Su(v3(Y3,Y,,Y,),05(Y,,Y,,Y7)) S

(4.10)

Here, we have four subcases to consider.

Case I11.1. Both (vy(X,, X, X3),04(X;5, X, X)) and (v;(X;, X,,
X,),v(X,, X,, X,)) are non-cyclic.

The hypothesis of this case enables us to apply Lemma 5 to equalities
(4.10): there exist words 7, and 7, in F,, such that

1#0y( X, X,, X;) = Ty (Y, Y, Y5)T7
1#0y( X5, X,, X,) = Tws(Y3,Y,, YT

b

(4.11) 1
L #0y( X5, Xy, X,) = Toos(Y3, Y5, YT,

L #0y(Xy, Xy, X)) = T2U3(n>Y2’Y1)T£1-

Then by the Theorem (n = 3) applied to (4.11), there exist words U,, U,,
and Uj such that

X, = U1Y1Ufl> X, = U1Y2U1717 X5 = U1Y3U171§
(412) X, = U,Y,U; !, X, =U,Y,U; !, X, =U,Y,U; "

>

X, =UY,U;', X,=UY,U;', X, =UYU"
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Here, if one of U, = U,, U, = U;, and U; = U, is true, then the required
result follows directly from (4.12). So assume that U, U,, and U, are
pairwise distinct. Combining the equalities in (4.12), we deduce that
Uy ', X)), U, X0, (U; US, X0, (UL UL, X), CUS'U,, X5, and
(Uy'U,, X, are all cyclic, so that (X}, X,), (X3, X,), and (X, X,) are
cyclic. Since { X, ..., X, is non-cyclic (this follows from v,(X,,..., X,) #
1), we must have X, = 1; so, by (4.12), Y, = 1. Then by Lemma 10, the
equalities on the first line of (4.11) yield that

400 400
L#0y( X5, X)) =Ty (Y5,Y,) T Y

)400 400

L #0,( Xy, X5 = Tw,(Y,,Y3) Tl_l’

namely,

(4.13) 1 #0y( X5, X)) = T, (Y3, YT,
1 # 0y( Xy, X3) = T, (Y, Y5) T

This is a situation similar to (3.10), so from here on, we can follow the
proof of Case II.1 of the Theorem (n = 3) to obtain that two 3-tuples
(X, X5, X,) and (Y}, Y;,Y,) are conjugate in F,,. Since X, =Y, = 1, the
desired result follows.

Case I1.2. (v,(X,, X,, X3),05(X;, X,, X)) is non-cyclic, and {v,(X;,
X,, X, v5(X,, X5, X)) is cyclic.

In this case, we can apply Lemma 5 to the first equality of (4.10): there
exists a word V' € F,, such that

( ) 1# 0y( X, X5, X;) = Vos (Y, Y, V)V
4.14
1# 05( X5, Xy, Xy) = Voi(Y5, Y, Y) VL.

Then the Theorem (n = 3) applied to (4.14) yields the existence of words
W, and W, in F,, such that

( ) X, = W1Y1W1_1a X, = W1Y2W1_1’ X5 = W1Y3W1_1§
4.15
X; = W2Y3W2_1, X, = WZYZWZ_I, X, = W2Y4W2_1.

If W, = W,, then the required result follows from (4.15). Now assume that
W, # W,. We deduce from (4.15) that <W;'W,, X,) and {W;'W,, X;)
are cyclic, so that

(4.16) (X,, X3 is cyclic.
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On the other hand, since {v;(X;, X,, X,), v5(X,, X,, X)) is cyclic by the
hypothesis of Case I1.2, in view of Lemmas 10 and 11 (n = 4), we have that
v4( X5, X,, X,) is a proper power if and only if v4(X,, X,, X;) is a proper
power. For this reason, this case is reduced to the following three subcases.

Case I1.2.1. vy(X,, X,, X)) = 1 (v5,(X;, X,, X,) # 1 by the hypothesis
of Case I1.2).

It follows from the Theorem (n = 3) that {(X,, X,, X;) is cyclic. Since
(X,, X;) is cyclic by (4.16), to avoid a contradiction of the fact that
(X,,..., X, is non-cyclic, we must have

(4.17) X,=1;

thus Y, = 1 by (4.15). Then by Lemma 10, equalities (4.14) yield that
1# 0y( X5, X;) = Vo, (Y3, V)V,
1#0,(X,, X5) = VUZ(Y4,Y3)V_1.

This is the same situation as in (4.13); hence from here on, repeating the
proof of Case II.1, we obtain the desired result.

Case 11.2.2. Both v;(X;, X,, X,) and v;(X,, X,, X,) are proper pow-
ers.

In view of Lemma 10, we have nine possibilities for the types of
v4(X;5, Xy, X,) & v5(X,, X,, X,). Of these nine possible types, (Al & (A1),
(A1) & (A2), (AD & (A3), (A2) & (A1), (A2) & (A3), (A3) & (A2), and (A3)
& (A3) cannot occur, for if one of these occurred, then two of X, X,, X;,
and X, should be equal to the empty word, which yields a contradiction of
the non-triviality of v,(X,, X,, X3), v;(X;, X,, X,), or v,(X,, X,, X;). So
only (A2) & (A2) and (A3) & (A1) can actually occur.

If vy(X;, X,, X,) &vy(X,, X,, X)) is of type (A2) & (A2), then X, = 1,
which is the same situation as in (4.17). Hence from here on, following the
proof of Case I1.2.1, we arrive at the desired result. If v5(X;, X,, X,) &
v4(X,, X,, X;) is of type (A3) & (A1), then X, = 1. The result then follows
from (4.15).

Case I1.2.3. Neither vy(X;5, X,, X,) # 1 nor vy(X,, X,, X)) # 1 is a
proper power.

Since {v,(X;, X,, X,), v;,(X,, X,, X)) is cyclic, it follows from Lemma
6 that v,(X;, X,, X,) = v5(X,, X,, X;), and so from the second equality
of (4.10) that

(4.18) 1+ U3(X4,X2,X1)44 = Su(v3(Y3,Y,,Y,),05(Y,.Y,,Y)) S~
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This equality implies by Lemma 4 that {v4(Y;,Y,,Y,), v,(Y,,Y,,Y})) is also
cyclic. We then observe that equality (4.18) can hold only when neither
04(Y3,Y,,Y,) nor v,(Y,,Y,, Y;) is a proper power and v4(Y;,Y,,Y,) =
v,(Y,,Y,,Y}), by which (4.18) yields that

1+ 03( Xy, X, X)) = Suy(Y,, Y5, V) s
namely,
L+ 03( Xy, X, Xp) = Sv3(Y,, Y5, Y) S

Now apply the Theorem (n = 3) to this equality: there exists a word
W, € F,, such that

X, = WY W', X, =WY,W;, X, = WY, Wl

Putting this together with (4.15), we have the same situation as in (4.12),
except that we already assumed W, # W, in Case 11.2. Therefore, from
here on, we can follow the proof of Case II.1 to derive the result.

Case 11.3. {vy(X,, X,, X;),v,(X;, X,, X,)) is cyclic, and {vy(X;, X,,
X,), v5(X,, X,, X,)) is non-cyclic.

It is sufficient to repeat arguments similar to those in Case 1.2 to arrive
at the desired result.

Case I1.4. Both (vy(X,, X,, X3),05(X;, X, X)) and (v(X;, X,,
X,),v5(X,, X,, X)) are cyclic.

Arguing as in the proof of Case II.2 of the Theorem (n = 3), replacing
(3.8) and (3.9) by (4.9) and (4.10), respectively, we deduce that v;(X;, X,,
X4) = U3(Y3, Yz, }]4) = 1 SO

(4.19) (X5, X,, X, is cyclic;
moreover, it follows from (4.10) that
1+ 03( X, Xy, X;)™ = Su,(Y,, Y5, Y5) 'S,
1 # v5( Xy, Xy, X1)20 = SUz(YMYz’Yl)ZOS_l’
namely,

1 # 0y( X, X5, X;) = Su,(Yi,Y,,Y;)S 71,
1# vy(Xy, Xy, Xp) = Su5(Y,, Yy, Y1) S
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Then by the Theorem (n = 3) applied to these equalities, we have the
existence of words Z, and Z, in F,, such that

( ) X, = 21Y12f17 X, = 21Y22f17 X5 = 21Y3Zf1§
4.20
X, = Z2Y4Z2_1, X, = ZZYZZz_l, X, = Z2Y1Z2_1.

If Z, = Z,, then the result follows from (4.20). Now assume that Z, # Z,.
Then equalities (4.20) yield that (Z;'Z,, X,) and (Z;'Z,, X, ) are cyclic,
so that (X, X, is cyclic. Since { X;, X,, X, is cyclic by (4.19), we must
have X, = 1, which is the same situation as in (4.17). Thus, from here on,
we can follow the proof of Case I1.2.1 to get the required result.

The Theorem (n = 4) is now completely proved. 1

5. THE INDUCTIVE STEP

In this section, we prove the inductive step of simultaneous induction
which we use in Lemmas 11-13 and the Theorem. Let n > 5 throughout
this section.

LeEmMA 11.  If both v,_(X,,..., X, ,) and v,_(Y},...,Y,_,) are nei-
ther equal to the empty word nor proper powers, then {v,_,(X,..., X,_,),
v,_(Yy,..., Y, _)) is non-cyclic.

Proof. By way of contradiction, suppose that {v,_,(X,..., X,_,),
v,_(Yy,...,Y,_)) is cyclic. Since both v, _,(X,,..., X,_,) and v,_ (Y],
..,Y,_) are non-proper powers, it follows from Lemma 6 that

Un—z(Xn-“’Xn—z) = Unfl(Yl"'anf])’

and so from (1.3)-(1.4) and Lemmas 4 and 5 that there exists a word
S € F,, such that

w(v, 3(Xpso s Xy 3) 00 5( Xy 5500, X, 0)

= Su(v, (Y1, Y, ) 0y oY, gy, Y, 21))S T
w(U, 3( Xy 550 Xy 2)5 0 5( X550, X))

= Su(vy (Y 0o ¥ 1)s 0, o(Y, gy Y7)) ST

(5.1)

We first assume that <v,_(X;,..., X, 3,0, (X, _5,..., X,_,)) is
non-cyclic. This enables us to apply Lemma 5 to the first equality of (5.1):
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there exists a word T € F,, such that

Voos( Xy s X, 3) = T, 5(Yy,...,Y, )T

(52) »
Uy 3(Xygse s Xy p) = Tv, o(Y, g, Y, )T

If both sides of the first equality of (5.2) are non-proper powers, then this
equality yields a contradiction the induction hypothesis Lemma 11; if both
sides of the first equality of (5.2) are proper powers, then we see from
Lemma 10 and the induction hypothesis of Lemma 13 that they cannot be
the same proper powers (because the exponents on the two sides cannot
be identical), a contradiction as well.

We next assume that {v,_(X,,..., X,_3),0, (X, _5,..., X,_,)) is
cyclic. Then the first equality of (5.1) yields by Lemma 4 that

(53) <Un—3(X1’---aXn—3)aUn—3(Xn—3’---s X\ 2),
Sv, o (Yiseo s Yy ) S, 80, o(Y,_ny..s Y, ) S™Y) s cyclic.

Here, in view of the induction hypothesis of Lemma 13, we see that there
are only two ways to avoid a contradiction of Lemma 8 and the induction
hypothesis of Lemma 11: (i) any non-trivial word of Sv, _,(Y,,...,Y,_,)S™!
and Sv, (Y, _,,...,Y,_ DS~ is of type (B4); (ii) any non-trivial word in
(5.3) is of one of types (B1), (B2), and (B3). (For n = 5, there is only one
way: any non-trivial word of Sv, ,(Y,,...,Y,_,)S ! and Sv,_,(Y,_,,...,
Y,_)S~! is of one of types (A1), (A2), and (A3).) However, in either case,
we can observe that equalities (5.2) cannot hold. This contradiction com-
pletes the proof. |

Lemma 12. If u(v,_ ( Xy, ..., X,_,0,_(Y,...,Y,_ ) =1, then
v, (Xy,..., X,_p)=1landv,_(Y,,....,Y,_)) =1

Proof. By Lemma 4, the hypothesis of the lemma yields that
(54) Uy Xys-ees Xn—l)ﬁ =0, 4(Y),..., Yn—l)_s-

If one of v,_(X,,..., X,_) and v, _(Y,,...,Y,_,) is equal to the empty
word, then by (5.4) there is nothing to prove. So assume that v,_,(X|,

., X,_p#1and v,_(Y,...,Y,_) # 1. Since 6 and 5 are relative-
ly prime, equality (5.4) implies that both v, (X,,..., X,_;) and
v,_(Y,,..., Y, _,) either proper powers or non-proper powers. If both are
proper powers, then a contradiction of equality (5.4) follows from the
induction hypothesis of Lemma 13, for 6 times any of 960 - 400~ ¥,
400" =3, 576 - 400" =¥, and 1936 cannot be equal to 5 times any of these.
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If both are non-proper powers, then, since {v,_(X;,..., X,_1),v,_ (Y],

..,Y _ 1)) is cyclic, we have by Lemma 6 that v, _,(X,..., X, ;) =
v,_(Y,,...,Y,_ ). This together with (5.4) yields that v,_,(X,,..., X,_;)
=v,_(Y,,...,Y, ) = 1. This contradiction to our assumption completes
the proof. |

LEMMA 13. Suppose that {X,,..., X, is non-cyclic. Then v,(X,...,
X,) # 1. Furthermore, either v,(X,,..., X,) is not a proper power or it has
one of the following four forms:

960-400" =3
v,(X,, X)) and

X, =X,= =X, ,=1,
(Bl) v (X17~~~,X ) = forn even )
' ! 960-400(" =3
v(X,_1, X,) and
Xl =X2= cee =Xn_2=1’
forn odd;

v,( Xy, XH)MOWZ) and

Xy =X;==X,_,=1,
(B2)  0,(X,.....X,) = Jor n even
n n 4002
v,(X,, X)) and
Xy =Xy= - =X,_,=1,
forn odd;

576-400" =3
vy( X, -1, X)) and

Xy==X,,=X,=1,
(B3) v (X, X,) = peven
UZ(XI,XH_1)576'4°°( Y and
X2 = " =Xn72 =Xn = 1’
nodd;

v (Xpsoo s X)) =0, (X, Xqsoo ', X, ) and

(B4) "
X, =X,_.,=X,#+ 1
Remark. In view of Lemma 1 and the induction hypothesis of Lemma
13, v,(X,, X,_;) and v,(X,_,, X,) in (BD), v,(X,, X,) and v,(X,, X,) in
(B2), v,(X,_,, X)) and v,(X,, X,,_,) in (B3), and v, _ (X, X,,..., X, _{)
in (B4) are neither equal to the empty word nor proper powers.
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Proof. Closely follow the proof of Lemma 13 (n = 4) replacing refer-
ences to Lemmas 10, 11 (n = 4), and 12 (n = 4), and the Theorem (n = 3)
by references to the induction hypothesis of Lemma 13, Lemmas 8 and 11,
Lemma 12, and the induction hypothesis of the Theorem, respectively.
Different situations from Lemma 13 (n = 4) can possibly occur only in
Case II1.2 and Case III.5, which we reconsider below.

Case I12. {1 +#v, (X, |, Xy, Xsp---» X,_2,X,), 1 #v,_(X,, X,,
X3,y X,_5, Xy)) is cyclic, and v, _ (X}, X,,..., X, _) = 1.

° n—2°

Since v, _ (X, X,,..., X,_;) = 1, we have, by the induction hypothesis
of the Theorem, that

(5.5) (X, X5,..., X,_ is cyclic.

Also since {1 +#v, (X,_, Xp,...,X,_5, X)), 1#+0v, (X, X,,
X,_,,X;)) is cyclic, in view of Lemmas 8 and 11 and the induction
hypothesis of Lemma 13, this case is reduced to the following two cases:
@ both v, (X, , X5,..., X,_5, X,) and v, (X, X5, ...,
_,, X)) are proper powers;
(i) neither v, (X,_;, X5,..., X,
_,, X;) is a proper power.

X

n

_5, X,) nor v, (X,

1o

X,,...,
X

n

Case (i) is divided further into subcases according to the types of
v, (X,_1, X5, X0, X)) &0v,_(X,, X,,..., X,_,, X;) by the induc-
tion hypothesis of Lemma 13. However, the former word cannot be of type
(B3) or (B4), for this type together with (5.5) yields a contradiction of the
hypothesis of Lemma 13. For the same reason, the latter cannot be of type
(B1) or (B4). Also (B1) & (B2) and (B2) & (B3) cannot occur, for these
types yield a contradiction of the non-triviality of v,_(X,_;, X,,...,
X,_,, X,)and v,_(X,, X,,..., X,_,, X;), respectively. Thus, in Case (i),

only (B1) & (B3) and (B2) & (B2) need to be considered. This allows us to
follow the proof of Lemma 13 (n = 4) from here on.

Case 115. {1+v, (X, X5,..., X,_), 1#v,_(X,_1, X5, X5,...,
X)1+v, (X, X, X5,...,X,_,, X;)) is cyclic.

n

X

n—2»

In this case, to be able to keep following the proof of Lemma 13
(n = 4), it is sufficient prove the following

Ciam. 1=#v, (X, Xo,..0, X, D=0, (X,_ 1., X,_o, X,)=
v, (X, X,y X))

Proof of the Claim. If none of these is a proper power, then the
assertion follows immediately from Lemma 6. So assume that one of these
is a proper power. Then, in view of the induction hypothesis of Lemma 13
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and Lemmas 8 and 11, the other two also have to be proper powers. Here,
to avoid a contradiction of the non-triviality of these words, all of these
words must have the same type, either (B2) or (B4). The treatment of (B2)
is the same as in the Theorem (n = 4); if all of these words are of type
(B4), then we have X, = X,_, = X,_, = X, # 1, which proves the claim.
1

The proof of Lemma 13 is complete. 1

Proof of the Theorem. The additional property that v,(X,..., X,) =1
if and only if the subgroup {X,,..., X,) of F, is cyclic follows immedi-
ately from definition (1.4) of v,(x,,..., x,) and Lemma 13. Now supposing

1#v,(X,....,X,) =0v,Y,...,Y,), we want to prove that there exists a
word Z € F,, such that

Y, =7ZX,Zz"! foralli=1,...,n,

that is, we want to show that v,(x,,..., x,) is a C-test word. From here on,
repeat the proof of the Theorem (n = 4), replacing references to Lemmas
10, 11 (n = 4), and 13 (n = 4) and the Theorem (n = 3) by references to
Lemma 13, Lemmas 8 and 11, Lemma 13, and the induction hypothesis of
the Theorem, respectively. A situation different from that of the Theorem
(n = 4) can possibly occur only in Case I1.2.2, which we reconsider below.

Case 11.2.2. Both v,_(X,_,, X5, X5,..., X,_,, X,) and v,_ (X, X,,
X;, ..., X,_,, X,) are proper powers.

In view of Lemma 13, v, (X, _, X,5,..., X,_,, X,) &v,_(X,, X,,
..., X,_,, X;) has 16 possible types, of which it suffices to consider the
types involving (B4), namely, (B1) & (B4), (B2) & (B4), (B3) & (B4), (B4) &
(B4), (B4) & (B1), (B4) & (B2), and (B4) & (B3), since the consideration for
the remaining types is the same as in the proof of the Theorem (n = 4).
However, none of these types except for (B4) & (B4) can actually occur, for
these types except for (B4) & (B4), together with the hypothesis of Case
12 that (v, (X, 1, Xsroos X, 2. X,),0, (X, Xps-o s X, o, X)) is
cyclic, yield a contradiction to Lemma 8.

If (B4) & (B4) occurs, then the equality corresponding to the second one
of (4.10), namely,

1#u(v,_(X,_1, X5, X,

n

—2’Xn)’Un—l(Xn’XZ"“’Xn—Z’Xl))
= Su(Un_l(Yn_l,Yz,...,Y Y ,Un_l(Yn,Yz,...,Y,T_Z,Y])).S'_l

n—2°"%n
forces v,_(Y,_,Y,,....Y, ,,Y)&v,_(Y,,Y,,....,Y,_,,Y)) to have type
(B4) & (B4) as well. Thus, we have

X, =X, ,=X, ,=X,#1 and Y,=Y, ,=Y, =Y, #1,

n n
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which together with

X71=W2Y;171W27]’ X, =Wyt X72=W2Y;172W27]a

n n

X, = WY w, ',

corresponding to the equalities on the second line of (4.15), implies the
desired result. This completes Case 11.2.2. |

6. PROOF OF COROLLARY 2

We are now in a position to prove Corollary 2.

Proof of Corollary 2. Let ¢ and ¢ be endomorphisms of F, with
non-cyclic images. Take

Uy = U, (X, X005 %) and  uy = U, (X (s Xpmaseevs Xps Xy X1)-

Supposing ¢(u;) = ¢(u;), for i = 1,2, we want to prove ¢ = . By Corol-
lary 1, the equality ¢(u,) = ¢(u,) implies that

(6.1) ¢ =150, where(S,¥(u,)) is cyclic.

Here, it is sufficient to show S = 1 to draw the desired result. By (6.1), the
other equality ¢(u,) = (u,) yields that

P(uy) = p(uy) = Sp(uy)S™,

so that <S,¢(u,)) is cyclic. Then S =1 follows obviously from the
following

Cram.  {(u,), y(u,)) is non-cyclic.
Proof of the Claim. Putting X, = (x;), for all i =1,2,...,m, the

claim is equivalent to

(o (X1 Xy ooy X)) s Ui t( X 15 Xop—2s o+ -5 X1, X,,» X)) is non-cyclic.

— 1 Ay —

Since ¢ has a non-cyclic image, (X, X,,..., X,,> is non-cyclic. This
implies by the Theorem that

V(X1 Xpyooos X)) # 1 and 0, (Xpo 15 Xezo v os Xis X X)) # 1.
We treat the two cases separately.

Casel. v, (X,_1,X,_sr---, X;, X,,, X;) is nOt a proper power.

1 “*m
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In this case, v,(X;,X,,...,X,) cannot be of form (B4), for if
v,(X1, X,,..., X,,) were of form (B4) then X, = X,,_, = X,, # 1, which
forces v, (X,,_1, X;p_2s---» X, X, X;) to be a proper power of form
(B4), a contradiction. Then the claim follows from Lemmas 8 and 11.

CaseIl. v, (X, _{, X, _5,---,X;, X,,, X;) is nOt a proper power.

This case can occur only when m > 3, for if v,(X;, X,, X;) were a
proper power, then we should have X, = 1; hence (X, X,) is cyclic,
contrary to our assumption that ¢ has a non-cyclic image. It then follows
from Lemma 13 that v,,, (X,,_1, X,,_5,..., X;, X,,, X;) has one of four
types (B1)-(B4). Of these types, (B1) cannot occur, for (B1) implies
X,_1=X,_,= + =X, =1, contrary to the fact that (X, X,,..., X,,)
is non-cyclic. For a similar reason, (B2) cannot occur, either. On the other
hand, (B4) cannot occur when m = 3, for (B4) together with m =3
implies X, = X; = X, # 1, contrary to {X,, X,, X;) being non-cyclic.
When m > 4, (B4) implies that X,,_, = X,, = X, # 1, so that v,(X,, X,,
..., X,,) has type (B4) as well. Then the claim follows from Lemma 11.

It remains to consider type (B3). If v, (X,,_ 1, X—0r---» X1 X, Xp)
has type (B3), then we have that

Um+1(Xm X 727""X17Xm7X1)

-1 m
(6.2) 02( X1 Xm)576'400(M72), for m even
. Uz(Xm,Xm_1)576‘400(m72), for m odd,
and Xm72=Xm73= =X1=1.

Then (6.2) forces v, (X;, X,,..., X,,) to have type (B1); hence

9604000 =3
UZ(Xm ’Xm—l) ’

for m even
Um(Xl’X27Xm) = 960-400(m =3
U2(Xm717 Xm) ’

for m odd.

Now, by way of contradiction, suppose the contrary of the claim. It then
follows that

<02(Xm+], X,),0,(X,, Xm,1)> is cyclic,
and so by Lemmas 1 and 3 that

1< UZ(Xm—l’Xm) = UZ(Xm7Xm—1)‘
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Applying Lemma 2 to this equality yields the existence of T € F,, such
that

(6.3) X, ,=TX,T"' and X, =TX, T

Combining these equalities, we have that both (X, _,,T) and {X,,,T)
are cyclic. Here, if T # 1, then (X,,_,, X,,> is cyclic; if T =1, then
X,._1 =X, by (6.3). This together with (6.2) yields a contradiction of the
fact that (X, X,,..., X,,” is non-cyclic, which cimpletes the proof of the
claim. |

The proof of Corollary 2 is completed.
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