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This work was initiated by a question about associating suitable signs to odd-degree irreducible
characters in the symmetric groups Sn , posed by I.M. Isaacs and G. Navarro. The question is related to
their work [3].

The positive answer to the question is given below. It is in a sense the best possible and it involves
a special conjugacy class in Sn . The has led the author to a general definition of sign classes in finite
groups. This general definition is discussed briefly in Section 1. In Section 2 we consider special types
of sign classes in Sn and apply this to the Isaacs–Navarro question in Section 3. The final section
contains a general result on sign classes in Sn and some thoughts about a possible classification of
them.

1. Sign classes in finite groups

A sign class in a finite group G is a conjugacy class on which all irreducible characters of G take
one of the values 0, 1 or −1. Elements in sign classes are called sign elements.

Sign elements of prime order p may occur when you have a self-centralizing p-Sylow subgroup
of order p in G . This occurs for example for p = 7 in the simple group M11 which also has sign
elements of order 6. In SL(2,2n) there is an involution on which all irreducible characters except the
Steinberg character take the values 1 or −1. Thus this is a sign element. Non-central involutions in
dihedral groups are also examples of sign elements.
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Column orthogonality for the irreducible characters of G shows that a sign element s gives rise to
two disjoint multiplicity-free characters Θ+

s and Θ−
s which coincide on all conjugacy classes except

the class of s. They are defined as follows

Θ+
s =

∑

{χ∈Irr(G)|χ(s)=1}
χ and Θ−

s =
∑

{χ∈Irr(G)|χ(s)=−1}
χ.

An example for symmetric groups is given below.
Block orthogonality shows that if p is a prime number dividing the order of the sign element s

and if you split Θ+
s and Θ−

s into components according to the p-blocks of characters of G , then the
values of these components for a given p-block still coincide on all p-regular elements in G . This has
consequences for the decomposition numbers of G at the prime p.

2. Sign partitions

In this paper we are concerned with sign classes in the symmetric groups Sn . The irreducible
characters of Sn are all integer valued. Let P (n) be the set of partitions of n. We write the entries of
the character table X(n) of Sn as [λ](μ), for λ,μ ∈ P (n). This is the value of the irreducible character
of Sn labelled by λ on the conjugacy class labelled by μ.

We call μ ∈ P (n) a sign partition if the corresponding conjugacy class is a sign class, i.e. if [λ](μ) ∈
{0,1,−1} for all λ ∈ P (n). The support of a sign partition μ is defined as

supp(μ) = {
λ ∈ P(n)

∣∣ [λ](μ) �= 0
}
.

For example the Murnaghan–Nakayama formula ([5, 2.4.7] or [4, 21.1]) shows that (n) is al-
ways a sign partition. Indeed [λ](n) �= 0 if and only if λ = (n − k,1k) is a hook partition and then
[λ](n) = (−1)k . Using column orthogonality for irreducible characters this has as a consequence that
the generalized character

Θ(n) =
n−1∑

k=0

(−1)k[n − k,1k]

takes the value 0 everywhere except on the class (n) where is has value n.
For an arbitrary sign partition μ

Θμ =
∑

λ∈supp(μ)

[λ](μ)[λ]

is a generalized character vanishing outside the conjugacy class of μ and it is the difference between
disjoint multiplicity-free characters Θ+

μ and Θ−
μ . (See Section 1.)

Below is a list of all sign partitions for n = 2, . . . ,10:

n = 2: (2), (12);
n = 3: (3), (2,1);
n = 4: (4), (3,1), (2,12);
n = 5: (5), (4,1), (3,2), (3,12);
n = 6: (6), (5,1), (4,2), (4,12), (3,2,1);
n = 7: (7), (6,1), (5,2), (5,12), (4,3), (4,2,1), (3,2,12);
n = 8: (8), (7,1), (6,2), (6,12), (5,3), (5,2,1), (4,3,1);
n = 9: (9), (8,1), (7,2), (7,12), (6,3), (6,2,1), (5,4), (5,3,1), (5,2,12);
n = 10: (10), (9,1), (8,2), (8,12), (7,3), (7,2,1), (6,4), (6,3,1), (6,2,12), (5,4,1), (4,3,2,1).
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The sign partition (4,2) of 6 yields two characters of degree 20

Θ+
(4,2)

= [6] + [4,2] + [
22,12] + [

16],

Θ−
(4,2) = [5,1] + [

32] + [
23] + [

2,14]

coinciding everywhere except on the class (4,2) where they differ by a sign.
An important class of sign partitions are the unique path-partitions (for short up-partitions). They

are described as follows. If μ = (a1,a2, . . . ,ak) and λ are partitions of n, then a μ-path in λ is a se-
quence λ = λ0, λ1, . . . , λk = (0), of partitions, where for i = 1, . . . ,k λi is obtained by removing an
ai-hook in λi−1. Then we call μ is an up-partition for λ if the number of μ-paths in λ is at most 1.
We call μ is an up-partition if it is an up-partition for all partitions λ of n.

Proposition 1. An up-partition is also a sign partition.

Proof. This follows immediately by repeated use of the Murnaghan–Nakayama formula. If there is no
μ-path for λ, then [λ](μ) = 0. Otherwise [λ](μ) = (−1)k , where k is the sum of the leg lengths of
the hooks involved in the unique μ-path for λ. �
Remarks. 1. If μ = (a1,a2, . . . ,ak) is an up-partition with ak = 2, then also μ′ = (a1,a2, . . . ,ak−1,12)

is an up-partition.
2. If μ = (a1,a2, . . . ,ak) is an up-partition with k � 2, then also μ∗ = (a2, . . . ,ak) is an up-partition.

Indeed, if a partition λ∗ of n − a1 has two or more μ∗-paths then a partition of n obtained be adding
an a1-hook to λ∗ has two or more μ-paths.

3. The partition (3,2,1) is a sign partition, but not an up-partition, since there are two (3,2,1)-
paths in the partition (3,2,1). Also (4,3,2,1) is a sign partition, but not an up-partition, since there
are two (4,3,2,1)-paths in the partition (7,2,1).

Proposition 2. Let m > n. If μ∗ = (a1,a2, . . . ,ak) is a partition of n, and μ = (m,a1,a2, . . . ,ak) then μ∗
is a sign partition (respectively an up-partition) of n if and only if μ is a sign partition (respectively an up-
partition) of m + n.

Proof. Let λ be a partition of m +n. Since 2m > m +n, λ cannot contain more than at most one hook
of length m, e.g. by 2.7.40 in [5]. This clearly implies that μ∗ is an up-partition if and only if μ is
an up-partition. If λ has no hook of length m, then [λ](μ) = 0. If λ has a hook of length m, then
remove the unique hook of that length to get the partition λ1. Then [λ](μ) = ±[λ1](μ∗). If μ∗ is
a sign partition we get that [λ1](μ∗) ∈ {0,1,−1} and thus [λ](μ) ∈ {0,1,−1}. This shows that if μ∗
is a sign partition then μ is a sign partition. If μ is a sign partition and if λ1 ∈ P (n), then add a hook
of length m to λ1 to get a partition λ. Since by assumption [λ](μ) ∈ {0,1,−1}, the same is true
for [λ1](μ∗). �

It is an interesting question whether it is possible to recognize from the parts of μ, whether or
not μ is an up-partition or a sign partition. The final section of this paper contains results related to
this question.

However the above proposition suggests the following definition of a class of sign partitions, given
in terms of its parts.

If μ = (a1,a2, . . . ,ak) is a partition we call it strongly decreasing (for short an sd-partition) if we
have ai > ai+1 + · · · + ak for i = 1, . . . ,k − 1.

Remarks. 1. Obviously, if μ = (a1,a2, . . . ,ak) is an sd-partition with k � 2 then μ∗ = (a2, . . . ,ak) is
also an sd-partition.

2. The partition (3,12) is an up-partition, but not an sd-partition.
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Proposition 3. An sd-partition is an up-partition and thus also sign partition.

Proof. That an sd-partition is an up-partition is proved by repeated use of Proposition 2. �
Remark. The sd-partitions are closely related to the so-called “non-squashing” partitions. A partition
μ = (a1,a2, . . . ,ak) is called non-squashing if ai � ai+1 + · · · + ak for all i = 1, . . . ,k − 1. It is known
that the number non-quashing partitions of n equals the binary partitions of n, i.e. the number of
partitions of n into parts which are powers of 2 [2,9]. Let s(n) denote the number of sd-partitions
of n. Put s(0) = 1. Ordering the set of sd-partitions according to their largest part shows that

s(n) =
�(n−1)/2�∑

i=0

s(i).

Thus for all k � 1 we have s(2k − 1) = s(2k). Putting t(k) = 2s(2k) = s(2k − 1) + s(2k) it can be shown
that t(k) is then equal to the number of binary partitions of 2k.

Proposition 4. If μ = (a1,a2, . . . ,ak) is a sign partition of n then the number of irreducible characters λ with
[λ](μ) �= 0 is zμ , the order of the centralizer of an element of type μ in Sn. In particular, for an sd-partition
zμ = a1a2 · · ·ak.

Proof. Since the non-zero values of irreducible characters on μ are 1 or −1 this follows from column
orthogonality. �
3. The Isaacs–Navarro question

Some background for this may be found in [3].

Question (Isaacs–Navarro). Let P be 2-Sylow subgroup of Sn and Irr2′ (Sn) be the set of odd-degree
irreducible characters of Sn . Does there exist signs eχ for χ ∈ Irr2′ (Sn) such that the character

Θ =
∑

χ∈Irr2′ (Sn)

eχχ

satisfies that

(i) Θ(x) is divisible by |P/P ′| for all x ∈ Sn

and

(ii) Θ(x) = 0 for all x ∈ Sn of odd order?

This is answered positively by

Theorem 5. Write n = 2r1 +2r2 +· · ·+2rt , where r1 > r2 > · · · > rt � 0. Then μ = (2r1 ,2r2 , . . . ,2rt ) is a sd-
partition with support supp(μ) = Irr2′(Sn). Moreover Θμ satisfies the conditions (i) and (ii) above. Indeed Θμ

vanishes everywhere except on μ where it takes the value |P/P ′|.

Proof. Clearly μ is an sd-partition and thus a sign partition, which implies that Θμ vanishes ev-
erywhere except on μ where it takes the value zμ = 2r1+r2+···+rt . This is the cardinality of supp(μ)

(Proposition 4). If Ci is the iterated wreath product of i copies of the cyclic group of order 2 then Ci/C ′
i

is an elementary abelian group of order 2i . Since P � Cr1 × Cr2 ×· · ·× Crt we get |P/P ′| = 2r1+r2+···+rt .
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We need then only the fact that supp(μ) = Irr2′ (Sn). By [8, Theorem 4.1], supp(μ) ⊆ Irr2′ (Sn). (Since
we here know that non-zero values on μ are ±1, this also follows from a general character theo-
retic result [1, (6.4)].) On the other hand |Irr2′ (Sn)| = 2r1+r2+···+rt by [6, Corollary (1.3)], so that the
supp(μ) cannot be properly contained in Irr2′ (Sn). �
Remark. The results from [6,8] quoted in the above proof are formulated for arbitrary primes. How-
ever Theorem 5 does not have an analogue for odd primes. J. McKay has pointed out, that in [7] it
was shown that the partition μ of the theorem is a sign partition.

Example. In SL(2,2n) the 2-Sylow subgroup is self-centralizing. It has a unique conjugacy class of
involutions and 2n + 1 irreducible characters, all of which (with the exception of the Steinberg char-
acter) have odd degrees. The involutions are sign elements, so that Θt , t involution, vanishes on all
elements of odd order. The value on t is 2n . Thus this is another example of the existence of signs for
odd-degree irreducible characters such that the signed sum satisfy the conditions mentioned above.

4. Repeated parts in a sign partition

We want to show that repeated parts are very rare in sign partitions. Indeed only the part 1 may
be repeated.

Lemma 6. A sign partition μ cannot have its smallest part repeated except for the part 1, which may be
repeated once.

Proof. If 1 is repeated m � 2 times in the sign partition μ then [n−1,1](μ) = [m−1,1](1m) = m−1.

Thus m = 2. If b > 1 is the smallest part, repeated m � 2 times in μ, then [n − b,b](μ) = m. �
Theorem 7. A sign partition cannot have repeated parts except for the part 1, which may be repeated once.

Proof. We are going to assume that a is the smallest repeated part > 1 in the partition μ and that
the multiplicity of a in μ is m � 2. We want to determine a partition λ satisfying that all hook lengths
outside the first row are � a and in addition |[λ](μ)| � m.

Divide the parts of μ into

a1 � · · · � ai−1 (all greater than a) (sum s, say);
ai, . . . ,ai+m−1 (m parts all equal to a);
ai+m > · · · > ak (all parts smaller than a) (sum t , say). (However we allow ak−1 = ak = 1.)

We let μ0 = (ai+m, . . . ,ak), a partition of t .
By Lemma 6 we may assume that t > 0. An easy analysis shows that we may assume a � 4. (To

do this we just have to show that partitions on the form

(
2m,1

)
,

(
2m,12),

(
3m,2,1

)
,

(
3m,2,12),

(
3m,1

)
,

(
3m,12), m � 2,

are not sign partitions. For example [2m − 1,12](2m,1) = [2m,12](2m,12) = −m.)
First we notice that we need only consider the case that s = 0. Indeed, if λ′ is a partition of

n − s satisfying that all hook lengths outside the first row are � a and that |[λ′](μ′)| � m, where
μ′ = (ai, . . . ,ak) and λ is obtained by adding s to the largest part of λ′ then MN shows that
[λ](μ) = [λ′](μ′) and we are done. (Here and in the following MN refers to the Murnaghan–Nakayama
formula.) Thus we may assume that a = a1 is the only repeated part of μ, apart (possibly) from 1.

We have then n = ma+ t . Let for 0 � � � m, μ� be μ0 with � parts equal to a added. Thus μm = μ.
Now (n − a,1a) has only two hooks of length a so MN shows [n − a,1a](μ) = (−1)a−1[n −

a](μm−1) + [n − 2a,1a](μm−1) = (−1)a−1 + [n − 2a,1a](μm−1).
Inductively we get [n − a,1a](μ) = (m − 1)(−1)a−1 + [t,1a](μ1).
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If t � a then [t,1a] has only one hook of length a and we get [t,1a](μ1) = (−1)a−1[t](μ1) =
(−1)a−1 and consequently [n−a,1a](μ) = m(−1)a−1. Thus [n−a,1a] may be chosen as the desired λ.

Therefore we may now assume that a < t .
Consider then the case t < 2a so that t − a < a. There are exactly a partitions of t obtained by

adding an a-hook to the partition (t − a). Suppose that κi is obtained by adding a hook with leg
length i to (t − a). Here 0 � i � a − 1.

Since t < 2a each κi has only one hook of length a (e.g. by 2.7.40 in [5]). Removing it we get (t −a).
Note that κ0 = (t). By Theorem 21.7 in [4] the generalized character

∑a−1
i=0 (−1)iκi takes the value 0

on μ0, since μ0 has no part divisible by a. Choose a j > 0 such that (−1) j[κ j](μ0) � 0. (Clearly, the
(−1) j[κ j](μ0) cannot all be < 0, since the contribution from [t] is equal to 1 and a � 4.)

If 1 � j � 2a − t − 1 then the hook of length a in κ j lies in the first row. In this case let λ1 be
the partition (t,a − ( j − 1),1 j−1) of t + a. Then λ1 has two hooks of length a, one in row 1 with
leg length 1 and one in row 2 with leg length j − 1. If you remove the one in row 1 you get the
partition κ j and if you remove the one in row 2 you get κ0. MN shows that

[λ1](μ1) = (−1) j−1[κ0](μ0) − [κ j](μ0) = (−1) j−1(1 + (−1) j[κ j](μ0)
)
.

If 2a − t � j � a − 1 then the hook of length a in κ j lies in the second row. In this case let λ1 be
the partition (t,a − j,1 j) of t + a. Then λ1 has two hooks of length a, one in row 1 with leg length 0
and one in row 2 with leg length j. If you remove the one in row 1 you get the partition κ j and if
you remove the one in row 2 you get κ0. MN shows that

[λ1](μ1) = (−1) j[κ0](μ0) + [κ j](μ0) = (−1) j(1 + (−1) j[κ j](μ0)
)
.

Putting ε j = (−1) j−1 for 1 � j � 2a − t − 1 and ε j = (−1) j for 2a − t � j � a − 1, we then have

[λ1](μ1) = ε j
(
1 + (−1) j[κ j](μ0)

)
.

Let for � � 2 λ� be obtained from λ1 by adding (� − 1)a to its largest part. Thus the largest part of
λ := λm is n − a so that all hook lengths outside the first row are � a. We claim that |[λ](μ)| � m.

By MN we have for � � 2

[λ�](μ�) = [λ�−1](μ�−1) + ε j.

Thus

[λ](μ) = [λm](μm) = [λm−1](μm−1) + ε j

= [λm−2](μm−2) + 2ε j

and so on. This shows

[λ](μ) = [λ1](μ1) + (m − 1)ε j .

Thus

[λ](μ) = [κ j](μ0) + m(−1) j = ε j
(
m + (−1) j[κ j](μ0)

)
.

The choice of j guarantees that this has absolute value � m, so that μ is not a sign class.
A similar argument may be used in the case t � 2a. Then t − a � a and it is possible to add an

a-hook to the partition (t −a) in a +1 ways. Putting an a-hook with leg length i below t −a gives you
a partitions κi , i = 0, . . . ,a − 1. In addition we have the partition (t). Using again Theorem 21.7 in [4]
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we see that the generalized character
∑a−1

i=0 (−1)iκi takes the value −1 on μ0. It is possible to choose

a j � 0 such that (−1) j[κ j](μ0) � 0. Otherwise we would have −1 = ∑a−1
i=0 (−1)i[κi](μ0) � −a. We

then proceed as in the previous case. �
Corollary 8. If μ is a sign partition, then the centralizer of elements of cycle type μ is abelian. In short:
Centralizers of sign elements in Sn are abelian.

Remark. G. Navarro has kindly pointed out that there exists a group of order 32 containing a sign
element with a non-abelian centralizer.

Corollary 9. Suppose that n = 2r1 + 2r2 + · · · + 2rt , where r1 > r2 > · · · > rt � 0. The sign classes of
2-elements in Sn have for n odd (i.e. rt = 0) cycle type (2r1 ,2r2 , . . . ,2rt ). If n = 4k + 2 (i.e. rt = 1) we have in
addition (2r1 ,2r2 , . . . ,2rt−1 ,12). If n = 8k + 4 (i.e. rt = 2) we have in addition (2r1 ,2r2 , . . . ,2rt−1 ,2,12).

Proof. If a sign class of a 2-element in Sn does not have the type (2r1 ,2r2 , . . . ,2rt ), then by Theorem 7,
the part 1 has to be repeated twice. We have seen that (12) and (2,12) are sign partitions. Therefore
Proposition 2 shows that the other two cycle types listed in the corollary are indeed cycle types for
sign classes. For these values of n there can be no more sign classes. If n = 8k (i.e. rt � 3), then the
possibility that 2rt is replaced by 2rt−1 ,2rt−2 , . . . ,2,12 is excluded by Proposition 2 and the fact that
(4,2,12) is not a sign partition. �

Finally we formulate a conjecture about which partitions are sign partitions. It seems that sign
partitions are close to being sd-partitions.

We fix the following notation: μ∗ = (a1,a2, . . . ,ar) for some r � 2 is a partition of t and μ =
(a,a1, . . . ,ar) where a > a1.

Then μ is called exceptional if a � t and both μ and μ∗ are sign partitions and in addition the
partitions (ai,ai+1, . . . ,ar) are all sign partitions.

If we can determine the exceptional partitions, then we also know all the sign partitions. How-
ever there exist infinite series of exceptional partitions. Indeed it can be shown that the following
partitions are exceptional:

• (a,a − 1,1) for a � 2.
• (a,a − 1,2,1) for a � 4.
• (a,a − 1,3,1) for a � 5.

The author suspects strongly that these are the only infinite series of exceptional partitions and
would like to state the following conjecture.

Conjecture. Let μ = (a1,a2, . . . ,ak) be a partition. Then μ is a sign partition if and only if one of the following
conditions hold:

(1) μ is an sd-partition, i.e. ai > ai+1 + · · · + ak for i = 1, . . . ,k − 1.
(2) ai > ai+1 + · · · + ak for i = 1, . . . ,k − 2 and in addition ak−1 = ak = 1.
(3) ai > ai+1 + · · · + ak for i = 1, . . . ,k − 3 and in addition (ak−2,ak−1,ak) = (a,a − 1,1) for some a � 2.
(4) ai > ai+1 + · · · + ak for i = 1, . . . ,k − 4 and in addition (ak−3,ak−2,ak−1,ak) is one of the following

• (a,a − 1,2,1) for some a � 4;
• (a,a − 1,3,1) for some a � 5;
• (3,2,1,1);
• (5,3,2,1).

We hope to be able return to this conjecture later. Its verification would also easily imply a classi-
fication of up-partitions.
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