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Abstract

In this article, the variational formulation of the two-dimensional viscoelastic fluid motion problem and its
finite element approximation are considered. An local error estimate for the velocity with H'-norm and the
pressure with L?>-norm is obtained; and a uniform error estimate for the velocity and pressure with the above
norms is provided if the given data satisfies the uniqueness condition.
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1. Introduction

The Oldroyd’s mathematical model of the viscoelastic fluid motion is investigated. Such a model
(see [22]) can be defined by reological relation
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Here o is the deriator of the stress tensor and ¢ is the rate deformation tensor. Namely, & is an
n X n matrix with components

1 au,- au]
=3 (a+ a>
where u=u(x, t)=(ui(x,t),...,u,(x,t)) is the velocity of the fluid motion and ko, k1,70, 7, are positive
constants, and n = 2,3. If nok; = kony in the above relation, we shall obtain the Newton’s model of
incompressible viscoelastic fluid motion.

The reological relation and the motion equation in Cauchy form leads us to the following initial-
boundary value problem:

du _
ot
divu =0(t = 0,x € Q);

u=0(t = 0,x€0Q), u(x,0) =up(x) (x € Q);

(p,1>—/9p(x,r>dx—o,

t
sAu—I—(u-V)u—/ pexp{—d(t — s)}Auds + Vp = 1,
0

(1.1)

where

ko

_n %
ky’

&
k’

p= %(nokl — ko), o=
1

2 is an open bounded domain of points x =(x,...,x,) in R” with smooth boundary 0Q, p= p(x,t)
is the pressure of the fluid, /' = f(x,7) is the prescribed external force and uy = ug(x) is the initial
velocity. The last condition in (1.1) is introduced for the uniqueness of the pressure p. The problem
(1.1) is the generalization of the initial-boundary value problem for the Navier—Stokes equations and
is used as model in viscoelastic fluid motion (see [22,25]). We refer the readers to [17] for extensive
discussions on mathematical modeling involving in memory effects for viscoelastic fluid dynamics.

The problem (1.1) has been investigated in by Oskolkov and Kotsiolis in [19], where the La-
dyzhenskaja’s methods were applied (see [20]). These investigations were continued in the articles of
Agranovich and Sobolevskii [1-3], Sobolevskii [25,26], Orlov and Sobolev [23], and Cannon et al.
[7]. The above papers dealt with the questions of existence, uniqueness and continuous dependence
of the solutions upon the data. The results, local in time for » =3 and global in time for n = 2,
were established in [1,2,23].

The pair (u, p) is called the solution of problem (1.1) if their highest derivatives belong to
L*([0,T]; L*(Q)) for some T > 0 (local theorem) or for arbitrary T > 0 (nonlocal theorem), and the
equations and the initial-boundary conditions are satisfied in this sense. Furthermore, an asymptotic
series of the solution is constructed in [26], a spectral numerical method of the solution in the case
of the periodic boundary condition is considered in [7] and a continuous backward Euler in time
scheme has also been studied recently in [24].

Recently, the exponential convergence rate of (u(x, t), p(x,t)) to the steady-state solution (i(x), p(x))
was considered by Sobelevskii [24]. Also, the convergence to the steady state in the case of the
Navier—Stokes motion (or p = 0) in exterior domain was provided by Galdi et al. [8].
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Here (ii(x), p(x)) is a solution of boundary value problem

_(8+§> Aii + (i1 - V)il + Vp = foo, divii=0 (x€Q),

(1.2)
u=0 (x€0Q), (p,1)=0,

where foo(x) =lim,_ o f(x,1).
Remark 1.1. If the data v=2¢+ p/o and f satisfies the following uniqueness condition:

N |b(u, v,w)|

Sllfooll-1 <1, N= sup : (1.3)

2 wowex [[ulll[v]llwl|
then problem (1.1) admits a unique solution (%, p) € (H*(2)* N X, H'(2) N L3(2)) such that

Il + 12l < el foolliz and [l < v fooll-1- (1.4)
Here X = H}(Q)* with the norm ||u|| = ||Vul| 2, the trilinear form b(u,v,w) is defined in Section 2,

(fo0,0)
ol = sup (om0
vex vl

and ¢ > 0 denotes a constant depending on (2. Hereafter, we will denote by ¢ a generic constant
which may depend on the data (d,¢, p, Q).

Recently, He et al. [12] considered the power convergence of (u(x, ), p(x,¢)) to (i(x), p(x)) for the
two-dimensional viscoelastic fluid motion, where some important power convergence result were proved.

It is well known (see [13—15]) that it is very important to consider the error estimate uniform
in time of the numerical methods for solving the nonlinear evolution partial differential equations.
The error estimate uniform in time of a spectral method for solving the nonstationary Navier—
Stokes equations was obtained by Heywood [13] under the assumptions about the exponential
stability of a solution. The usual error estimate and error estimate uniform in time of finite ele-
ment approximation of the nonstationary Navier—Stokes problem with n = 2,3 were considered by
Heywood and Rannacher [14,15]. The discrete velocity u;(¢) and pressure p;,(¢) are determined
on conforming finite element space pair (X;, M) which is assumed to possess (at least) approx-
imate properties (4.2)—(4.4). With the above statements and the smooth assumptions of the data
(uo, [ f1) € (HY(Q)? N X,L¥(RT; L*(Q)%),L°(R*; L*(2)?) with divuy = 0, finite element solution
(un, pr) satisfies the following error estimates:

(1) — un(®)l| 1 + 2O (1) = pa(D)|l12 < weh (1.5)

for all #+ > 0, where 7(¢) = min{¢, 1} and x denotes a generic constant depending only on the data
(0, p,Q2,up, f). Moreover, some similar error estimates of finite element solution (u;, p,) for the
Navier—Stokes problem with finite time ¢ are obtained by Bernardi and Raugel [6], and Hill and Siili
[16].

In this paper, our purpose is to extend the error estimates (1.5) of the finite element method to the
viscoelastic fluid motion problem under the nonsmooth assumptions of the data (u, f,7"%(t)f,) €
(Hg(Q)*, L®°(RT; L*(2)?),L°(R"; L*(2)*)) with divuy = 0. Finite element solution (uy, p;) are de-
termined on finite element space pair (X}, M;,) which posses the approximate properties (4.2)—(4.4).
The similar estimates of finite element solution (u;, p;) is obtained. Furthermore, we also obtain the
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uniform error estimates for finite element solution (u;, p;) if the data (v, fo) satisfies uniqueness
condition (1.3).

Theorem 1.1. Assume that p = 0, the assumptions (A1)—(A2) on Q and the data (uo, f) stated
in Section 2 and the properties (4.2)(4.4) on the finite element space pair (X, M) stated in
Section 4 are valid. Then the following error estimates hold:

2Out) = un®) |1 + 1O p(6) = pa(D)]] 2 < k. (1.6)

Moreover, if the data (v, f) satisfies uniqueness condition (1.3), then finite element solution
(un, pn) satisfies the following uniform error estimates:

2O u(e) = u(O)l g + @) p() = pa(O)]|2 < xch, (1.7)

where 1 > 0 denotes a generic constant which depends only on the data (Q,¢,0, p,uq, ).

Remark 1.2. If we set p =0, Theorem 1.1 then gives the convergence results in the case of the
Navier—Stokes flow, where the uniform error estimate (1.7) was once derived by Heywood and
Rannacher in [15] under the assumption of the exact solution being exponential stable.

This paper is organized as follows. The abstract variational setting of the problem is given in
Section 2, and some simple regularities of the solutions needed in the next sections are derived in
Section 3, Finite element approximations of problem (1.2) is formulated in Section 4 under general
assumptions of the finite element spaces. The local and uniform H'-error estimate for discrete velocity
uy(t) and the L?-error estimate for discrete pressure py(¢) are derived in Section 5.

2. Functional setting of the viscoelastic fluid motion equations

Let Q be a bounded domain in R? assumed to have a Lipschitz continuous boundary 0Q and to
satisfy a further condition stated in (A1) below. For the mathematical setting of problems (1.1) we
introduce the following Hilbert spaces

X =H}(Q)Y, Y=L*Q? M=L)Q) = {q eLZ(Q);/ gdx = 0} .
Q
The spaces L?(Q)",n =1,2,4 are endowed with the L?-scalar product and L?-norm denoted by (-, -)
and | - |. The space Hj(Q) and X are equipped with their usual scalar product and norm
((1,0)) = (V, Vo), [|ul| = ((,u))"".
Next, we introduce the closed subset /' of X given by
V={veX;divv=0}
and we denote by H by the closure of V' in Y, i.e.
H={veY;divo=0, v-n|so=0}.

We refer the readers to [4,6,9,11,14,27] for more details on these spaces. We usually denote the
Stokes operator by 4 = —PA, where P denotes the L2-orthogonal projection of ¥ onto H.
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As mentioned above, we need a further assumption on 2:
(A1) Assume that the € is regular so that the unique solution (v,q) € (X, M) of the steady Stokes
problem

—vAv+Vg=g, divv=0 in Q, v|3o=0
for prescribed g € Y exists and satisfies

[vllz + llgll < <lgl,

where || - ||; denotes the usual norm of Sobolev space H(Q) or H'(Q)?, (i=1,2).
We remark that the validity of assumption (A1) is known (see [14,18]) if 0Q is of C?, or if Q
is a two-dimensional convex polygon. We also note that (Al) implies

|v|la < cldv| VveD(A) (2.1)
(see [14]). It is easily shown that
o <pollol® YoeX, [lv]? < yoldv?  Vve D), (22)

where D(4) = H*(Q)NV, 7 is a positive constant depending only on Q.
Moreover, we usually make the following assumptions about the prescribed data for problem (1.1):
(A2). The data (ug, f,7"%(t) f;) € (V,L¥(RT;Y),L>®°(R*;Y)) satisfies

[Juo|l + fg}g(\f(t)\ +1 2| f() < C

for some constants C.
Furthermore, we also introduce the bilinear operator

Bu,v)=(u-V)r+ %(div u)p Vu,veX.
We define the continuous bilinear forms a(-,-) and d(-,-) on X x X and X x M, respectively, by
a(u,v) =¢e((u,v)) VYu,velX, d(v,q)=(q,divv) YveX,geM.
Moreover, a trilinear form on X x X x X is defined by
b(u, v,w) = (B(u,v),w)y x = ((u- V)o,w) + 3((divu)v,w)
= %((u Vv, w) — %((u -Vw,v) Vu,o,weX.
It is easy to verify that b satisfies the following important properties (see [4,6,10,14,27]):

b(u, an) = _b(u’ W,U), (23)
|6, 0. w)| + 60w, 0, 0)] < el a2 [Jol] + ulllol] o] 2)Iwl 2 [lwl] 2, (24)
[b(u, v, w)| < N lull[[o]l]|wl] (2.5)

for all u,v,w €X, and
|60, u, w)| + [bOw, u, )] < cl[ol]'?|dv]"2|][|ul| w] (2.6)
for all ue X,ve D(4),weY.
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With the above notations, the variational formulation of problem (1.1) reads as
Find (u, p) € (X, M) such that for all (v,q) € (X,M):

(u,v) + a(u,v) + b(u, u,v) + J(t;u,v) — d(v, p) +d(u,q) = (f,v), 2.7

u(0) = uy, (2.8)

where

J(t;u,v)=p <e& /t e’ Au(t)dr, v) =p <<e‘5’ /t e "u(t)dr, v)) .
0 0

Eq. (2.7) contains the integral operator which designs the viscoelastic property. In order to proceed
some theoretical analysis and numerical analysis for the variational formulation (2.7) and (2.8), we
need the following useful lemmas:

Lemma 2.1. Assume that s > 0 and u,v € L'(0,s;X). Then,

/ J(t;u,e*u(t)) dt
0

s 2 s
/eéfu(r)dr +pzxo/ g 2!
0 0
holds.

Moreover, if u,v€ L'(0,s;D(A)) then,

2
dt (2.9)

—2000S8

t
/ e “u(t)dr
0

/ J(t;u, %" Au(t))dt
0

2
dt (2.10)

2 s t
—2008 —i—pOCo/ ef2ocot / GOTAZ/I(’L') dr
0 0

holds, and where 0 < 6y < %min{é, &/Y0}, 00 = 0 — do.

/ ¢ Au(t)dt
0

This proof follows easily from the integration by parts, which is omitted.

Lemma 2.2. Assume that s > 0 and uc L*(0,s;X). Then, the following inequality:

s 2 S t .
/ e u(t)dr|| dr+ / e 2! / e”u(t)dr
0 0 0

<’ / o lu(o)]? dt @.11)
0

2

o dt
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holds. Moreover, if uc L*(0,s;D(A)), then the following inequality:

2 s
dr + / g 2!
0

<oy’ / e*| Aul? dt (2.12)
0

2
dt

—1
%o

[ o
/ e Au(t) dr

0

/ e Au(t)dt
0

holds.

Proof. We prove only (2.11) since the proof of (2.12) is exactly similar. From the integration by
parts, we have
t
/ e u(t)dt
0

/S e—Zdot
0
1 S R 2 1 N t . N
- ¢ / e u(r)dr|| + — / e ! (( / ebfu(r)dr,ef’ofu(z)» dt
0 %o Jo 0
p 2 1/2 s 12
/ " u(r)dt dt) (/ 625()t’1/l(t)’2dz‘)
0 0

20(0
2

2
dt

—200S8

1 : —200t
< — e
%o 0

! / e u(t)dr
0

20(()

—2008
9

which gives (2.11). O
Lemma 2.3. Assume that s > 0, t¥2(t)u € L>(0,s;X) and u, € L*(0,5;Y). Then,

* k . 200t
2'/0 (I (6 u, % u (1)) de

2 Y
< k) leus)|P +2 2 <a0 +8+k+ p) / % |ul|* dt. (2.13)
8 %o € 0
Moreover, if T%(t)u € L>(0,s;D(A)), and u, € L*(0,s;Y), then

2 ' / L) (1 1, € Ay (1)) di
0

2 S s
< % t¥(5)[e Au(s)]> + 2 aﬁ <oc0 + 04k + f) / | Au(r)|? dt, (2.14)
0 0

where (1) =min{s, 1} and °(1) =1, k > 0.
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Proof. The proof of (2.13) is exactly similar to the proof of (2.14). Hence, we will only prove
(2.14). Using the integration by parts, we find that

2 / TR () J(t; u, € Au,(1))dt
0

_ ’ "o d o 20y k )
_2p/0 (/ e’" Au(t)dr, dt[e (1) Au,(t)] ) dt

0

N R . t
+2p / (6 — 280)th(t) — %rk(t)e_((’_z‘)")’ ( / % Au(t)dr, Aut(t)> dt
0 0
=2p1¥(s)e (07200 </ eéTAu(r)dr,Au(s)> — Zp/ t8(6)e*! | Au(t)|* dt
0 0

_ﬂpﬂiw_z%ﬁ%o—wiﬂnnv“ﬂ%ﬁ(AQ&A“”d“Awﬂ)dt

=1,(s) + D(s) + I(s). (2.15)

Thus, from the Cauchy inequality, Young inequality, Lemma 2.2 and the estimate
d
0<th(r) <1, 0< ar"(t) <k Vt>=0,
it follows that

()] < 2pT*(s)e™™* €% Au(s)

/ e Au(t)dt
0

. 40 5 ..
< g7:/‘(s)\¢.3‘)05Au(s)\2 + p/ e*®%| du(t)[* dr;
%€ Jo

|L(s)| =2p / % Au(t)|? dt;
0

S

S t
|(s)| < 2p(0 +k) (/ g 2! / e Au(t)dt
0 0

2 12 s 12
dt) ( / ezo°tAu]2dt>
0

2 S s
<Po+n / 20| 4u 2 dt.
%o 0
Therefore the above inequalities and (2.15) yield (2.14). O

Lemma 2.4 (Gronwall lemma). Let g,h, y be three locally integrable nonnegative functions on the
time interval [ty,00) such that for all t = t,

)+ Gi)< C+ /t h(t)dt + /t g(t)y(r)dr, (2.16)

to t
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where G(t) is a nonnegative function on [0,00), C = 0 is a constant. Then,

() + G(t) < <C + /t h(r)dr) exp (/t g(r)dr) . (2.17)

3. Regularity

In this section, we aim to derive the regularity of the solution (u, p) of problem (1.1).

Theorem 3.1. Suppose that assumptions (Al1)—(A2) are valid. Then the solution (u, p) of problem
(1.1) satisfies the following regularities:

()| + e / (| ul + || plf + ) de <, (3.1)
0
o(s)([4u(s))® + |u(s)* + || p)|}) + e~ / 20 (1) ||| dr < ¢ (32)
0
and
() ||ui(s)||* + e 2 / ()| Au* + |ua* + || pel[]) dt <k (3.3)
0

for all s = 0.

Proof. A similar argument to that used in [16,12,14] implies (3.1) and (3.2).
Moreover, differentiating (2.7) with respect to ¢, one finds

(uy,v) + p(Au,v) + a(u,,v) — d(v, p;) + d(u, q)
+b(uy, u,v) + b(u,u,v) = 0J(t;u,v) + (f1,v),V(v,9) € (X, M). (3.4)

Taking v = Au; and ¢ =0 in (3.4) and using the relation div Au; =0, we have
1d
2 dt
=0J (t;u, Au,(t)) + (f, Auy). (3.5)

From (2.2) and (2.6), we derive

(lul® + pldul®) + e|ldu|* + b(us, u, Auy) + b(u, uy, Auy )

&
|(ft:Aut)| < §|Aut|2 + C|ft|2a

&
B, Au)| + |Gty Aup)| < el Ju|[| 4] < gldu* + eldul® [u] P,

2
| (8w, Au(1))] < pe™

t
/ e Au(t) dt
0

t <
/ e”" Au(t) dt
0

Au, (1)) < g]Au,P t e



210 Y. He et al | Journal of Computational and Applied Mathematics 155 (2003) 201-222

Hence, we obtain from (3.5) and the above inequalities that
d
g lll” + plauf*) + eldu,

2

< ce 2 + | fo* + clAu)|u|* vt = 0. (3.6)

t
/ % Au(t) dt

0

Multiplying (3.6) by e**/7?(¢) and noting
d
0<7t(t)<1 and a(ezﬁofﬁ(t)) < 2(1 4 80)t(1), o(t)|Au(t)|* < «,
one finds

d . N o
de [ ()| + plAul®)] + ee® ()| Aur|* < ce®'o(t)| ]
r 2 )

e / & Au(r) | + ke (2(1) ][> + [AuP). 37
0

Integrating (3.7) for ¢ from O to s and using (3.1) and (3.2) and Lemma 2.2, we derive, after a

final multiplication by e 2%, that

72(8)||us(s)||* + ee2%0 / 2 e2(1)|Auy|* dt < k. (3.8)
0

Moreover, from (3.4) and (2.6), we obtain

() ugl? < e ()| Aurl? + [Aul |Ju]*)
2

et (0)(|Aul® + [ fi]?) + ce™>! (3.9)

t
/ e Au(t)dt
0
Next, from (2.2), (2.4)—(2.6), (3.4), (3.9) and the inf-sup condition (see [10,27]), we have
PO ([ual® + || 17 < e P(O)(|Aul® + |Aul?[Jur]*)

2

t
—|—C6250t‘[(t)(|14u|2 + |ft’2) + ce*ZCXot / e‘sTAu(T)dT (310)

0

Integrating (3.10) from 0 to s and using (3.1) and (3.2) and Lemma 2.2, we obtain, after a final
multiplication by e~2%’, that

72 [ @M + o) de < . G.11)
0

Hence, (3.3) follows from (3.8) and (3.11). I

4. Finite element approximation

Let &4 > 0 be a real positive parameter and 1, = 7,(£2) be a uniformly regular mesh of  made
of n-simplices K with mesh size #. We construct velocity-pressure finite element spaces (X;, M) C
(X, M) based upon the mesh 7, and define the subspace V, of X given by

V;,:{vh € Xy d(Uh,qh):O Vry, GMh}‘ (41)
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Let P,:Y — V}, denote the L2-orthogonal projection defined by
(Ppv, v) = (v,v3) YvEY, v, €X).

We assume that the couple (X, M;) satisfies the following approximation properties: for each
vED(A) and g € H'(2) N M, there exist approximations m,v €X;, and p,q € M, such that

d(v —mu,qr) =0 Vg, €My, |lv—mpl| < chldv],|q — prg| < chllq|1, (4.2)
together with the inverse inequality

ol < ch™Mou| Vo, € X (4.3)
and the so-called inf-sup inequality: for each r, € M, there exists v, € Xj,, v, # 0 such that

d(vn,qn) = Blanllloall, (4.4)

where f > 0 is a constant independent of A.
The following properties which are classical consequences of (4.2) and (4.3) (see [4,6,10,14,21,28])
will be very useful

|1Pyo|| < cllv|| YveX, |v— Pu| <chljv—Pu|| VveX, (4.5)
[v — Pyo| + h||lv — Ppo|| < ch*|Av| Vv e D(A), (4.6)
la = png| < chllglli YveH'(Q)NM. (4.7)

The standard finite element approximation of (2.7) and (2.8) based on (Xj,M,) reads: Find
(up, pn) €EHY(0,T;X;) x L*(0,T; M) YT > 0, such that

(e vn) + alun, v) + J (& up, vp) + b(up, up, vy) — d(vp, pr) + d(un, gn)
=(f,on) V(o qn) € (Xn, Mp), (4.8)

un(0) = Ppuy. (4.9)
By using a similar method to ones used in [6,20,10,14,27], we can prove the following existence,

uniqueness and regularity of the finite element solution (uy, py).

Theorem 4.1. Under the assumptions of Theorem 1.1, problem (4.8) and (4.9) possesses a unique
solution (uy, pp) such that

|un(s)|? +e—25°S/ P up()|)?dt <k Vs =0, (4.10)
0
lim sup [[us ()] < v | fooll-1- (4.11)

Proof. By using a similar method to ones used in [6,20,10,14,27], we can prove the following
existence and uniqueness of solution (u;, p,) for problem (4.8) and (4.9).
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Moreover, by taking (vj,g,) = €% (uy, p) in (4.8) and using (2.3), one finds

1d s 5
Ea(em"]uh(t)\Z) + e® ||uy ||* 4 J(t; up, €2 wy(2))
=e®'(f,up) + 00€ Juy | (4.12)
Due to
€ 2, Y0 ,2 € 2 e 2 2
< - — , = = — =0 ,
(Lo < Gl + Z17R Sl > 5 > dol

we derive from (4.12) that

d s € 5 S 2
@ (O + 5 s P+ 27 (15w (1)) < =2 £ (4.13)

Integrating (4.13) with respect to ¢ and using Lemma 2.1, one can obtain (4.10) after a final
multiplication by e=2%,

Moreover, by integrating (4.12) for ¢ from 0 to s, one finds, after a final multiplication by e=2%s,
that
|y, (s)[* + 2ge 20 / 2% ||up(2)||* dt + 2e2%* / J(t; up, €y (1)) dt
0 0
=25pe 2% / 20 |uy,(1)|? dt + 2728 / (£ uy) dt. (4.14)
0 0

Letting ¢ — oo in (4.14) and using the L’Hospital rule and noting

1imsup2e_25°5/ J(t;uh,ez‘%’uh(t))dt:Llimsup”uh(s)Hz,
0

§—00 605 §—00

it follows easily that

(54 %) tim sup [1s(5)|* = tim sup (£ (s). 14(5)) < [ f e |1 1im sup [y (s)]|

§—00 §— 00

which yields (4.11). O

Now, we give some examples of subspaces X;, and M, such that the assumptions (4.2)—(4.4) are
satisfied. Let Q be a convex polygonal domain and let {7;},# > 0, be a uniformly regular family
of triangulations of 2 made of n-simplices K with diameters bounded by 4. For any integer /, we
denote by P;(K) the space of polynomials of degree less than or equal to / on K.

Example 4.1 (Girault-Raviart [10]). We set

X, = {Uh € CO(Q)2 NX; U},|K €P2(K)2 VK € I'h},

My, = {ry € M;ry|x € Po(K) VK €7}
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Example 4.2 (Bercovier-Pironneau [5]). We consider the triangulation 7/, obtained by dividing each
triangle of 7, in four triangles (by joining the mid-sides). We set

X, = {Uh S CO(Q)2 NX; U;,|K 6P1(K)2 VK € ‘C;,/z},
My, = {g1 € C%(2) N M; gslx € Pi(K) VK €13}

Lemma 4.2. Under the assumptions of Theorem 1.1, the functions w,= — Py)u and r,=0—p) p
satisfy for t =0,

t
R w0 + ¢! / S (fwal® + 12 |Jwal|* + B [ra?) do < s (4.15)

0

o t o
(w0 + P {[wa)I* + 1 |ra(0)) + e / e 1(7)|w|* ds < rh*; (4.16)
0
o l P
( [ @ + o)l + h2|rht|2>dr) FREOWOP < B (@17
0

Proof. Eqgs. (4.15)—(4.17) follow from (4.5)-(4.7) and Theorem 3.1. O

5. The proof of Theorem 1.1

In this section, we aim to derive the error estimates (1.6) and (1.7) for the discrete velocity u,
with H'-norm and the discrete pressure p; with L>-norm stated in Theorem 1.1.

We write u — u, = wy, + e, where e, = Pyu — uy,, and p — p, =ry, + W, where w, = ppp — pi.
The proof of Theorem 1.1 will be completed by combining Lemmas 5.1 and 5.2 with Lemma 5.4
below and using the norm relation:

[ut) = un (|7 = lu(t) = un()? + u(t) — ()| Ve = 0.
5.1. Estimates of the velocity (1)

Lemma 5.1. Under the assumptions of Theorem 1.1, the following error estimates hold for all
s =0,

N
lu(s) — up(s)|* + e—”w/ e |u — uy||* dt < xe™h?. (5.1)
0

Moreover, if the data (v, [) satisfies uniqueness condition (1.3), then the following uniform error
estimates hold for all s = 0,

N
lu(s) — up(s)|* + 6_25‘“/ e ||u — uy||* dt < Kk (5.2)
0
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Proof. We subtract (4.8) from (2.7) and note
d(Wp,q) =d(u — Pyu,q) =0 Vg €M,
to obtain
(Pptty — upe, v) + a(u — up, v) + J(Gu — up,v) — d(v, p — pp) + d(u — up, q)
+b(u — up,u,v) + b(u,u — up,v) — b(u — up,u — up,v) =0 (5.3)

for all (v, q) € (X3, My,). Then, setting (v,q)=(en, tp) = (Pt — up, p p — pi) in (5.3) and using (2.3),
we have

1d
5&’%2 + &llen||” + alwn, en) + J(t; € + W, ()

+b(u, Wi, en) + b(en + wi, Py, en) = d(en, 14). (54)
Due to (2.2)—(2.6), (4.5) and Theorem 3.1, one finds

& &
EHehHZ = 270|eh(t)|2 > Solen(t)],
&
|b(u, Wi, en)| + [D(wh, Phuyen)| < cl|ul|||en]|||wal] < EHeth + llwall%,
e
|b(en, Phu,ep)| < C|eh|1/2Heh||3/2”Ph“HE”eh”2 + Klex|?,

&
laCwisen)] + ldCen | < gellenll + wClhwill® + Iral*),
t
/ e wy (1) dt
0

t
/ e wy (1) dt
0

Combining the above estimates with (5.4) yields

J(t; whyen(1))] < pe™

lea(D)]

2
< 1i6||eh||2 + ce !

d I
alehl2 + 230|en]* + EHehII2 +2J(t; en en(t))

t o
/ e wy (1) dt
0

Multiplying (5.5) by e**’ and integrating from 0 to s and using Lemmas 2.1, 2.2 and 4.2 and the
triangle inequality, we derive

8 S
625°S|u(s) —up(s)]* + > / 625°’Hu — || dt
0

2

2ot + K625°t]eh|2. (5.5)

< ke ||wy||* + ce”

< we®h? K/ e |u — uy|* dt. (5.6)
0
Applying Lemma 2.4 to (5.6) with

. t
y(t) = |e®en(t))?,  h(t) =k, C=0, G(t)= ; / &?%5||ep ()] ds,
0
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we obtain, after a final multiplication by e~2%, that
lu(s) — up(s)|* + e—m/ 2% ||u — up||* dt < kh?e™, (5.7)
0
which is (5.1).
Moreover, if the data (v, f) satisfies uniqueness condition (1.3), we will give new estimates for

some terms b(u, wy, e;) + b(e, + wy, up, e,) in (5.3) as follows:

|b(ut, Wiy, €5)| 4 [D(wWhy up, en)| < NJul| + [lun]Dl[wallllex ],
|b(en, un, en)| < NJus llexl|*.

Combining above estimates with (5.4) and using some previous estimates and Theorem 3.1 yields

d. .
ale"“’ehl2 +2(e = NuslDlle™ en]|* + 27 (2 en, " en(1))

[ o
/ e wy(1) dt
0

e (L4 [lug | )(wall + 7]l enl - (5.8)

< 2506250t’€h(l)’2 + Ceiaot HehH

Integrating (5.8) from 0 to s and using Lemmas 2.2 and 4.2, one finds, after a final multiplication
by e~2%, that

len(s)|? + e~ 2% / 2(& — N ||up|)||e™ en||* df + 2¢72%s / J(t; e, ey (1)) dt
0 0

s ‘ s 1/2
< 280e 2008 / e? e, ()| dt + Kch <e—20os / e?'(1 + Huth)Hethdt) : (5.9)
0 0
Letting s — oo in (5.9), using the L’Hospital rule and Theorem 4.1, we obtain
(v = Nv7 | fooll—1) lim sup|ex(s)||* < xhlim sup|ex(s)]|- (5.10)
§—00 §—00

Due to uniqueness condition (1.3), there holds

lim sup [|ex(s)||* < kA,

§— 00

which together with Lemma 4.2 and (2.2) yields

lim sup |u(s) — up(s)|* < lim sup (2|wi(s)|* + 270]|en(s)||*) < xh?. (5.11)

§—00 §—00

Combining (5.11) with (5.1) with finite time ¢ yields
lu(t) — up(t)]* < kh* ¥t = 0. (5.12)

Substituting the estimate (5.12) into (5.6) and multiplying it by e 2%, we obtain (5.2). [I
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5.2. Estimates of the velocity (II)

Lemma 5.2. Under the assumptions of Theorem 1.1, the following error estimates hold for t = 0,
S

o(s)||u(s) — up(s)||* + e_mos/ e (t)|uy — wpy|* dt < e, (5.13)
0

If the data (v, f ) satisfies uniqueness condition (1.3), then the following uniform error estimates
hold for t = 0:

o(s)[uCs) — un(s)> + e / (1), — ] dt < K. (5.14)
0

Proof. From (4.8) and (2.7), one finds
(epssv) + a(u — up,v) + J(t;u — up,v) — d(v, up) + d(epn,q) — d(v,ry,)
+b(u,u,v) — b(up, up,v) =0 Y(v,q) € (X, My). (5.15)
By taking v =ep, g = in (5.15), we have

1 ed
= (!eht\z-i- Hu_uth+J(l;u_uhaut(t)_uht(l))>

2 2d¢
d
—a(u — up, Wy) — a4 d(en, i) +d(en, i)
—J(t,u — up, wi(t)) + b(u, u, ey ) — b(uy, up, en ) = 0. (5.16)

Now, let us majorize the bilinear and trilinear terms in (5.16). Thanks to (2.2), (2.6), (4.4) and
(4.5), we find that

b(ua u, eht) - b(“/’l& Up, ehl)

=b(u — up,u, ep ) + b(u,u — up, ep ) — b(u — up,u — up, ey,
|b(u — Up, U, eht)| + ‘b(uau - uhaehl‘)|
< cldulllu — wy|lew| < glewl® + cldul*|lu — u%,
|b(u — up,u — up, ep )| < ch71/2||u — uhHm]u — uh|1/2\eh,|
< glewl® 4 ch™lu — up?lu —
lu — up|| < ||u— Puul| + ch™! |Ppu — up| < cllul| + ch71|u — up),
la(u — wp, wi)| + |d(en )] < c(llu — unl| + [walD)IWael P + [7ae])s

ot

| (t,u — up, wi(1))] < ce™ ([ Whel|-

/ l e (u(t) — uy(t))dr

0
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Combining the above estimates with (5.16) and using Theorem 3.1, we have

d
lewl? + -l — sl = 2dCen i) + 20 650 =y, 10 (6) = (1))

< el = wnll + walDlrl + ce™ [

/t e u(t) — up(t) de
0

+K(|Au|2 +h! lu — up| + h_2|u — uh|2)|]u — uh||2.

Multiplying (5.17) by e**'7(¢) and using Theorem 3.1 and noting

d ..
—a(ezbotf(f)d(eh,l”h))

= — e¥7(¢) % d(ep,ry) — (250‘5(0 + % r(t)) e d(ey, ry),

ld(enra)] < cllenlllr] < cllu—unll* + cllwall* + ¢lral®

yields
d ]
()™ Juy — [ + (2 (@l — w* = 2d(en, 7))

+21(8)J (5 1 — 1y, €2 (1) — (1))
< e ([lwall* + 17al* + T(@)wael* + @) [wael | + (@) |rne]*)

1?0 (1 + h_zlu — uh\z)Hu — uth
2
+ce—2o€ot

/ t e (u(t) — up(t)dr
0

217

(5.17)

(5.18)

Integrating (5.18) with respect to ¢ and applying Lemma 2.2, Lemmas 4.2 and 5.1, one finds,

after a final multiplication by 2%, that

/ ()] — e i+ 1(5) JuCs) — us(5)]?
0
20720 / WO (85— up, & (ur(1) — upe(1))) dt
0

t
< ke~ 20! / 25 (1 4 b2 |u — up|*)||Ju — up||* ds + kh* + ©(s)d(en(s), ra(s)).
0

Moreover, by the application of Lemmas 4.2 and 2.3 with £ =1, we have
©(s)d(en(s), ra(s)) < ct(s)([fuls) — un()|| + [wals)|DIra(s)|

< gas)\\u(s) — up(s)|]? + wh?,

(5.19)
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2672505‘

/ (61— 1y P (0 — w(0))) di

0

< %r(s)Hu(s) — up(9)|? + e / N — [P de
0
Combining the above estimate with (5.19) yields

62‘3‘”/ 625°tr(t)|ut — uhtlz dt + et(s)||u(s) — u;,(s)||2
0

S
< Kkh* + Ke_zéos/ (1 + h™2u — wy|*)||u — wy|? dt.
0

Applying Lemma 5.1 in (5.20), we have completed the proof of Lemma 5.2.

5.3. Estimates of the Velocity (III)

(5.20)

0

Lemma 5.3. Under the assumptions of Theorem 1.1, the following error estimate holds for all

s=0

S
T(s) u(s) — up(s)* + e_zéos/ 20 (1) ||ty — upe||? dt < weh2.
0

(5.21)

If the data (v, f ) satisfies uniqueness condition (1.3), then the following uniform error estimates

hold for s = 0:

S
rz(s)\u,(s) — uh[(s)|2 + 6_2()0S/ 625°t12(t)||ut - uht||2 dr < kh.
0

Proof. Differentiating (5.3) with respect to ¢ and using the fact:
d(u; — Prus,q) =0 Vg eM,,
gives

(enit> v) + alen + wpe,v) + p((u — up,v)) — d(v, W) + d(ens, q)

+b(u; — upe,u,v) + b(u, 1y — g, v) + b(u — up, up, v) + b(up, u — uy, v)

—b(u — up, up — vpe, V) — by — upg, u — Uy, v)
=0J(t;u — up,v) +d(v,rn)  Y(v,q) € (X, My).

By taking (v,q) = (eu, tyy) in (5.23) and using (2.3), we have
1d
2de

+b(u, Wi ene) + b(u — up, ug, ene) + b(ug, u — up, epr)

—b(u — up, Wi, epr) — b + Wit — up, epy)

=0J(t;u — up, ep) + d(€nss Y )-

len|* + &len||” + a(wn, en) + p((u — s ene)) + b(uy — upe, u, €4

(5.22)

(5.23)

(5.24)
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Now, let us majorize the bilinear and trilinear terms in (5.24). Thanks to (2.3)—(2.6), we find that
|a(wne, en)| + |d (e, ra)| < %‘%HZ + c(lwal* + [rul®),
Pl = s )| < Jgllew” + ellu— .
b(uy — g,y ene )| + | b(ut, 1wy — v, )|
< cldullleplfur = un| < %Hethz + cldul|us — upe |,
|b(u — upy iy, ene)| + |D(ug, ut — up, ey
< cllulllu = unllllen < %Heth2 + el Pl — unl?,
|D(Whes e — uny €ne )| + |B(u — tp, Wie, en)|
< cllu = wpl[[wael llen || < 1%II%H2 +ellull® + A2 — wa) w1,
|6Censu — s en)| < clen| " el u — w2 — |2 < %Hemll2

+eclu— ”h‘Z(H”HZ + hiz’” - ”h|2)(|ut - Mht’2 + ‘Wht‘z),

¢ _ b s
I (5 u — up, en(t))| < 176”6/"”2 +ce 250[/ &% |u — wy||* dx.
0
Combining above estimates with (5.24) and applying Theorems 3.1 and 4.1 yields
d
a|eht’2 + efuy — upe)?

< (1 + [fue P = unl® + QU+ 22| = un Y Dwael|* + |7l )
+xr(1 + |Au|2 + h_2|u — uh|2)|u, — u;,,|2

2

+ce 2 /t e (u(t) — up(1))dt (5.25)

0

Multiplying (5.25) by e**t>(¢) and applying Theorem 3.1 and noting
COllw®)” < w0l <,

we obtain
d <
3 (T O en[?) + a7 (1) g — w

2

— 200t + Kezdot(l + h—2’u _ uh|2)Hu _ uhH2

N

cC

/ t e (u(t) — up(1))dt
0

e (1 + B2 — ) ()| — wne* + O wael* + 1ral)). (5.26)
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Integrating (5.26) from O to s and applying Lemmas 2.2 and 4.2, we derive

S
rz(s)e%"s|ut(s) — u;,t(s)|2 + 8/ rz(t)eZOOtHut — uht||2 dr
0

< ke <h2 + sup |u(t) — uh(t)]2> + c/ 0 ||u — uy | dt
0

0<r<s
- / (1 2 — g )t — > + 2Ot — ) . (5.27)
0

—250.&‘

Applying Lemmas 5.1 and 5.2 in (5.27) and multiplying it by e , we have completed the proof

of Lemma 5.3. O

5.4. Estimates of pressure

We are now ready to give the error estimate of the pressure. The inf-sup condition (4.4) guarantees
that

d(v, (1))

()] < ¢ sup ————, (5.28)
0AvEX;, [|v]]
where, due to (5.3),
d(v, (1)) = (ue(1) — upe(t), v) + a(u(t) — up(t),v) — d(v,r;)
+J(t’ u— Uh,v) + b(u - l/lh,l/l,v)
+b(u,u — up,v) — b(u — up,u — up,v) Vv EX. (5.29)
In view of (2.5), Theorems 3.1 and 4.1 and (5.28) and (5.29), one finds
(0] ()] < e(@(®O)u(t) — ()] + 72O+ h = wy)u(e) — un(2)]
t 1/2
+72(0)|rp(0)]) 4 ce ! (/ e |u(t) — up(7)|? dr) vt > 0. (5.30)
0

Applying Lemmas 5.1-5.3 and Lemma 4.2 in (5.30) and the triangle inequality, we obtain the
following error estimates.

Lemma 5.4. Under the assumptions of Theorem 1.1, the following error estimate holds:
©(1)| p(t) — pu(t)| < ke"h Vit = 0. (5.31)

If the data (v, f ) satisfies uniqueness condition (1.3), then the following uniform error estimates
hold:

()| p(t) — pu(D)| < kh Yt = 0. (5.32)
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