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Neutrino and anti-neutrino states coming from the neutral current or Z0 decay are blind with respect 
to the flavor. The neutrino oscillation is observed and formulated when its flavor is known. However, 
it has been shown that we can see neutrino oscillation pattern for Z0 decay neutrinos provided that 
both neutrino and anti-neutrino are detected. In this paper, we restudy this oscillation via quantum 
field theory approach. Through this approach, we find that the oscillation pattern ceases if the distance 
between the detectors is larger than the coherence length, while both neutrino and antineutrino states 
may be coherent. Also the uncertainty of source (region of Z0 decay) does not have any role in the 
coherency of neutrino and antineutrino.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

While neutrino oscillation is a window to the new physics, it is 
one of the most interesting quantum mechanical phenomena. His-
torically, neutrino oscillation has been established more than 50 
years and confirmed experimentally more than 10 years [1]. The 
observation of neutrino oscillation depends on the coherency of 
neutrinos during the production, propagation and detection [2,3]. 
The production and detection coherence conditions are satisfied 
provided that the intrinsic quantum mechanical energy uncertain-
ties during these processes are large compared to the energy dif-
ference �E jk of different neutrino mass eigenstates:

�E jk ∼ �m2
jk

2E
� σE , (1)

where σE = min{σ prod
E , σ det

E }. This condition implies that, during 
the production and detection processes, one cannot discriminate 
the neutrino mass eigenstates. Conservation of the coherency dur-
ing the propagation means that the wave packets describing the 
mass eigenstates overlap from the production until the detection 
regions. The wave packets describing the different neutrino mass 
eigenstates propagate with different group velocities. After propa-

gating L, the separation of different mass wave packets is 
�m2

i j

2E2 L. 
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Consequently, the coherent propagation is guaranteed provided 
that

�m2
i j

2E2
L � σxν � v g

σE
, (2)

where v g is the average group velocity of the wave packets of dif-
ferent neutrino mass eigenstates and σxν is their common effective 
spatial width. In other words, similar to the double-slit experi-
ment, if one could determine which mass eigenstate is created or 
detected, the neutrino oscillation pattern would disappear. For in-
stance, conservation of energy and momentum implies that exact 
determination of energy–momentum of charged leptons leads to 
the determination of mass eigenstate of the corresponding neu-
trino (in fact exact momentum conservation causes neutrino state 
is entangled kinematically to the corresponding charged lepton 
state) and neutrino oscillation is ceased [4].

The kinematics analysis shows that a neutrino state created 
through charged current interactions has a specific flavor. For in-
stance, muon neutrino is created by the pion decay while muon 
decay gives only electron neutrino. In contrast, neutral current or 
Z 0 decay is blind with respect to the neutrino flavors. In other 
words, every flavor eigenstate as well as every mass eigenstate 
is created with the same probability. However, there is another 
property that is noticeable; neutrino and antineutrino states are 
entirely correlated in the sense that they have same flavor. It 
has been shown that if both neutrino and antineutrino are de-
tected, one can observe neutrino oscillation pattern between the 
detectors [5]. Nevertheless, if only either neutrino or antineutrino 
is detected, the neutrino oscillation is ceased; therefore, it is a 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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realization of the Einstein–Podolsky–Rosen paradox [6]. In the cen-
ter of mass frame, in particular, the oscillation pattern occurs at 
distance L + L̄, where L and L̄ are the distance of the neutrino 
and antineutrino detectors from the source, respectively. In this 
paper, we reanalyze it via quantum field theory approaches. In 
this approach, the oscillating states become intermediate states, 
not directly observed, which propagate between a source and a 
detector. The localization conditions are respected with attribut-
ing a localized wave function to interacting initial and final states 
in the source and detector [7–11]. Indeed, these localizations are 
essential for the observation of the neutrino oscillation and guar-
antee the coherence issues [4]. In the case of Z0 decay neutrinos, 
we will see the localization of source (region of Z0 decay) is not 
important while the localization of detectors plays role in the co-
herency condition of neutrino and antineutrino. Moreover, as was 
said in general, the coherency is spoiled during propagation be-
cause the group velocities of various mass eigenstates are different. 
Therefore, maybe one expects that when both neutrino and an-
tineutrino propagate coherently, it is possible to have oscillation 
pattern. However, we will show that it is necessary the distance 
between detectors to be smaller than the coherence length.

In the following, we develop Z0 decay neutrino oscillation 
through quantum field theory approach. Finally, we discuss on the 
coherency properties which appears through quantum field theory 
approach.

2. Developing neutral current neutrino oscillation through 
quantum field theory approach

We can describe any particle physics processes by S-matrix 
formalism in quantum field theory provided that it is adjusted 
according to the physical situations. In particular, to describe neu-
trino oscillation one needs to notice that neutrinos are produced 
and detected in confined space–time regions. The source and de-
tector regions are separated by a finite distance which is usually 
much larger than the size of these regions.

Neutral current neutrino oscillation consists of the following 
three processes:

• Creation neutrino and antineutrino in the source

Z0 → ν + ν̄.

• Detection of neutrino in the corresponding detector

ν + D I → D F + l−.

• Detection of antineutrino in the other detector

ν̄ + D̄ I → D̄ F + l+.

In order to define the initial and final states, the localizations of 
interactions in the source and detectors require to integrate on 
momentum with a localized distribution function around the cor-
responding averaged momentum. Therefore, the initial states are 
defined as follows:

|Z0〉 =
∫

[dp]F z(p,P)|Z0,p〉 ,

|D I 〉 =
∫

[dk]F D I (k,K)|D I ,k〉 ,

|D̄ I 〉 =
∫

[dk̄]F D̄ I
(k̄, K̄)|D̄ I , k̄〉 , (3)

where D I (D̄ I ) is target in the detectors of neutrino (antineutrino). 
[dp] denotes d3p

(2π)3
√

2E p
. The final states are written similarly as 

follows:
|D F 〉 =
∫

[dk′]F D F (k′,K′)|D F ,k′〉 ,

|D̄ F 〉 =
∫

[dk̄′]F D̄ F
(k̄′, K̄′)|D̄ F , k̄′〉 ,

|l−〉 =
∫

[dk′′]Fl−(k′′,K′′)|l−,k′′〉 ,

|l+〉 =
∫

[dk̄′′]Fl+(k̄′′, K̄′′)|l+, k̄′′〉 . (4)

Here, D F (D̄ F ) refers to created nucleon (antinucleon) in detec-
tor due to neutrino (antineutrino) collision. l− (l+) denotes the 
created charged lepton corresponding to neutrino (antineutrinos) 
in the detector. In the above defined states, F ’s are momentum 
distribution functions which are localized around the correspond-
ing mean momentum. The amplitude of the neutrino and anti-
neutrino production–propagation–detection processes is given by 
the following matrix element:

iAαβ = 〈D F , l−, D̄ F , l+|̂T e−i
∫

d4xHI (x) − 1|D I , D̄ I , Z0〉
= 〈D F , l−, D̄ F , l+|

× i

∫
d4x1

∫
d4x

∫
d4x2HI (x2)HI (x)HI (x1)|D I , D̄ I , Z0〉

= 1√
3

∑
j

U∗
α j Uβ j〈D F , l−, D̄ F , l+|iAp.w.

j |D I , D̄ I , Z0〉 , (5)

where T̂ is the time ordering operator and HI are the weak inter-
action Hamiltonian. The quantity Ap.w.

j is the plane-wave ampli-
tude of the process with the j’th neutrino and antineutrino mass 
eigenstate propagating between the source and the detectors and 
is written as follows:

iAp.w.

j (k,k′,k′′, k̄, k̄′, k̄′′)

= i

∫
d4x1

∫
d4x

∫
d4x2M̃ jD̄(k̄, k̄′, k̄′′)e−i(k̄−k̄′−k̄′′)x2

×
∫

d4q̄

(2π)4

/̄q + m j

q̄2 − m2
j + iε

e−iq̄(x2−x)M̃ j j Z (p)e−ipx

×
∫

d4q

(2π)4

/q + m j

q2 − m2
j + iε

e−iq(x1−x)

× M̃ jD(k,k′,k′′)e−i(k−k′−k′′)x1 , (6)

where M̃ ’s are the plane-wave amplitudes of the processes. It is 
convenient to switch to shifted 4-coordinate variables x, x1 and x2
defined according to

x1 → x1 + xD x2 → x2 + xD̄ x → x + xP ,

where the propagation times T and T̄ are defined by

tD − tP = T , tD̄ − tP = T̄ ,

and the propagation distances by

xD − xP = L, xD̄ − xP = L̄,

and we redefine

F (k) = f (k)eikxD �⇒ f (k) = F (k)e−ikxD .

Taking into account that

/q + m j =
∑

u j(q, s)ū j(q, s), /̄q − m̄ j =
∑

v j(q̄, s)v̄ j(q̄, s),
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we redefine the amplitudes (including spinors) correspond to the 
production and neutrino and antineutrino detection processes, re-
spectively, as follows:

M jj Z (p) = v̄ j(q̄)√
2q̄0

M̃ Z (p)
u j(q)√

2q0
,

M jD(k,k′,k′′) = ū j(q)√
2q0

M̃D(k,k′,k′′),

M jD̄(k̄, k̄′, k̄′′) = M̃D̄(k̄, k̄′, k̄′′)
v j(q̄)√

2q̄0
.

Substituting the initial and final state from (3) and (4) into (5) and 
using above issues, we have

Aαβ

= 1√
3

∑
j

U∗
α j Uβ j

∫
d4q

(2π)4

2q0

q2 − m2
j + iε

e−iq0 T +iq.L

×
∫

d4q̄

(2π)4

2q̄0

q̄2 − m2
j + iε

e−iq̄0 T̄ +iq̄.L̄

×
∫

[dp] f z(p,P)

∫
d4xei(q+q̄−p)x

∫
d4x1e−iqx1

∫
d4x2e−iq̄x2

×
∫

[dk] f D I (k,K)e−ikx1

∫
[dk′] f ∗

D F
(k′,K′)eik′x1

×
∫

[dk′′] f ∗
l−(k′′,K′′)eik′′x1

×
∫

[dk̄] f D̄ I
(k̄, K̄)e−ik̄x2

∫
[dk̄′] f ∗̄

D F
(k̄′, K̄′)eik̄′x2

×
∫

[dk̄′′] f ∗
l+(k̄′′, K̄′′)eik̄′′x2

× M jD̄(k̄, k̄′, k̄′′)M jj Z (p)M jD(k,k′,k′′) . (7)

Notice that the integration over x in the recent equation leads to 
the δ-Dirac function representing energy–momentum conservation 
in the source. Hereafter, we assume, for simplicity, the momentum 
wave functions of the initial and final states to be Gaussian which 
are sharply peaked around the corresponding averaged momentum 
similar to

f (p,pi) =
(√

2π

σp

)3/2

e
−(p−pi )

2

4σ2
p , (8)

where σp , width of momentum distribution, is assumed to be very 
smaller than the corresponding averaged momentum. Therefore, 
similar to the method presented in [7], the amplitude of the to-
tal process can be written as

Aαβ ∝ 1√
3

∑
j

U∗
α j Uβ j

∫
d4q

(2π)4

2q0

q2 − m2
j + iε

e−iq0 T +iq.L

×
∫

d4q̄

(2π)4

2q̄0

q̄2 − m2
j + iε

e−iq̄0 T̄ +iq̄.L̄

×
∫

[dp] f z(p,P)(2π)4δ4(q + q̄ − p)

×
∫

d4x1 exp

[
−i(q0 + E D I − E D F − El−)t1

+ i(q + K − K′ − K′′)x1
− (x1 − vD I t1)
2

4σ 2
xD I

− (x1 − vD F t1)
2

4σ 2
xD F

− (x1 − vl−t1)
2

4σ 2
xl−

]
×

∫
d4x2 exp

[
−i(q̄0 + Ē D I − Ē D F − Ēl+)t2

+ i(q̄ + K̄ − K̄′ − K̄′′)x2

− (x2 − vD̄ I
t2)

2

4σ 2
xD̄ I

− (x2 − vD̄ F
t2)

2

4σ 2
xD̄ F

− (x2 − vl+t2)
2

4σ 2
xl+

]
× M jD̄(k̄, k̄′, k̄′′)M jj Z (p)M jD(k,k′,k′′) , (9)

where σx ’s are the position uncertainties which are related to the 

momentum ones through σxσp ∼ 1

2
and v’s denote the group ve-

locities of the corresponding particles. Since the elements of ma-
trix M are smooth functions of the on-shell 4-momenta, whereas 
the wave packets of the external states are assumed to be sharply 
peaked at or near the corresponding mean momentum, one can 
replace M by their values at the mean momenta and pull out of 
the integral. Moreover, we define

E D I − E D F − El− = E D , Ē D̄ I
− Ē D̄ F

− Ēl+ = Ē D̄ ,

K − K′ − K′′ = KD , K̄ − K̄′ − K̄′′ = K̄D̄,

vD ≡ σ 2
xD(

vD I

σ 2
xD I

+ vD F

σ 2
xD F

+ vl−

σ 2
xl−

),

vD̄ ≡ σ 2
xD̄

(
vD̄ I

σ 2
xD̄ I

+ vD̄ F

σ 2
xD̄ F

+ vl+

σ 2
xl+

),


P ≡ σ 2
xP (

v2
P I

σ 2
xP I

+ v2
P F

σ 2
xP F

+ v2
l−

σ 2
xl−

),


D̄ ≡ σ 2
xD̄

(
v2

D̄ I

σ 2
xD̄ I

+
v2

D̄ F

σ 2
xD̄ F

+ v2
l+

σ 2
xl+

).

Therefore, using above issues and carrying out the integration over 
x1 and x2 one can write the amplitude as follows:

Aαβ ∝ 1√
3

∑
j

U∗
α j Uβ j M jD̄(K̄ , K̄ ′, K̄ ′′)M jj Z (P )M jD(K , K ′, K ′′)

× (2π)4
∫

d4q

(2π)4

2q0

q2 − m2
j + iε

e−iq0 T +iq.L

×
∫

d4q̄

(2π)4

2q̄0

q̄2 − m2
j + iε

e−iq̄0 T̄ +iq̄.L̄

×
∫

[dp] f z(p,P)δ4(q + q̄ − p)e−S(q)e− S̄(q̄) , (10)

where

S(q) = (KD + q)2

4σ 2
pD

+ [(q0 + E D) − |KD + q|vD ]2

4σ 2
pDλD

, (11)

and

S̄(q̄) = (K̄D̄ + q̄)2

4σ 2
pD̄

+ [(q̄0 + E D̄) − |K̄D̄ + q̄|vD̄ ]2

4σ 2
pD̄

λD̄

, (12)

with λD(D̄) ≡ 
D(D̄) − v2
D(D̄)

. Now, one should carry out the in-

tegration over the momentum of either propagating neutrino or 
propagating antineutrino. Here, we integrate over the momentum 
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of antineutrino. After applying the following change in integration 
variable

p − q = p′ �⇒ p = p′ + q �⇒ d3p = d3p′,
we have

Aαβ ∝ 1√
3

∑
j

U∗
α j Uβ j M jD̄(K̄ , K̄ ′, K̄ ′′)M jj Z (P )M jD(K , K ′, K ′′)

× (2π)4
∫

d4q

(2π)4

2q0

q2 − m2
j + iε

e−iq0 T +iq.Le−S(q)

×
∫

[dp′] f Z (p′ + q,P)e− S̄(p′)

× 2E p′

p′ 2 − m2
j + iε

e−i Ē j T̄ +ip′.L̄ , (13)

where Ē j = E p − q0, p′ 2 = Ē2
j − p′ 2. We perform the integral over 

p′ using the Grimus–Stockinger theorem [8]∫
d3p′ φ(p′)eip′.L

p′
a

2 − p′2 + iε
−→L→∞ −2π2

L
φ(p′

aL̂)eip′
a L,

where L̂ = L
|L| . This theorem is valid for a function φ which is dif-

ferentiable at least three times such that φ itself and its first and 

second derivatives decrease at least as 
1

p′ 2
as |p′| → ∞. Perform-

ing the recent stage, one can write the amplitude as follows:

Aαβ ∝ −2π2

L̄

1√
3

∑
j

U∗
α j Uβ j M jD̄(K̄ , K̄ ′, K̄ ′′)M jj Z (P )M jD

× (K , K ′, K ′′)(2π)4
∫

d4q

(2π)4

4q0(E p − q0)

q2 − m2
j + iε

e−iq0 T +iq.L

× e−S(q) f Z (p̄ j + q)e− S̄(p̄ j)e−i|p̄ j |L̄e−iE p T̄ eiq0 T̄ , (14)

in which |p̄ j | =
√

Ē2
j − m j

2. To carry out the integration over the 
neutrino 4-momentum, it will be more convenient for us to in-
tegrate first over q0 and then over the components of q. It is 
noticeable that since the pole at q0 = −E j + iε is not physical, 
the contribution to the integral is only given by the residue at the 
pole of the neutrino propagator at q0 = E j − iε . We obtain

Aαβ ∝ 4iπ2

L̄

1√
3

∑
j

U∗
α j Uβ j M jD̄(K̄ , K̄ ′, K̄ ′′)M jj Z (P )M jD

× (K , K ′, K ′′)(2π)4e−iE p T̄
∫

d3q

(2π)3
f Z (p̄ j + q)

× (E p − E j(q))e−iE j(q)(T −T̄ )eiq.Le−i|p̄ j |L̄

× e−S(q)e− S̄(p̄ j). (15)

The remaining integration over q can be done by using saddle-
point approximation at q = p j . We expand E j(q) about q = p j as 
follows:

E j(q) = E j(p j) + (q − p j)v j + . . . , (16)

where v j = ∂ E j
∂|q| at |q| = |p j|. Also S(q) + S̄(p − q) is expanded as 

follows:

S(q) + S̄(p − q)

= S(p j) + S̄(p̄ j) + 1 ∂2(S + S̄)

2
(q − p j)

2 + . . . , (17)

2 ∂q
where the first derivative of S + S̄ at q = p j vanishes and the sec-
ond derivative is given by

∂2(S + S̄)

∂q2
= 1

2σ 2
pD

+ (v j − vD)2

2σ 2
pDλD

+ 1

2σ 2
pD̄

+ (v j − vD̄)2

2σ 2
pD̄

λD̄

= � j .

(18)

Using the above issues, one can perform the integration over d3q. 
Consequently, the amplitude is obtained as follows:

Aαβ ∝ 4iπ2

L̄

1√
3

∑
j

U∗
α j Uβ j M jD̄(K̄ , K̄ ′, K̄ ′′)M jj Z (P )M jD

× (K , K ′, K ′′)(2π)4e−iE p T̄ (E p − E j) f z(P)e−iPL̄

× exp

[
−iE j(T − T̄ ) + ip j(L + L̄)

− ((L + L̄) − v j(T − T̄ ))2

2� j

]
× exp (−S(p j) − S̄(p̄ j)). (19)

The probability of the process is proportional to |Aαβ |2. In a prac-
tical experimental setting L and L̄ are usually fixed and known 
quantity while T and T̄ are not measured. Therefore, the probabil-
ity of detecting a neutrino with flavor α and an antineutrino with 
flavor β by the neutrino and antineutrino detectors located at the 
distances L and L̄ from the source, respectively, is obtained by the 
time average of |Aαβ |2, which leads to

Pαβ ∝ 1

3

∑
j,k

U∗
α j Uβ j UαkU∗

βk N j N
∗
k

× exp
{

i(p j − pk)(L + L̄) − (S(p j) + S̄(p̄ j))

− (S(pk) + S̄(p̄k)) − i(L + L̄)(E j − Ek)(�kv j + � jvk)

(�kv2
j + � jv2

k )

− (L + L̄)2(v j − vk)
2

2(�kv2
j + � jv2

k )
− (E j − Ek)

2� j�k

2(�kv2
j + � jv2

k )

}
, (20)

where

N j = 4iπ2

L̄
M jD̄(K̄ , K̄ ′)M jj Z (P )M jD(K , K ′)(2π)4

× e−iE p T̄ (E p − E j)e−ipa L̄ f z(P),

and N∗
j is its complex conjugate. Since we are concerned with 

relativistic neutrinos, we use the following approximations. The 
differences between the energies and momenta of various mass 
eigenstates are due to the thin splitting of masses. Hence, we ap-
proximate

E j � E + ρ
m2

j

2E
, (21)

in which E is the common neutrino energy when mi = 0 and ρ is 
determined from the energy–momentum conservation [12]. Equa-
tion (21) leads to the following approximations

p j � E + (ρ − 1)
m2

j

2E
, (22)

and

v j � 1 − m2
j
2
. (23)
2E
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Also, due to these approximations, one can easily show that

� j � 2ωσ 2
x , (24)

where σ 2
x ≡ σ 2

xD + σ 2
xD̄

and

ω ≡ 1 + σ 2
xD(1 − vD)2

σ 2
x λD

+ σ 2
xD̄

(1 − vD̄)2

σ 2
x λD̄

. (25)

Moreover, one can see that the relativistic approximation leads 
S + S̄ to be minimum. Therefore, in the relativistic approximation 
we obtain the following expression for the flavor-changing proba-
bility:

Pαβ ∝ 1

3

∑
j,k

U∗
α j Uβ j UαkU∗

βk N j N
∗
k exp

[
− 2π i

L + L̄

Losc
jk

− (
L + L̄

Lcoh
jk

)2

− 2π2ρ2ω(
σx

Losc
jk

)2
]
, (26)

with the oscillation length Losc
jk and the coherence length Lcoh

jk , for 
j �= k, given by

Losc
jk ≡ 4π E

�m2
jk

, Lcoh
jk ≡ 2

√
2ω

2E2

|�m2
jk|

σx. (27)

The exponent in the transition probability obtained for neutral cur-
rent neutrino includes three terms; the first term leads to the 
usual oscillation pattern between the detectors, the second term 
indicates that the coherency condition is satisfied provided that 
the distance between the detectors is not larger than the coher-
ence length and finally the third term shows that the position 
uncertainty due to the detection mechanisms must not be larger 
than the oscillation length. It is noticeable that

• the coherent propagation of both neutrino and antineutrino is 
not sufficient because the oscillation pattern is ceased if the 
distance between the detectors is larger than the coherence 
length. In fact, in quantum field theory approach, the conser-
vation of energy–momentum due to the integration over the 
coordinates of the Z0 decay vertex makes neutrino and an-
tineutrino propagators entirely entangled.

• the integration over the coordinates of the vertex of Z0 de-
cay gives energy–momentum conversation and the uncertainty 
of source is, practically, excluded from calculations. In other 
words, the source uncertainty does not play any role in the 
coherency of neutral current neutrinos and the detector un-
certainties are analogues to the production and detection un-
certainty in the case of he standard neutrino oscillation in the 
baseline L + L̄.
3. Summary and discussion

It has been shown that we can see neutrino oscillation pat-
tern for Z0 decay neutrinos provided that both neutrino and anti-
neutrino are detected [5]. In this paper, we restudy this oscillation 
and corresponding decoherence issues via quantum field theory 
approach. We should emphasis that although, detection of two 
neutrinos is far from the experiment, the theoretical study of the 
neutral current neutrino oscillation leads to some nontrivial view-
points about the theory of neutrino oscillation. In quantum field 
theory approach, neutrino and antineutrino are described by free 
propagators and the initial and final particle states are described 
by corresponding wave functions. The conservation of energy–
momentum due to the integration over the coordinates of vertex 
of the Z0 decay makes neutrino and antineutrino propagators en-
tirely entangled. Therefore, the coherency of individual neutrino 
and antineutrino is not enough for oscillation, but the distance 
between the corresponding detectors have to be smaller than the 
coherence length. The other important result is related to the un-
certainties of source and detectors; the source uncertainty does not 
play any role in the coherency of neutral current neutrinos and the 
detector uncertainties are analogues to the production and detec-
tion uncertainty in the case of he standard neutrino oscillation in 
the baseline L + L̄.
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