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We settle in the affirmative a question of Bhatia and Kittaneh. For

P and Q positive semidefinite n × n matrices, the inequality√
σr(PQ) � 1

2
λr(P + Q) holds for r = 1, 2, . . . , n.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

There is an enormous literature on generalizations of the two variable arithmetic geometric mean

inequality

√
ab � 1

2
(a + b) for a, b � 0

to the matrix setting, much of it associated with Bhatia and Kittaneh. In their 1990 paper [2], they

establish the inequality

σj(A
.B) � 1

2
λj(AA

. + BB.)
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for general compact operators A and B on a Hilbert space. For amatrixM or indeed a compact operator

on Hilbert space, σk(M) denotes the kth singular value of M and for a hermitian matrix or hermitian

compact operatorH,λk(H)denotes the kth eigenvalue bothwith the decreasing ordering. They studied

many possible variations in 2000 [3] and revisited the subject in 2008 [4]. In that paper, they put a lot

of emphasis onwhat they describe as level three inequalities. The following theorem settles positively

their key question in this area.

Theorem 1. For P and Q positive semidefinite n × n matrices, the inequality

√
σr(PQ) � 1

2
λr(P + Q) (1)

holds for r = 1, 2, . . . , n.

The analogous result is also true in the compact operator setting but we leave the verification of

this to the interested reader.

Bhatia and Kittaneh [4] point out that a consequence of (1) is that

||||AB| 1
2 ||| � 1

2
|||A + B|||

holds for all unitarily invariant norms ||| ||| and all A and B positive semidefinite.

In [3] they have already established (1) in the cases r = 1 and r = n.

2. An eigenvalue estimate for certain block matrices

Before attempting the proof of Theorem 1 we need to develop some preliminary material.

Let B and X be two positive definite matrices of the same size. Then the geometric mean of B and X

denoted by B#X is the unique positive definite matrix such that B = (B#X)X−1(B#X) or equivalently

X = (B#X)B−1(B#X). The geometric mean is given by the explicit formula B#X = B
1
2 (B− 1

2 XB− 1
2 )

1
2 B

1
2

or equivalently B#X = X
1
2 (X− 1

2 BX− 1
2 )

1
2 X

1
2 . It is symmetric, i.e. B#X = X#B. We refer the reader to

Bhatia’s book [1] for all details relating to the theory of this topic.

Proposition 2. Let B and X be positive definite r × r matrices. Let

R =
⎛
⎝ B (B#X)−1

(B#X)−1 X

⎞
⎠

a 2r × 2r matrix. Then λr(R) � 2.

Proof. For short, let S = B#X , then it is well-known and easy to check that

R1 =
⎛
⎝ B −S

−S X

⎞
⎠

is positive semidefinite. In fact, this matrix has rank r. Then

R − R1 =
⎛
⎝ 0 S + S−1

S + S−1 0

⎞
⎠ .

The eigenvalues of S + S−1 are clearly all� 2 since S is positive definite. The eigenvalues of R− R1 are

the eigenvalues of S + S−1 and their negatives. Hence R − R1 has exactly r eigenvalues � 2. It follows

that R has at least r eigenvalues � 2. �
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3. Calculations with characteristic polynomials

The following proposition is well-known and easily proved using Schur complements.

Proposition 3. Let M11, M12, M21 and M22 be r × r matrices and assume that M12 is invertible. Let

M =
⎛
⎝ M11 M12

M21 M22

⎞
⎠ .

Then det(M) = det(M12M22M
−1
12 M11 − M12M21).

Its corollary is

Corollary 4. Let M11, M12, M21, M22 and M be as above. Then

det(λI − M) = det
(
λ2I − λ(M11 + M12M22M

−1
12 ) + (M12M22M

−1
12 M11 − M12M21)

)
.

We can now prove the following proposition, whose significance will only be apparent later.

Proposition 5. Let A and B be r × r positive definite matrices, and let Z be an r × r matrix such that

BA(I + ZZ.)AB = I. Let

T =
⎛
⎝ A + B AZ

Z.A Z.AZ

⎞
⎠ . (2)

Then det(λI − T) = det
(
λ2I − λ(B + B−1A−1B−1) + (B−1A−1 − BA)

)
.

Proof. Note that the hypotheses imply that BA2B �L I or equivalently that A−1B−2A−1 �L I.

We first assume that Z is nonsingular. Then we will apply Corollary 4 with M = T . We note that

M12M22M
−1
12 = AZZ.AZ(AZ)−1 = AZZ. = B−2A−1 − A. Then

det(λI − T)

= det
(
λ2I − λ(A + B + AZZ.) + (AZZ.(A + B) − AZZ.A)

)

= det
(
λ2I − λ(A + B + AZZ.) + AZZ.B

)

= det
(
λ2I − λ(B + B−2A−1) + (B−2A−1B − AB)

)

= det
(
λ2I − λ(B + B−1A−1B−1) + (B−1A−1 − BA)

)

using a similarity at the last step. This completes the proof in the case that Z is nonsingular.

For the general case, we first observe that without loss of generality Z may be replaced by the

positive semidefinitematrixW = (A−1B−2A−1 − I)
1
2 . In fact, the polar decomposition of Z is Z = WU

where U is a unitary. It is now easy to check that

T =
⎛
⎝ A + B AWU

U.W.A U.W.AWU

⎞
⎠ and

⎛
⎝ A + B AW

W.A W.AW

⎞
⎠

are unitarily similar and therefore have the same characteristic polynomial.

Next, we approximate B by Bk = μkB where 0 < μk < 1 and where μk increases to 1. The corre-

sponding Wk = (A−1B
−2
k A−1 − I)

1
2 is now definitely invertible. One applies the previous argument

to the approximating sequence to obtain
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det(λI − Tk) = det
(
λ2I − λ(Bk + B

−1
k A−1B

−1
k ) + (B−1

k A−1 − BkA)
)

(3)

where

Tk =
⎛
⎝ A + B AWk

W.
k A W.

k AWk

⎞
⎠

Finally one passes to the limit as k → ∞ on both sides of (3) to obtain the desired result. �

Again, using Corollary 4 we have

Proposition 6. Let B and S be r × r positive definite matrices. Let X = SB−1S (so that S = B#X) and

R =
⎛
⎝ B S−1

S−1 X

⎞
⎠ .

Then det(λI − R) = det
(
λ2I − λ(B + B−1S2) + (B−1S2B − S−2)

)
.

The proof is left to the reader.

Theorem 7. Let A and B be r × r positive definite matrices, and let Z be an r × r matrix such that

BA(I + ZZ.)AB = I. Then

λr

⎛
⎝ A + B AZ

Z.A Z.AZ

⎞
⎠ � 2.

Proof. Let S = (B− 1
2 A−1B− 1

2 )
1
2 and let X = SB−1S as in Proposition 6 and R also as defined there. The

matrix T is as defined in Proposition 5. Then

det(λI − R)

= det
(
λ2I − λ(B + B− 3

2 A−1B− 1
2 ) + (B− 3

2 A−1B− 1
2 B − B

1
2 AB

1
2 )

)
(4)

= det
(
λ2I − λ(B + B−1A−1B−1) + (B−1A−1 − BA)

)
(5)

= det(λI − T)

using a similarity to get from (4) to (5). So R and T have the same eigenvalues. It now follows from

Proposition 2 that λr(T) � 2. �

It will not escape the reader that since in the above proof, R and T are hermitian matrices with

the same eigenvalues, then they must be unitarily similar. However this does not appear to be easy to

prove directly.

4. Resolution of the question

Proof of Theorem 1. First of all, we may assume without loss of generality that P is positive definite,

since the general case can be obtained by approximating with such matrices. Let us fix r in the range

1 � r � n and normalize so that σr(PQ) = 1. Our objective is then to show that λr(P + Q) � 2. We

restate σr(PQ) = 1 as λr(PQ
2P) = 1. Let the spectral decomposition of PQ2P be given by

PQ2P =
n∑

k=1

λk(PQ
2P)ek ⊗ e.

k
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where (ek) is an orthonormal basis. Then λk(PQ
2P) � 1 for k = 1, 2, . . . , r and λk(PQ

2P) � 1 for

k = r, . . . , n. We now define a positive semidefinite matrix Q1 by

Q1 =
⎛
⎝P−1

⎛
⎝ r∑

k=1

ek ⊗ e.

k

⎞
⎠ P−1

⎞
⎠

1
2

.

It follows that Q2
1 �L Q2. Next we use the fact that the square root is a matrix monotone function to

assert that Q1 �L Q . This is a special case of the Löwner–Heinz inequality see Zhan [6, Theorem 1.1]

or Donoghue [5] for matrix monotonicity issues. It follows that P + Q1 �L P + Q and if the statement

λr(P + Q1) � 2 is true then afortiori λr(P + Q) � 2. Hence we may always assume without loss of

generality that PQ2P is an orthogonal projection of rank r.

Since P is assumed invertible,we conclude thatQ has rank r. Splitting the underlying ambient space

as the direct sum of the image and kernel of Q , we can after applying a unitary similarity assume that

Q =
⎛
⎝ Q11 0

0 0

⎞
⎠ and P =

⎛
⎝ P11 P12

P.
12 P22

⎞
⎠

in block matrix form. Here the diagonal blocks are square, the first being of size r and the second of

size n − r. Note that P11 is necessarily invertible. Now since PQ2P is an orthogonal projection of rank

r, the same is true of QP2Q and we see that

Q11(P
2
11 + P12P

.

12)Q11 = I. (6)

Now let

P1 =
⎛
⎝ P11 P12

P.
12 P.

12P
−1
11 P12

⎞
⎠

Then P1 has rank r, satisfies both P1 �L P and QP2Q = QP21Q , so that λr(P +Q) � λr(P1 +Q). Hence,

we can and do assume that P22 = P.
12P

−1
11 P12 at the expense of no longer being able to assert that P is

necessarily invertible.

We now wish to obtain matrices A, B and Z for which Theorem 7 can be applied. The procedure

depends on the relative sizes of n and r.

• If n = 2r, we set A = P11, B = Q11 and Z = P
−1
11 P12.• If n < 2r, we set A = P11, B = Q11 and Z to be the matrix obtained by appending 2r − n zero

columns to P
−1
11 P12. We set P̃ and Q̃ to be thematrices obtained by appending 2r − n zero rows and

2r − n zero columns to P and Q respectively. The eigenvalues of P̃ + Q̃ are then seen to be those of

P + Q but with 2r − n zeros appended. Thus λr(P + Q) = λr (̃P + Q̃) and P̃ + Q̃ has the desired

form for T as in (2).
• Ifn > 2r, then r < n−r and rank(P12) � r. Therefore, there exists a (n−r)×(n−r)unitarymatrix

U such that P12U has its last n − 2r columns zero. Then the matrices Q and P are simultaneously

unitarily similar to the matrices Q and

P̃ =
⎛
⎝ P11 P12U

U.P.
12 U.P.

12P
−1
11 P12U

⎞
⎠

respectively. Therefore the matrices P + Q and P̃ + Q have the same eigenvalues. The matrices P̃

and Q have their last n− 2r rows and columns zero andwe define P̂ and Q̂ to be the corresponding

matrices with these rows and columns deleted. We set A = P11 and B = Q11. The matrix Z is taken

to be thematrix P
−1
11 P12U butwith the last n−2r columns deleted.We observe that the eigenvalues

of P +Q are those of P̂ + Q̂ but with n− 2r zeros appended. In particular λr(P +Q) = λr (̂P + Q̂).
Furthermore P̂ + Q̂ has the required form for T as in (2).
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We leave the reader to check (using (6)) that in all cases, the hypotheses of Theorem 7 are satisfied.

Applying Theorem 7 yields λr(P + Q) = λr(T) � 2 as required. �
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