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A nonsingular emergent universe cosmology can be realized by a nonconventional spinor field as first
developed in [1]. We study the mechanisms of generating scale-invariant primordial power spectrum of
curvature perturbation in the frame of spinor emergent universe cosmology. Particularly, we introduce
a light scalar field of which the kinetic term couples to the bilinear of the spinor field. This kinetic
coupling can give rise to an effective “Hubble radius” for primordial fluctuations which allows the scalar
field to become squeezed at large length scales and to form a nearly scale-invariant power spectrum.
We study the stability of the backreaction and constrain the forms of the coupling terms. Through a
generalized curvaton mechanism, these almost scale-independent fluctuations are able to be transferred
into curvature perturbation after the epoch of emergence and can thus explain cosmological observations.

© 2014 The Authors. Published by Elsevier B.V. Open access under CC BY license. Funded by SCOAP3.
1. Introduction

Inflation has become the most prevailing and successful model
of describing physics of very early universe [2] (also see [3] for
earlier work). It provides instructive clues of explaining concep-
tual issues of the hot Big Bang cosmology. In particular, inflationary
cosmology has predicted a nearly scale-invariant power spectrum
of primordial curvature perturbation which was confirmed by a
series of Cosmic Microwave Background (CMB) observations [4].
However, it was pointed out in [5] that inflationary cosmology still
suffers from the problem of the Big Bang singularity where con-
ventional knowledge about mathematics and fundamental physics
does not apply.

In past decades, alternative scenarios to inflationary cosmology
have drawn a lot of the cosmologists’ attention since some can be
as successful as inflation in explaining the very early universe but
they also avoid the initial Big Bang singularity (namely see [6] for
a recent comprehensive review). These models can be divided into
two categories. One is the bouncing cosmology in which the uni-
verse begins with the evolution of a contracting phase and then
experiences a nonsingular bounce to connect to the regular ther-
mal expansion [7–9]. Amongst many bounce models, the matter
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bounce [10,11] and the Ekpyrotic cosmology [12,13] are two rep-
resentative scenarios as explanations for the origin of the CMB and
the Large Scale Structure (LSS) of the universe.

In the literature there are various proposals to obtain nonsingu-
lar bounces, namely one can modify the gravitational theory as in
non-local gravity [14], Horava–Lifshitz gravity [15,16] and in tor-
sion gravity [17], or by introducing certain Null Energy Condition
(NEC) violating fields such as nonconventional fermions [18], ghost
condensate [19,20] or Galilean matter [21]. A bouncing phase can
originate from the structure of quantum spacetime such as in loop
quantum cosmology [22]. Particularly, in order to realize a nonsin-
gular bounce within the frame of Einstein gravity, it was shown
in [23] that the equation-of-state (EoS) of the universe has to ef-
fectively cross the cosmological constant boundary for a while at
early times, which is the so-called Quintom scenario [24]. This
type of bounce models was studied in detail in [25] and later was
reviewed in [26]. The combination of matter bounce and Quin-
tom scenario was achieved by virtue of a Lee–Wick scalar in [27].
This model nicely demonstrates that cosmological perturbations
generated in contracting phase can evolve through the bouncing
phase smoothly and eventually give rise to a scale-invariant power
spectrum of observable interest. The perturbation theory of bounc-
ing cosmology has recently been greatly developed in a series of
works, including the investigation of primordial non-Gaussianities
[28], the study of entropy fluctuations [29], and related reheating
period [30]. The dynamics of cosmological perturbations within the
pure Ekpyrotic cosmology were extensively studied in [31–33].
 Funded by SCOAP3.
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A second interesting nonsingular paradigm of very early uni-
verse is the so-called emergent universe cosmology [34,35], in
which our universe was emergent from a non-zero minimal
length scale and experienced a sufficiently long period of quasi-
Minkowski expansion to then begin the normal Big Bang expan-
sion. Motivated by string theory, the scenario of emergent universe
can be achieved in the string gas cosmology due to a Hagedorn
phase of a thermal system composed of a number of fundamental
strings [34]. Recently, the proposal of the Galilean model gives
rise to the Galilean Genesis which also leads to the emergent
universe scenario with an end of a big rip [36] (see [37] for
a discussion relating how the scenario suffers from an issue of
super-luminal propagation when a mater field is introduced). Phe-
nomenologically, the study of the causal generation of primordial
perturbation was developed in the setup of conformal cosmology
[38], the pseudo-conformal cosmology [39,40], and later the cos-
mology of Galilean Genesis [41], respectively. Moreover, various
deformed versions of the emergent universe cosmology were an-
alyzed in the literature, such as the processes of slow contraction
[12,42] and slow expansion [43], or connecting to inflationary cos-
mology [44] as well as the braneworld scenario [45].

The emergent universe scenario requires that the Hubble rate
approaches zero during an infinitely long period in the past, this
implies that the NEC violating field is needed at very early times.
This profound property was for the first time pointed out explic-
itly in [1]. It was verified by considering a parameterized Quintom
fluid and then explicitly realized by introducing a cosmic spinor
field. Embedding a nonconventional spinor field consistently into
a curved spacetime such as our universe, one can reconstruct the
potential of the cosmic spinor field according to the expected back-
ground evolution. This remarkable feature was earlier applied in
the study of dark energy models [46] and in inflationary cos-
mology [47]. The analysis of [1] shows that an enough long pe-
riod of emergent universe can be achieved if the potential of the
spinor field has another minimum in the ultraviolet (UV) regime.
Along with an extremely slow-expanding process during the quasi-
Minkowski epoch, the spinor field would exit the state of tachyonic
condensate and recovers the regular form of a massive fermion.
Then the universe gracefully exits to the normal thermal expan-
sion. This model, however, does not explain the origin of the CMB
and LSS as observed in experiments since the perturbations of the
spinor field form a blue spectrum.

In this Letter we study the possibility of generating a nearly
scale-invariant primordial power spectrum in the model of spinor
emergent universe. We propose a generalized curvaton mechanism
by introducing a second curvaton field which kinetically couples to
the spinor field. Although during the emergent universe phase the
background spacetime is almost static, the kinetic coupling term
can change the friction term of the curvaton. Depending on the
detailed form of the kinetic coupling, the curvaton field could feel
it is in a “de-Sitter”-like background or a “matter-contraction”-like
one. In both situations, a nearly scale-invariant power spectrum
of iso-curvature perturbations can be formed. Afterwards, these
iso-curvature fluctuations must be converted into curvature pertur-
bation. One way to achieve this is through the standard curvaton
mechanism by assuming a process of adiabatic curvaton decay.

The Letter is organized as follows. In Section 2, we briefly re-
view the model of spinor emergent universe. Then, in Section 3
we present two important issues existing in this model. To solve
these issues, we introduce a curvaton scalar field kinetically cou-
pled with the cosmic spinor field. Section 4 is devoted to the study
of the primordial perturbations of this curvaton field. In particu-
lar, we perform a detailed analysis of the curvaton fluctuation and
study the condition for producing a scale-invariant power spec-
trum. Then we reconstruct the form of the kinetic coupling as a
function of the scalar bilinear of the spinor field with the stability
issue being investigated. Numerical computation is performed in
Section 5 to examine the validity of the semi-analytical calculation
in the end of this section. In Section 6 we study the conversion
of the iso-curvature fluctuations into curvature perturbations by
virtue of a generalized curvaton mechanism. We conclude with a
discussion in Section 7. Throughout the Letter we take the sign of
the metric to be (+,−,−,−) and define the reduced Planck mass
by Mp = 1/

√
8πG .

2. The model of the spinor emergent universe

To start, we briefly review the emergent universe cosmology
realized by a nonconventional spinor field minimally coupled with
Einstein gravity [1]. The Dirac action in a curved spacetime back-
ground can be expressed as

Lψ = e

[
i

2

(
ψ̄Γ μDμψ − Dμψ̄Γ μψ

) − U (ψ̄ψ)

]
, (1)

where e is the determinant of the vierbein ea
μ . The Gamma matri-

ces Γ μ are defined under the Dirac–Pauli representation through
Γ μ ≡ eμ

a γ a , which satisfy the algebra {Γ μ,Γ ν} = 2gμν . Moreover,
the covariant derivatives of the spinor field and its Dirac adjoint
follow the relations below,

Dμψ = ∂μψ + Ωμψ, Dμψ̄ = ∂μψ̄ − ψ̄Ωμ, (2)

where the spin connection Ωμ ≡ 1
2 eν

a ∇μeνbΣ
ab is defined. Addi-

tionally, we have introduced the generators of the spinor repre-
sentation of the Lorentz group Σab = 1

4 [γ a, γ b].
By varying the Lagrangian with respect to the vierbein, we can

derive the energy stress tensor as follows,

Tμν = i

2
[ψ̄Γ(μDν)ψ − D(μψ̄Γν)ψ] − gμν

e
Lψ. (3)

Further, one can vary the Lagrangian with respect to the spinor
field and the adjoint, respectively, and then derive the equations
of motion, which are expressed as

iΓ μDμψ − U ,ψ̄ψψ = 0, iDμψ̄Γ μ + U ,ψ̄ψ ψ̄ = 0, (4)

where we have defined U ,ψ̄ψ ≡ ∂U/∂(ψ̄ψ). Note that, we assume
the potential of the spinor field is only a function of the scalar
bilinear ψ̄ψ in the case of interest.

Now we consider a spatially flat FRW universe with the metric
of

ds2 = dt2 − a2(t)dx2, (5)

and correspondingly, the vierbein are given by eμ
0 = δ

μ
0 , eμ

i = 1
a δ

μ
i .

To assume the spinor field is only time-dependent, the equations
of motion (4) simply yield [1]

ψ̄ψ = N
a3

, (6)

within the FRW background with a positively defined constant N .
Moreover, the combination of the equations of motion (4) and the
energy stress tensor (3) determines the energy density and the
pressure of the spinor field as follows,

ρψ = U , Pψ = U ,ψ̄ψ ψ̄ψ − U , (7)

as well as the corresponding EoS

wψ ≡ Pψ

ρ
= −1 + U ,ψ̄ψ ψ̄ψ

U
. (8)
ψ



Y.-F. Cai et al. / Physics Letters B 731 (2014) 217–226 219
The most profound property of this model is that, the EoS of
the spinor field can cross −1 by changing the sign of U ,ψ̄ψ and
thus naturally realizes the Quintom scenario. As has been pointed
out in Ref. [1], this property is the key element of achieving the
emergent universe solution. We follow the specific solution ob-
tained in [1] and briefly review the results. Note that, this scenario
involves the generation of an energy density accompanied with the
violation of null energy condition and would often lead to super-
luminal propagation speeds as shown in [48]. However, as we will
show in the perturbation section, the sound speeds of the back-
ground spinor field and a second matter field equal to the light
speed and thus avoid the super-luminal propagation issue.

The spinor emergent universe cosmology requires that the po-
tential for the spinor field is a conventional one like mψ̄ψ in the IR
regime but becomes of a nontrivial form in the UV regime. Namely,
if we consider in the UV regime, the potential is given by

U (ψ̄ψ) � 3M4
p

C2

[
1 − aαC

i

(
ψ̄ψ

N

) αC
3

]2

, (9)

where ai corresponds to the minimal value of the scale factor in
the emergent universe cosmology. The coefficient C is significant
in determining the energy scale of the occurrence of the emergent
universe phase. The other coefficient α, as will be discussed later,
is an important parameter to characterize how fast the universe
can exit the emergent universe phase.

In this model, the scale factor of the universe can be found to
take the following asymptotical form

a(t) � aE

(
1 + CeαMpt

1 + 2
3αC

) 1
αC

, (10)

in the UV regime, but takes a regular power function of cosmic
time after the emergent universe phase. The coefficient aE is the
value of the scale factor at the moment of exiting the emergent
universe phase tE. It is related to the minimal value of the scale

factor through aE = ai(1+ 2
3 αC)

1
αC . Note that, if the universe enters

a matter dominated phase after the moment tE, then we have a ∼
(t − t̃E)

2/3. In this case, we can get the background EoS and the
Hubble parameter as follows,

wψ = −2α

3
e−αMpt, H = Mp

(C + 3
2 Mpt) + e−αMpt

. (11)

From the expression of the Hubble parameter, one can learn that
H reaches the maximal value at the moment tE with

tE = ln(2α/3)

αMp
, HE = 2αMp

3 + 2αC + 3 ln 2α
3

. (12)

The above model can give rise to a emergent universe solution
with a dust-like expansion following the emergent universe phase.

3. Emergent universe involving a scalar field

The model of spinor emergent universe is analytically and nu-
merical solvable on the background dynamics, as illustrated in pre-
vious section. However, there exist two issues that deserve to be
addressed. One is that the cosmological solution does not admit
a reheating phase to drive the universe into thermal expansion.
The other issue is related to the generation of primordial pertur-
bations. In the second part of the appendix of [1], it was found
that during the emergent universe phase, the perturbations of the
spinor field stays as vacuum fluctuations and cannot get squeezed
since the background universe looks like a quasi-Minkowski one.
Therefore, a pure spinor emergent universe scenario is not enough
to explain the generation of anisotropies and inhomogeneities ob-
served in the CMB and the LSS.

To solve the above issues, we introduce a second scalar field χ
which kinetically couples to the spinor field. The basic idea is sim-
ilar to the curvaton mechanism that [49], the second field χ does
not affect the background solution but is only responsible for the
generation of primordial power spectrum in agreement with cos-
mological observations. In particular, we consider the Lagrangian
of the curvaton field as follows,

Lχ = 1

2
Y(ψ̄ψ)∂μχ∂μχ −F(ψ̄ψ)V (χ), (13)

where Y and F are functions of the scalar bilinear ψ̄ψ . The scalar
field is free of ghost by requiring Y to be positive-definite.

Varying the Lagrangian with respect to the metric yield the ef-
fective energy density and the pressure of the curvaton field, which
are given by

ρχ = Y
2

χ̇2 +FV (χ),

Pχ = Y
2

χ̇2 −FV (χ) − Y,ψ̄ψ

2
ψ̄ψχ̇2 +F,ψ̄ψ ψ̄ψ V , (14)

where the dot represents for the derivative with respect to the
cosmic time. The last two terms in the expression of the pressure
are contributed from the variation with respect to the spinor field.

Additionally, we vary the Lagrangian with respect to χ and then
derive the equation of motion for the curvaton field as follows,

χ̈ + (a3Y)·

a3Y
χ̇ + F

Y
V ,χ = 0. (15)

Note that, the friction term is not of the form 3H but also depends
on the coefficient Y due to the kinetic coupling. This term could
become important in the phase of emergent universe as the scale
factor in nearly constant.

Since we expect this scalar plays the role of the curvaton that
does not affect the background dynamics, the energy density of
the χ field has to be subdominant in the emergent universe phase
and so is the pressure of the curvaton. These impose theoretical
constraints on the model under consideration.

4. Cosmic perturbations

In this section, we proceed to study the primordial pertur-
bations generated from the curvaton field in the spinor emer-
gent universe cosmology. At linear order, the Fourier mode of the
field fluctuation evolves independently. Thus it is useful to track
the evolution of each mode along with the background evolu-
tion. A causal generation mechanism of primordial fluctuations
requires that, the physical wavelength of the fluctuation has to be
sub-Hubble at very early times and then evolves to super-Hubble
scale. In inflationary cosmology, it can be achieved by stretching
the wavelength exponentially due to the inflationary process. In
nonsingular bouncing cosmology, one can realize the similar sce-
nario by decreasing the Hubble radius in the contracting phase. We
sketch the dynamics of primordial perturbations in the emergent
universe cosmology in Fig. 1.

From Fig. 1, all the perturbation modes (the green lines) we are
interested in originate in the sub-Hubble regime since the Hubble
parameter converges to zero in the emergent universe phase. Along
with the rapid growth of the Hubble parameter, the perturbations
are able to exit the Hubble radius (the blue line) and propagate for
a while before finally reentering at late times during the period of
regular thermal expansion. The whole evolution of the fluctuations
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Fig. 1. A sketch plot of the dynamics of cosmological perturbations in the nonsin-
gular emergent universe. The vertical axis is the physical spatial coordinate xph,
and the horizontal axis is the cosmic time t . The physical wavelength λph = a/k of
the mode with comoving wavenumber k is depicted in green; the Hubble radius
λH = H−1 is depicted in blue; the effective “Hubble radius” in the emergent uni-
verse phase is depicted by the purple dashed line; and the red line denotes the
Planck length λp = M−1

p . (For interpretation of the references to color in this figure,
the reader is referred to the web version of this Letter.)

can be separated between the time tE into two phases: the pri-
mordial era of the emergent universe phase when the scale factor
is nearly constant and the evolution in the post-emergent universe
phase, respectively. However, one can easily observe that the wave-
length of one perturbation mode does not change in the emergent
universe epoch. It implies that the scale dependence of the ex-
pected power spectrum cannot be explained by the mechanism
of exiting the Hubble radius. Instead, we would expect that there
should exist an effective “Hubble radius” (the purple dashed line)
which can alternatively produce the scale dependence of the per-
turbation. As we will discuss later, this radius can be obtained by
introducing the kinetic coupling on the curvaton field.

As a side remark, since the wavelength of the perturbation
mode is frozen in the emergent universe phase, the minimal wave-
length of observable interest could be comparable with the Hubble
radius at the moment tE. Thus, it is larger than the Planck length
(the red bottom line) provided that the energy scale of the emer-
gent universe is sub-Planckian. This is a necessary requirement for
the validity of the perturbation theory applied in the Letter. This is
a significant advantage compared to inflationary cosmology where
the wavelength of primordial fluctuation becomes smaller than the
Planck length at the beginning if inflation lasted more than 70
e-foldings [50]. In our model, provided the energy scale of the
universe at the bounce is lower than the Planck scale, then the
physical wavelength of a perturbation mode corresponding to the
current Hubble radius is in the far infrared, as shown in Fig. 1.

4.1. Fluctuations of the curvaton field

We perturb the curvaton field by δχ and work with the con-
formal time defined by dτ = dt/a. It is important to focus on the
canonically normalized perturbation variable:

vχ ≡ zδχ, z ≡ aY
1
2 , (16)

in terms of which quantum vacuum initial conditions can be im-
posed at very early times. We work on the spatially-flat slice
where the metric fluctuation of scalar type vanishes. On this slice,
one can expand the action of the curvaton field up to quadratic
order as follows,
S(2)
χ =

∫
dτ dx3 1

2

[
v ′ 2
χ − (∂i vχ )2 − M2 v2

χ

]
, (17)

with

M2 ≡ a2 F
Y

V ,χχ − z′′

z
, (18)

being an effective mass square term for the curvaton fluctuation.
To deal with the above perturbation system, it is useful to make

a Fourier transformation and track the evolution of one Fourier
mode. One can easily derive the equation of motion for the curva-
ton fluctuation with a fixed comoving wave number k as

v ′′
k + (

k2 + M2)vk = 0. (19)

To be explicit, we expand the effective mass square term as fol-
lows,

M2 = a2 F
Y

V ,χχ − a′′

a
− 2H

(Y 1
2 )′

Y 1
2

− (Y 1
2 )′′

Y 1
2

, (20)

where H ≡ a′/a is the conformal Hubble parameter. The last two
terms are generated due to a kinetic coupling Y(ψ̄ψ). Note that,
during the phase of emergent universe, the scale factor a is al-
most constant and therefore the second and third terms in Eq. (20)
become negligible. In order to make sure the model under consid-
eration is free of tachyonic instability when siting on the vacuum
state, one needs the first term F

Y V ,χχ to be positive-definite. As
a result, the only possible term that can determine the squeezing
process of the perturbation and the corresponding scale depen-

dence comes from (Y 1
2 )′′/Y 1

2 . Correspondingly, we would like to
introduce an effective “Hubble radius” as

λeff ≡ a/Heff = a
Y 1

2

(Y 1
2 )′

, (21)

which can mimic the conventional Hubble radius in the causal
mechanism of generating fluctuations in the primordial era.

Initially, the k2 term dominates Eq. (19). We can neglect the
effective mass square term. Thus, the dynamics of the curvaton
fluctuation exactly corresponds to a free scalar propagating in a
flat spacetime. A natural choice of the initial condition takes the
form of the Bunch–Davies vacuum:

vk � e−ikτ

√
2k

, (22)

where we take τ → −∞ as the initial moment. During the phase
of emergent universe, we expect the quantum fluctuations can exit
an effective “Hubble radius” λeff and become classical perturba-
tions. We specifically consider the case:

V (χ) = 1

2
m2χ2, (23)

with m � HE to be required. We keep the form of Y to be undeter-
mined. In order to obtain a nearly scale-invariant power spectrum,
one expects that Eq. (19) can be simplified as follows,

v ′′
k +

(
k2 − 2

τ 2

)
vk � 0, (24)

while the mass term has been neglected. The second term inside
the parentheses on the left hand side of the above equation is
the term which can lead to the squeezing of the curvaton fluctua-
tions. The coefficient and time dependence is exactly that required
to transform a blue vacuum spectrum into a scale-invariant spec-
trum.
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To satisfy the above requirements, we find there exist two pos-
sible solutions to the kinetic coupling term Y , which are given by

Y = (−HEτ )−(2+2ε) or Y = (−HEτ )4+2ε, (25)

respectively. The coefficient ε is a small quantity which is intro-
duced to slightly tune the scale dependence of the spectrum as
will be discussed in the next subsection. In the following sub-
section, we study the generation of primordial power spectrum in
both two cases.

4.2. Scale-invariant spectrum

Making use of the vacuum initial condition, we obtain an ap-
proximate solution to (24):

vk � e−ikτ

√
2k

(
1 − i

kτ

)
, (26)

where the effect brought by the m2 term has been neglected. From
this result, one can see the primordial curvaton fluctuations can be
transformed from quantum vacuum fluctuations to classical per-
turbations without the help of the real Hubble radius. Instead, an
effective “Hubble radius” was introduced due to a kinetic coupling
as analyzed in previous subsection. The primordial power spec-
trum of the field fluctuation δχ is expressed as

Pδχ = k3

2π2

∣∣∣∣ vk

z

∣∣∣∣
2

. (27)

Substituting the expressions of Y (25) into (27) can give rise to
the amplitude of the power spectra of interest.

4.2.1. Case I: Y = (−HEτ )−(2+2ε)

We first consider the first case: Y = (−HEτ )−(2+2ε) . In this
case the friction term brought by the coefficient Y is similar to
that of a “de-Sitter expansion”. From (26) it follows that on scales
larger than the effective “Hubble radius”, the amplitude of the
spectrum of δχ in our model is given by

δχ = P
1
2
δχ � aE HE

2πa
, (28)

which is almost constant in the emergent universe phase. Then we
take into account the corrections of the m2 term in the perturba-
tion equation (19). In particular, we choose

F = cFY2, (29)

as an example. From the perturbation equation, we are able to cal-
culate the spectral tilt nχ of the primordial perturbations

nχ − 1 ≡ d ln Pδχ

d ln k
= −2ε + 2cFa2m2

3a2
E H2

E

(30)

where m is the real mass of the χ field induced by the potential.
From this result, we find that in order to ensure that the cur-
vaton perturbations are nearly scale-invariant, one has to require
m � HE. This is in agreement with the assumption we made in
deriving the analytical solution to the perturbation equation.

4.2.2. Case II: Y = (−HEτ )4+2ε

Then we consider the second case: Y = (−HEτ )4+2ε . In this
case the friction term brought by the coefficient Y is similar to
that of a “matter-contraction”. It turns out that the amplitude of
the curvaton spectrum is given by

δχ = P
1
2
δχ � 1

2πa H2|τ |3 , (31)

E E
which is growing during the epoch of emergent universe. The am-
plitude of the curvaton perturbation stops increasing at the mo-
ment τE which satisfies τE = 2/HE so that the universe can con-
nect the dust-like expanding phase smoothly. Eventually we have
δχ � HE/16π at the super-Hubble scales after the emergent uni-
verse phase.

In this case, we would like to take the form of the coupling F
as

F = cFY
1
2 , (32)

and then can obtain the same expression for the spectral index as
Eq. (30).

4.3. The stability issue and constraints on background initial conditions

Note that, it is important to examine the backreaction of the
curvaton field upon the background dynamics, since we do not
expect the curvaton to spoil the background emergent universe so-
lution. Thus, we study the evolutions of the curvaton field with the
kinetic couplings obtained above.

4.3.1. Case I: Y = (−HEτ )−(2+2ε)

To transform back to the frame of cosmic time, during the
phase of emergent universe we have

Y �
[

aE

ai
HE(t̃E − t)

]−(2+2ε)

, (33)

with an integration constant t̃E = tE + 2ai
aE HE

being introduced. Mak-
ing use of (6), (10) and (33), we can reconstruct the form of the
kinetic coupling Y as:

Y(ψ̄ψ) �
{

aE

ai
HE

[
t̃E −

ln
((

1 + 2αC
3

)( N
a3

Eψ̄ψ

) αC
3 − 1

)
αMp

]}−(2+2ε)

,

(34)

and in this approximate expression we take Y to approach unity
when ψ̄ψ → 0. In this case, the curvaton field can recover the
canonical form in the infrared regime.

Substituting the expression (33) and (29) into the background
equation of motion for the curvaton (15), one can obtain two ap-
proximate solutions to the curvaton, which are

χ(t) ∼ (t̃E − t)

cF a2
i m2

3a2
E H2

E or χ(t) ∼ (t̃E − t)3, (35)

respectively.
In Eq. (35), the first solution of χ determines a slow-evolving

curvaton field and it implies that, during the emergent universe
phase the curvaton field feels itself in a “de-Sitter” background
due to the kinetic coupling. In this regard, one can choose the
curvaton field to be around the vacuum state as the initial condi-
tion for the background evolution. This choice is accompanied with
the initial condition of quantum vacuum fluctuations. By inserting
Eqs. (33), (29) and the first solution of (35) into Eq. (14), the cor-
responding energy density can be estimated as ρχ ∼ (t̃E − t)−4. As
a result, we can find that the contribution of the curvaton field
is subdominant if we take it on the vacuum state initially. Along
with the background evolution, the energy density of the curva-
ton field would grow slightly faster than the background density
of the spinor field. Depending on the parameter choice of the cur-
vaton field, the universe would either exit the emergent universe
phase earlier than tE due to the domination of the curvaton, or en-
ter the post-emergent universe phase after tE with both the spinor
and the curvaton field evolving in paralleled trajectories. In both
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situations one can transform the curvaton fluctuation into the cur-
vature perturbation through the curvaton mechanism as will be
discussed in next section.

Then we consider the second solution of χ in Eq. (35). This so-
lution implies that the curvaton field evolves rapidly and the initial
value lies at large-valued regime. Its behavior is in analogy with
the “over-shoot” issue of inflationary cosmology that a scalar field
may not feel the effect of the potential in a “de-Sitter” background
since initially its speed is chosen to be over large. In this case, the
energy density of the curvaton becomes ρχ ∼ (t̃E − t)2. Obviously,
in this situation the curvaton field would have dominated over the
background universe at very early times and thus spoils the sce-
nario of emergent universe. We consider this background initial
condition is not allowed in our model.

4.3.2. Case II: Y = (−HEτ )4+2ε

In Case II, the coupling Y in the emergent universe phase can
be approximately expressed as

Y �
[

aE

ai
HE(t̃E − t)

]4+2ε

. (36)

Again, to combine Eqs. (6), (10) and (33), the form of the kinetic
coupling Y can be reconstructed as follows,

Y(ψ̄ψ) �
{

aE

ai
HE

[
t̃E −

ln
((

1 + 2αC
3

)( N
a3

Eψ̄ψ

) αC
3 − 1

)
αMp

]}4+2ε

,

(37)

which can recover the canonical kinetic term for the curvaton χ in
the low energy limit as well.

We then solve the equation of motion for the curvaton (15) and
obtain two approximate solutions as follows,

χ(t) ∼ (t̃E − t)
− cF a2

i m2

3a2
E H2

E or χ(t) ∼ (t̃E − t)−3, (38)

respectively.
In this case, the first solution of (38) gives rise to the energy

density of the curvaton field as ρχ ∼ (t̃E − t)2. The second solution
of (38) leads to ρχ ∼ (t̃E − t)−4. Note that, both solutions imply
that the curvaton field lies on the vacuum state at initial moment
since the power indices are negatively definite. The difference is
that for the first solution the curvaton field evolves slowly and
the corresponding energy density would spend much more time
to catch up that of the background spinor field.

Note that, we can estimate the backreaction of the curva-
ton perturbation upon the background energy density, which is
roughly of order Fm2δχ2. Making use of the result (31), one de-
rives the contribution of the backreaction is approximately of form
cFm2

4π2 H2
E
(t̃E − t)−4. This implies that the backreaction from the curva-

ton perturbation is parallel to the background evolution depicted
by the second solution of (38). Therefore, we can conclude that
the effective field description of the curvaton condensate is always
valid in the very early phase if it initially stays in perturbative
regime.

As a side remark, we would like to point out that a nearly scale-
invariant power spectrum of the curvaton can be obtained merely
by the F parameter as well. For simplicity, we can choose the
canonical kinetic term with Y = 1 and take the quadratic poten-
tial V (χ) = 1

2 m2χ2. Notice that at the stage of emergent universe,
the scale factor is almost constant, following Eq. (19), the scale in-
variance requires that F(τ ) ∼ − 2

a2
Em2τ 2 . As the sign of this term is

negative, the scenario suffers from a severe tachyonic instability.
We will not address this case in the Letter.
Fig. 2. Numerical plot of the evolutions of the Hubble parameter H and the back-
ground EoS w as a function of cosmic time in the model under consideration. In
the numerical calculation, we take α = 3, C = 10. All dimensional parameters are of
Planck units. (For interpretation of the references to color in this figure, the reader
is referred to the web version of this Letter.)

5. Numerical computation

In this section, we numerically examine the dynamics of the
model under consideration. We show the evolutions of the Hubble
parameter H and the EoS w of the background universe in Fig. 2.
The specific parameterizations follow Eq. (11) with the model pa-
rameters being taken as: α = 3, C = 10 and N = 0.1. We use
the blue solid line to depict the Hubble parameter and the bur-
gundy solid line to represent for the EoS. At the moment of tE,
the Hubble parameter reaches the maximal value. The EoS w ini-
tially is much less than −1, and evolve through the cosmological
constant boundary (denoted by the light green dotted line in the
lower panel) at the moment tE, and then approaches zero after-
wards.

Having known the dynamics of the Hubble parameter, one can
integrate out the evolutions of the scale factor and then the scalar
bilinear ψ̄ψ exactly. In order to better understand the qualitative
calculation performed in previous sections, we compare the nu-
merical result and the semi-analytical estimate of the evolutions
of the scale factor a and the scalar bilinear ψ̄ψ in Fig. 3. From the
figure, one can explicitly find that the scale factor a approaches
to a non-vanishing minimal value in the far past, and connects
the matter-like expansion when t is larger than tE. The numeri-
cal result (the orange solid line) and the semi-analytical estimate
(the light green dashed line) in the upper panel coincide before tE.
This feature nicely shows that the previous estimate is in good
agreement with the realistic situation in the phase of emergent
universe. These two curves deviate from each other in the matter-
like expanding phase.

Afterwards, we can compute the potential U as well as the
kinetic coupling coefficient Y as a function of ψ̄ψ . The corre-
sponding result is presented in Fig. 4. Since the condition of scale
invariance for the curvaton fluctuations yields two possible solu-
tions to the kinetic coupling Y , we denote Y1 (the green solid line
the middle panel) as the solution in Case I and Y2 (the orange
solid line in the lower panel) as the solution in Case II. Addi-
tionally, when the universe exits the quasi-Minkowski phase, we
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Fig. 3. Comparison of the numerical result and the semi-analytical estimate of the
evolutions of the scale factor a and the scalar bilinear ψ̄ψ as a function of cosmic
time in the model under consideration. In the numerical calculation, the values of
α and C are the same as provided in Fig. 2 and N = 0.1 for the scalar bilinear ψ̄ψ .
All dimensional parameters are of Planck units. (For interpretation of the references
to color in this figure, the reader is referred to the web version of this Letter.)

expect that the curvaton field to decouple from the cosmic spinor.
Therefore, we have applied a smooth function in the numerical es-
timate by setting the convention Y = 1 in the regular expanding
phase. One can read from Fig. 4 that in Case I the kinetic cou-
pling Y decreases along the bilinear ψ̄ψ , but in Case II Y becomes
large in the far past. Due to different dynamics of Y , the effective
“Hubble radius” shows different features in the emergent universe
phase.

6. Curvature perturbation via curvaton mechanism

To proceed, we calculate the curvature perturbations generated
by the curvaton field through the curvaton mechanism [49,51]. Af-
ter the emergent universe phase has ceased, we assume that the
cosmic spinor field decays to radiation according to the curvaton
mechanism. During this period, the energy density of the universe
is composed of the radiation energy density ρr and the energy
density of the curvaton field ρχ . During this epoch, the curvature
perturbation is seeded by the iso-curvature fluctuations since the
pressure perturbations are non-adiabatic. This process ends when
the perturbations become adiabatic again, which corresponds to ei-
ther the epoch of curvaton domination, or that of curvaton decay.
The final curvature perturbations can be calculated at the moment
that the Hubble rate is comparable with the decay rate based on
the assumption of perturbatively instantaneous reheating of the
curvaton field.

We can simply consider the component curvature perturbations
ζχ and ζψ on the slices of uniform curvaton density and radiation
density separately. However, following Ref. [1], the perturbation
contributed by the spinor field leads to a blue spectrum and thus
is subdominant at large scales of observable interest. We can ne-
glect this part of contribution and thus the curvature perturbation
on super-Hubble scales takes the form as follows,

ζ = r̃ζχ , (39)
Fig. 4. Numerical plot of the potential U and the kinetic coupling Y as a function of
the bilinear ψ̄ψ in the model under consideration. We use Y1 to denote the solu-
tion in Case I and Y2 to denote the solution in Case II. In the numerical calculation,
we take the values of α, C and N the same as in Fig. 2. All dimensional parame-
ters are of Planck units. (For interpretation of the references to color in this figure,
the reader is referred to the web version of this Letter.)

with a generic transfer efficiency parameter being defined by [52],

r̃ ≡ 3(1 + wχ )ρχ

4ρr + 3(1 + wχ )ρχ
, (40)

where wχ ≡ Pχ/ρχ is defined as the EoS of the curvaton field.1

On super-Hubble scales, the component curvature perturbation
on uniform density slice can be written as

ζχ (x) = δN(x) + 1

3

ρχ (x)∫
ρ̄χ (t)

dρ̃χ

ρ̃χ + Pχ (ρ̃χ )
. (41)

As a first step, one need to write down the relation between the
curvaton fluctuation δχ and the corresponding curvature pertur-
bation. By taking the spatially flat slice, if we want to consider a
general EoS for the curvaton, Eq. (41) becomes

ρχ = ρ̄χ e3(1+wχ )ζχ , (42)

in the neighborhood of the curvaton decay hyper-surface.

1 The curvaton mechanism with a generalized EoS is motivated by some nonstan-
dard curvaton models, such as the K-essence version [53], the DBI form [54], or a
polynomial potential [55].
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Consider the curvaton perturbation that initially originates from
vacuum fluctuations inside the Hubble horizon. These perturbation
modes could satisfy a Gaussian distribution at the Hubble exit. In
this case, we have

χ∗ = χ̄∗ + δχ∗. (43)

This Hubble-crossing value can be related to the initial amplitude
of curvaton oscillation, which takes the form [56]:

g(χ∗) = g(χ̄∗ + δχ∗) = ḡ +
∞∑

n=1

g(n)

n!
(

δχ

g,χ

)n

. (44)

The detailed form of g(χ∗) is a model-dependent function which
is determined by the explicit potential of the curvaton field in
the non-relativistic limit. For example, if the curvaton potential is
quadratic as given by Eq. (23) until the curvaton decay, then we
have g(χ∗) ∝ χ∗ . Consequently, the energy density can be approx-
imately expressed as

ρχ = 1

2
Fm2(ḡ2 + 2ḡδχ

) + O
(
δχ2), (45)

up to linear order. Therefore, the combination of Eqs. (42) and (45)
leads to the component curvature perturbation as

ζχ = 2

3(1 + wχ )

δχ

χ̄
. (46)

The second step of the calculation is to relate ζχ to ζ . In the
sudden decay approximation, the relation is quite simple and can
be computed analytically. We assume the curvaton decays on a
uniform total density hyper-surface H = Γ , where Γ is the de-
cay rate of the curvaton. This can be realized in the framework of
particle physics, namely the curvaton has a “life time” and then
decays to particles through their coupling terms. Then on the cur-
vaton decay hyper-surface we have ρr + ρχ = ρ̄ . In a generic case
the EoS of the curvaton depends on the detailed evolution of the
curvaton. Namely, an oscillating curvaton with a potential of form
m2χ2, it behaves as a pressureless field fluid. Here, we make use
of Eqs. (39) and (46), and then get

ζ = 2r̃

3(1 + wχ )

δχ

χ̄
. (47)

Note that, the generic transfer efficiency parameter can be further
simplified as

r̃ = 3(1 + wχ )Ωχ

4 + (−1 + 3wχ )Ωχ
, (48)

where Ωχ = ρ̄χ /(ρ̄r + ρ̄χ ) is the dimensionless density parameter
for the curvaton at the decay moment.

Eventually, we can calculate the power spectrum of primordial
curvature perturbation seeded by the curvaton fluctuations in the
model of spinor emergent universe cosmology. As we have two
possible solutions to generate the curvaton fluctuations as was an-
alyzed in previous section. In the following we discuss both two
cases.

For Case I, we can choose initially the curvaton sits on the vac-
uum state and slowly evolves during the emergent universe phase.
The energy density of the curvaton grows as ρχ ∼ (t̃E − t)−4 with
the cosmic time t approaches tE from negative infinity. Therefore,
the detailed value of r̃ depends on whether the universe exits
the epoch of emergent universe due to the domination of ρχ or
the dynamics of the cosmic spinor ψ automatically. By combin-
ing Eqs. (28) and (47), the power spectrum of primordial curvature
perturbation is given by
Pζ = ζ 2 = r̃2 H2
E

9π2(1 + wχ )2χ̄2
, (49)

with the spectral index inheriting from Eq. (30).
Similarly, for Case II, the power spectrum of primordial curva-

ture perturbation can be calculated by inserting the solution (31)
into (47)

Pζ = r̃2 H2
E

576π2(1 + wχ )2χ̄2
, (50)

of which the amplitude is relatively lower than that obtained in
the previous case.

We would like to emphasize two key features of the above
calculation. First, the curvature perturbation ζ and ζχ are gauge in-
variant. Therefore, although we study their dynamics in the gauge
of spatially flat slice, their values are irrelevant to the gauge choice.
Second, in the approximation of sudden decay, ζ is conserved
right after the universe evolves through the curvaton decay hyper-
surface and the curvature perturbation should be calculated ex-
actly on this hyper-surface. This is because, if one calculates at
any earlier time, ζ is not conserved due to the contribution of
iso-curvature perturbation; if one calculates at any later time, the
information stored in the curvaton-induced curvature perturbation
ζχ would have been lost.

7. Conclusions

To conclude, in the present Letter we have studied the pos-
sible causal mechanisms of generating scale-invariant primordial
power spectrum in the cosmology of spinor emergent universe.
Specifically, we introduce another light scalar field which kineti-
cally couples to the cosmic spinor field and use the scalar field to
generate iso-curvature perturbation in the primordial era. Because
of the kinetic coupling terms, the field fluctuations of the curva-
ton feel as if they evolve within a “de-Sitter”-like background or a
“matter-contraction” one. Therefore, there exists an effective “Hub-
ble radius” for the iso-curvature modes allowing them to become
classical perturbation as they get squeezed during the emergent
universe phase. After having propagated for enough long time on
the “super-Hubble” scales, these iso-curvature modes can be con-
verted into curvature perturbation at the moment of curvaton de-
cay.

The cosmology of emergent universe, as an alternative to infla-
tionary cosmology, can avoid the initial spacetime singularity. Its
implement may be inspired by string theory such as string gas
cosmology, but the phenomenological model-building often suf-
fers from detailed difficulties, namely the instability of the back-
reaction, or the graceful-exit issue. The model considered in the
present work has provided a representative example to illustrate
that the emergent universe cosmology could be free of the insta-
bilities and the issue of graceful-exit. Based on this model, there
are many interesting topics which deserve a further investigation
in the future. One would expect to constrain the parameter space
of this model by confronting with the latest cosmological obser-
vations. We also expect that one can relate the model of spinor
emergent universe to the spinor formalism in fundamental theories
such as the open string field theory. Finally the dynamics of non-
linear perturbations in this model and the related stability issue
ought to be analyzed. We would like to address these interesting
topics in the future study.

As an end remark, we would like to comment on a potentially
dangerous issue that the quantum fluctuations may destabilize the
early emergent universe phase if the universe is filled with a scalar
field [57]. From the aspect of the semiclassical level, this issue has
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been known to exist for a wide class of scalar field driven emer-
gent universe models. As part of motivation, it inspired us to con-
sider alternative models such as the one studied previously. In our
model, the potential for the fermion field has two vacua, with
one being the normal case with 〈ψ̄ψ〉 = 0 in the IR regime while
the other being introduced with a non-vanishing 〈ψ̄ψ〉 in the UV
regime. This nonconventional profile of the potential indicates that
the potential energy is bounded from below in the UV limit. In
this regard our model is stable in early stages as the background
spinor field approaches to the UV vacuum. However, it is still un-
clear whether the model is stable when nonlinear fluctuations are
taken into account. To address this issue, we shall understand the
UV completions of the underlying fundamental theories that can
give rise to the effective field description developed in the present
work. We would like to address this issue in our future study.
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