
A Cappable Almost Everywhere Dominating

Computably Enumerable Degree

George Barmpalias 1 ,2

School of Mathematics
University of Leeds

Leeds LS2 9JT, U.K.

Antonio Montalbán 3

Department of Mathematics
University of Chicago

5734 S. University ave. Chicago, IL 60637, USA.

Abstract

We show that there exists an almost everywhere (a.e.) dominating computably enumerable (c.e.)
degree which is half of a minimal pair.

Keywords: Almost everywhere domination, minimal pairs, Turing degrees, computably
enumerable.

1 Introduction

Dobrinen and Simpson [4] defined the notion of almost everywhere dominat-
ing function and started studying their Turing degrees. They also defined a
uniform version of this property (the almost everywhere uniformly dominating
functions) but this has been shown in [1] to be equivalent to the former notion.
So let us settle on the following definition.

1 The first author was supported by EPSRC Research Grant number EP/C001389/1.
2 Email: georgeb@maths.leeds.ac.uk
3 Email: antonio@math.uchicago.edu

Electronic Notes in Theoretical Computer Science 167 (2007) 17–31

1571-0661 © 2007 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2006.08.005
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82351959?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:georgeb@maths.leeds.ac.uk
mailto:antonio@math.uchicago.edu
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

Definition 1.1 Let f, g : ω → ω. The function f majorizes g if f(n) ≥ g(n)
for all n. If f(n) ≥ g(n) for all but finitely n then f dominates g. We say that
f is an almost everywhere (a.e.) dominating if the measure of reals β with
the property

g ≤T β ⇒ f dominates g

is 1. A Turing degree is a.e. dominating if it contains an a.e. dominating
function.

Kurtz [5] showed that 0′ is a.e. dominating. The existence of incomplete
c.e. degrees with this property was shown in [3] and a high c.e. degree which is
not a.e. dominating was constructed in [2]. In order to have a better picture of
this class of c.e. degrees it is natural to compare it with known definable classes,
the promptly simple degrees for instance. By well known results these are the
non-cappable degrees, i.e. the c.e. degrees which are not halfs of minimal pairs
in this structure. In this work we show that there are cappable c.e. degrees
which are a.e. dominating. Thus a.e. dominating degrees lie in both parts
of the decomposition of the c.e. degrees into promptly simple and cappable
degrees.

Theorem 1.2 There is an almost everywhere dominating c.e. degree which is
a half of a minimal pair. 4

Before we start proving the theorem let us say more about what motivated
this work. A central question in the study of a.e. dominating c.e. degrees
is whether they are contained in a non-trivial upper cone of degrees. The
construction in [3] of an incomplete a.e. dominating c.e. degree does not seem
to combine with many other constructions in the theory of c.e. degrees and in
particular the cone avoidance. To be more specific, that construction seems
incompatible with the situation where there is unpredictably large number of
repeated restraints for a single requirement, in a way that when a new restraint
is imposed the old one still remains in force.

Although this is a very common feature in constructions of c.e. degrees
(and in the cone avoidance strategy it seems unavoidable), by combining the
construction in [3] with known techniques from the theory of promptly sim-
ple degrees (in particular the use of the recursion theorem in order to trigger
prompt diagonalizations) we were able to show that outside any upper cone
of promptly simple degrees there is an a.e. dominating c.e. degree. Theorem
1.2 implies this result but is also the first example of an infinite injury argu-
ment which constructs a.e. dominating degrees. Indeed, the proof incorporates

4 After the submission of this article the first author was able to show the stronger result
that there is an almost everywhere dominating computably enumerable degree which is
non-cuppable in the c.e. degrees.

G. Barmpalias, A. Montalbán / Electronic Notes in Theoretical Computer Science 167 (2007) 17–3118

new ideas which help to control the restraint imposed on the a.e. dominat-
ing function being constructed, although this may be infinitary. For further
background, history, motivation and results related to this area we refer to
[2,1,3,4].

2 Proof of theorem 1.2

Following [3], there is a Turing functional Φ such that f is a.e. dominating iff it
dominates Φ almost everywhere (where Φ is treated here as an operator from
reals to reals). We may assume that all functionals considered here (including
Φ) have the standard properties: if Γσ(n)[s] ↓ then n and the (length of the)
use of σ are less than s; also, if Γσ(n)[s] ↓ then Γσ(i)[s] ↓ for all i < n.
We construct two functions f, g such that their degrees form a minimal pair.
As in [3] f will be an a.e. dominating function which is approximated from
below so that it has c.e. degree. In particular we construct a computable
double sequence (fs(n)) such that fs(n) ≤ fs+1(n) for all s, n. Then we can
take A = {〈n, m〉 | m ≤ f(n)} so that A is c.e. and Turing equivalent to
f . In the construction we often use f to mean fs where s is the current
stage. The function g will be the characteristic sequence of a c.e. set and
in the construction it will be treated as a c.e. set. First of all we have the
domination strategies which ensure that lims fs = f exists (by restraining
f) and that f dominates Φ almost everywhere (by increasing f). Then we
got the minimal pair strategies. Both of these strategies can restrain f and
so, as in [3], they need backing strategies which provide them with a good
approximation of the measure of the domain of Φ (i.e. μ(domΦ)). Finally we
got the simplicity strategies which ensure that g is not computable.

The construction will be a tree argument both because of the Π0
2 approx-

imation of μ(domΦ) and the minimal pair strategies which are infinitary. As
we want to make f a.e. dominating we will make sure that at any stage no
more than one restraint on f is in force for a single requirement. According to
the uniform labeling of the tree described below this means that at any stage
no more than one restraint on f is in force at a single level of the tree. This
is a principle which made the argument in [3] work. Interestingly, the proof
of theorem 1.2 involves stretching the minimal pair construction rather than
the construction in [3] of an a.e. dominating c.e. degree.

The tree argument in [3] naturally defined a 0′′ computable sequence (Ni)
which consisted of the permanent restraints which were imposed on the a.e.
dominating sequence f being constructed. The property (3) which was verified
for (Ni) was the main tool for showing that f is a.e. dominating. We will
follow the same plan, only that (Ni) will be a bit more complex due to the

G. Barmpalias, A. Montalbán / Electronic Notes in Theoretical Computer Science 167 (2007) 17–31 19

infinitary nature of the minimal pair requirements. Such a sequence is an
important component of the construction of almost everywhere dominating
reals. The following proposition says that every possible construction of an
a.e. dominating c.e. real defines such a sequence (Ni). Let

Dn = {β | Φβ(n) ↓} (1)

D[n,m)[g] = {β | (∀k ∈ [n, m)) Φβ(k)[g(k)] ↓}. (2)

Note that by the standard conventions on the functionals, if β ∈ D[n,m)[g]
then g dominates Φβ in the interval [n, m).

Proposition 2.1 If f is an a.e. dominating c.e. real then from a Turing
functional Φ we can effectively get a 0′′ computable sequence (Ni) such that

μ(domΦ − D[Ni,Ni+1)[f]) < 3−i. (3)

We sketch a proof: the domain of a Turing functional as an operator from
the Cantor space to itself is a Π0

2 class. Also it is not hard to show the
following.

Lemma 2.2 The measure of a Π0
n or a Σ0

n class is computable from 0(n).
Moreover the measure of any finite intersection of Π0

n and Σ0
n classes is com-

putable from 0(n).

Now one can define (Ni) inductively by using 0′′ as an oracle and using the
fact that f a c.e. real. Note that the 3−i in proposition 2.1 can be replaced
with 3−g(i) for any g ≤T 0′′; however this is not particularly useful since 0′′ is
anyway used in order to define (Ni).

Requirements and tree.

We approximate functions f, g such that f is approximated from below
and is a.e. dominating; g will be a c.e. set and the following requirements will
be satisfied:

Qe : Φf
e = Ψg

e total ⇒ he = Φf
e = Ψg

e

Pe : |We| = ∞ ⇒ We ∩ g = ∅

where (Φe, Ψe) runs over all pairs of Turing functionals, (We) over all the c.e.
sets and the functions he are partial computable and constructed by us. The
strategy for Qe will be an adaptation of the minimal pair strategy and its
outcomes will be inf <∗ fin (i.e. infinite and finite). The strategy for Pe will
be the usual strategy for the construction of a simple set: if We ∩ g = ∅ wait
until some x > 2e appears in We such that it does not violate any g-restraint of
higher priority and enumerated into g. The outcomes of Pe are diag <∗ wait

G. Barmpalias, A. Montalbán / Electronic Notes in Theoretical Computer Science 167 (2007) 17–3120

(i.e. diagonalized and wait). The domination and Q strategies can restrain f

and so they need backing strategies as explained above. Let Me be the eth
backing strategy and De be the eth domination strategy.

The construction will be a tree argument where the level 3e belongs to the
backing strategy Me, the levels 3n + 1 belong alternately to domination and
minimal pair strategies (e.g. 3(2e)+1 belongs to De and 3(2e+1)+1 belongs
to Qe) and level 3e + 2 belongs to Pe.

Backing strategies.

Before giving the details about how the domination and Q strategies work,
we need to describe the backing strategies Me which provide a good approxi-
mation of μ(domΦ) and which both of them need. An M strategy comes with
a resolution n and the error allowance δ = 3−n; its job is to find a rational
q which approximates μ(domΦ) from below to within δ. An M strategy first
divides [0, 1) into 3n subintervals

[q1, q0), [q2, q1), . . . , [qk, qk−1)

(where q0 = 1, qk = 0 and qi > qi+1) of length δ. Its outcomes will be the
following specially ordered set

q1 <∗ · · · <∗ qk.

When M is visited at stage s it looks for the least t such that μDt has moved
into a different interval of the partition above since the last stage s0 it was
visited. If such does not exist (or s0 does not exist) it outputs qk. Otherwise
it outputs the small endpoint of the interval of the partition in which μDt

currently belongs. That is, if μDt ∈ [qi, qi−1) then the current outcome is qi.
To get a picture of the approximation of the outcomes note that for every t

the measure μDt is non-decreasing during the stages of the construction (more
precisely the stages of the enumeration of Φ). Moreover

μDt ≥ μDt+1

for all t at all stages. So we can picture μDt, t ∈ N as a collection of markers on
the unit interval which move monotonically towards 1 while preserving their
order. Now if μ(domΦ) ∈ [qi, qi−1) then there will only be finitely many t such
that qi−1 < μDt and so after some stage no marker will go beyond [qi, qi−1).
Also, for almost all t the marker μDt will settle in [qi, qi−1). Thus qi will be
the leftmost infinitely often visited outcome (and so, the final outcome and it
can be seen as an approximation of μ(domΦ) from below within δ).

G. Barmpalias, A. Montalbán / Electronic Notes in Theoretical Computer Science 167 (2007) 17–31 21

Domination strategies.

Since the domination strategy also has to make sure that lims fs exists it
will have infinitely many versions (let De be the eth domination strategy);
each of them will try to fix f on a certain initial segment, while ensuring that
it is a.e. dominating. Each (version of the) domination strategy inherits a
restraint N which prohibits it from changing f � N , and is based on a backing
strategy which provides an approximation q of μ(domΦ) as above. It operates
as follows:

(i) Wait for a stage s + 1 such there exists σ ∈ s<s with |σ| > N and the
following properties:
• σ ⊃ fs � N
• (∀n < |σ|) fs(n) ≤ σ(n)
• μ(D[N,|σ|)[σ] > q − δ

(ii) Let fs+1 ⊃ σ and restrain f � |σ|.

Then, if the guess q is correct, the reals β such that Φβ is not majorized by
f in [N, |σ|) will have measure less than 2δ. This strategy also contributes to
the convergence of (fs) since it restrains it on a certain segment. Note that
in [3] the domination strategies are incorporated into other strategies rather
than distinguished as in this construction. If this strategy sits on a node α the
restraint it imposes will be rα and its state/current outcome will be active

or inactive according to whether rα = 0 or rα = 0 respectively.

Minimal pair strategy.

Suppose that α works for Qe. If it works in isolation, it just has to follow the
usual minimal pair strategy: it enumerates a partial computable function hα

as follows. At expansionary stages (i.e. stages where the length of agreement

�e = max{x | Φf
e � x = Ψg

e � x}

is larger than ever before) it defines hα = Φf
e � � = Ψg

e � � and defines restraint
rα equal to the (maximum) use of these computations. Also it requires that
when one of f � rα, g � rα changes, then the other one does not change until
the next expansionary stage occurs. By the usual inductive argument on the
stages one can verify that this strategy succeeds (see [6]).

The strategies for all Qe can work together with non-computability re-
quirements for f, g on a tree, thus constructing a minimal pair of c.e. degrees.

G. Barmpalias, A. Montalbán / Electronic Notes in Theoretical Computer Science 167 (2007) 17–3122

off f -switched g-switched

Table 1
The states of Qe.

However this construction has the feature that unpredictable number of re-
peated restraints may be applied to f for the sake of a single requirement Qe

in such a way that when a new restraint is imposed, the existing restraints
must remain in force. To visualize this situation in the context of a tree argu-
ment, these are the restraints on the left of the true path which can easily be
accumulated and should be respected. As we pointed out earlier this feature
prevents us from making f a.e. dominating.

To overcome this obstacle we do the following: whenever we wish to impose
a restraint on f for the sake of Qe but there is already such a restraint in force
for Qe we try to push the existing restraint to g. The reason that we can
do this is that a restraint on g is as good as a restraint on f given that the
purpose of issuing restraints is to preserve one side of the double computation

Φf
e � x = Ψg

e � x.

Of course this means that the restraint of a minimal pair strategy may increase
due to the request of lower priority strategies (i.e. strategies on the same level
of the tree and to its right) and in general the restraint on g will be much
more than usual. But it will be sufficiently well behaved so that it allows the
Pe requirements to succeed in making g non-computable. However it will be
clear by the end of the proof that this method does not allow us to ask g to
be a.e. dominating as well. In other words, we cannot apply this trick to both
f and g in order to construct a minimal pair of a.e. dominating degrees.

Adapted minimal pair strategy on the tree.

Suppose that α on the tree works for Qe. As usual, α will have its own
enumerations Φα, Ψα of the functionals Φe, Ψe. In particular Φα[s] will be
Φα[t] where t is the largest α-stage ≤ s (and similarly for Ψα). The length of
agreement �α is now defined according to Φα, Ψα.

We look at the minimal pair argument in some detail in order to be able
to make the modifications we need. Every Qe strategy α has a restraint rα

which may tend to infinity (we use one restraint for both f, g and direct it to
one of these functions if needed). The restraint rα (or the strategy α) can be
in one of the following states: off, f -switched, g-switched (see the table 1).
The states of Qe are shown in the following table.

G. Barmpalias, A. Montalbán / Electronic Notes in Theoretical Computer Science 167 (2007) 17–31 23

off � f -switched

off � g-switched

f -switched → g-switched

Table 2
Possible transitions between the states of Qe.

Switching of the restraint to different states will be performed explicitly
during the construction. The possible transitions are shown in table 2.

The idea is that when we have an expansionary stage we can switch to
off since it does not matter if one side of the double computation is injured.
However if the f side is injured we need to switch the restraint to g (and
similarly if the g side is injured). A g-switched or f -switched restraint can
return to off state if another expansionary stage comes, in which case both
computations will be restored and the restraint rα will possibly increase.

The extra transition which is not a feature of the usual minimal pair ar-
gument is the third one in table 2. If a Q strategy wants to start defining hα

and setting up a positive rα it is actually exposing itself to possibly becoming
f -switched since the g side of its computations may later be injured. If there
is already an f -switched strategy β on the left of α and on the same level then
α cannot take this risk since it would allow the possibility of two f restraints
on the same level—something we want to avoid. So in that case α will try to
g-switch the restraint on the left before it starts. It does that by waiting for a
stage where the length of agreement �α is larger than �β. Then it can increase
rβ up to the use of Ψg

e � |hβ| (where Qe is the requirement that α, β are trying
to fulfill), set β to g-switched state and proceed.

Comments.

Before we state formally the set of instructions that a Q node α follows we
make some remarks. First, when a Q strategy switches from a restraint on f

to no restraint on f (i.e. to off or g-switched) then all domination strategies
below α�fin must be initialized since they counted a restraint that is not
permanent. Second, the fact that we can only pass from f -switched to g-
switched and not vice-versa is crucial. This transition causes the restraint
rβ to increase for nodes β on the left of the true path when they are not
accessible. The fact that this transition is one-way guarantees that the state
of the Q nodes on the left of the true path will settle down and so their
restraint will reach a limit as well. This is something we need since otherwise
the simplicity requirements P for g would not get the chance to be satisfied.

G. Barmpalias, A. Montalbán / Electronic Notes in Theoretical Computer Science 167 (2007) 17–3124

Finally we point out the different attitude of the positive strategies for g

and f , i.e. the simplicity strategies P and the domination strategies D. A P

strategy will respect both the usual restraint from the nodes on the left (it will
enumerate no number which is less than the last stage where a node to the
left of it was accessible) and the g-switched restraints of Q nodes to the left
of it or above it. The standard restraint from the nodes on the left prevents
the situation where there is an f -switched node on the true path, a strategy
β in off state at the same level to the left of it and a node on the right of the
true path switches β to an f restraint thus creating a second restraint on f at
the same level. Domination strategies are more demanding and will respect
less restraint: they only listen to f -switched restraints of higher priority (i.e.
above or to the left of them) and not the standard restraint.

2.1 Formal strategies

We give the sets of instructions for each strategy which constitute the programs
actually run in the construction.

Me-node α.

These are the backing strategies and they run exactly as described above.
In particular, if α is an Me-node then it works with resolution e. This means
that it has k = 3e outcomes

q1 <∗ · · · <∗ qk.

which are rationals such that q0 = 1, qk = 0 and qi > qi+1.

Qe-node α.

Let Nα be the largest restraint imposed on f by a higher priority require-
ment. That is, the largest rβ such that β <L α or β ⊂ α and one of the
following holds:

• β is an f -switched Q node.

• β is an active D node.

Also, let qn be the outcome of the predecessor of α (i.e. the outcome of its
backing strategy) and δα = 3−e (the distance between the outcomes of the
backing strategy). Follow the instructions:

G. Barmpalias, A. Montalbán / Electronic Notes in Theoretical Computer Science 167 (2007) 17–31 25

(i) If �α is larger than ever before and larger than all values that the pa-
rameters �β with β <L α and |β| = |α| have ever taken then do the
following.
• if there is an f -switched strategy β such that β <L α and |β| = |α|

then set rβ equal to the use of Ψg
e � |hβ|; also g-switch β. Initialize all

D strategies of lower priority than β.
• If μ(D[Nα,N ′)[f]) > qn − δα where N ′ = max{Nα, u} + 1 and u is the

use of the computations Φf
α � (|hα| + 1), Ψg

α � (|hα| + 1), then go to
the next step. Otherwise access outcome fin and pass control to the
construction.

• Define

hα � (|hα| + 1) = Φf
α � (|hα| + 1) = Ψg

α � (|hα| + 1)

set α to off state, define rα equal to the use of the above computations,
access outcome inf and pass control to the construction.

(ii) Otherwise access outcome fin and pass control to the construction.

(apart from the states of a Q node that we discussed, such a strategy may be
active or inactive according to whether rα = 0 or rα = 0. This qualification
refers to the potential of the strategy to restrain a segment of f .)

Pe-node α.

(i) If We ∩ g = 0 access outcome diag and pass control to the construction.

(ii) Otherwise check if currently there exists x (less than the current stage)
such that
• x > 2e
• x ∈ We

• x > r where r is the least number greater than all stages where a node
to the left of α was accessible and all g-switched restraints rβ where β

is any node of lower priority (i.e. to the left or below α).
If yes, put the least one into g and pass control to the construction along
with a request to terminate the current stage. Otherwise access outcome
wait and pass control to the construction.

De-node α.

Let Nα be the largest restraint imposed on f by a higher priority require-
ment (as described in the Q-node strategy) and s the current stage. Also,

G. Barmpalias, A. Montalbán / Electronic Notes in Theoretical Computer Science 167 (2007) 17–3126

let qn be the outcome of the predecessor of α (i.e. the outcome of its backing
strategy) and δα = 3−e (the distance between the outcomes of its backing
strategy).

(i) If α is in active state access outcome active and pass control to the
construction.

(ii) If α is in inactive state and there exists σ ∈ s<s with the following
properties
• |σ| > Nα

• σ ⊃ fs � Nα

• (∀n < |σ|) fs(n) ≤ σ(n)
• μ(D[Nα,|σ|)[σ] > qn − δα

then define f � |σ| = σ, set rα = |σ| and access the active outcome (thus
setting α in active state). Pass control to the construction along with
the request to terminate the current stage.

(iii) Otherwise access outcome inactive and pass control to the construction.

2.2 Construction

Start with f0(n) = 0 for all n and g = ∅. Initialize all strategies α (set rα = 0,
hα = ∅). At stage s do the following:

(A) Initialize every active D or Q strategy which became active at some stage
s0 < s and is based on outcome qi of its backing strategy such that

μDt[s] ≥ qi−1

where t is the largest number such that μDt[s0] < qi−1. Also if α was
initialized, do the same for the strategies of lower priority than α (the ones
below it or to the right of it).

(This cancellation is allowed since the outcomes of the backing strategies
considered have been proved wrong. Also, it is necessary since such strategies
may impose ‘too much’ restraint on f , thus preventing it from being a.e.
dominating. Note that this initialization does not happen automatically since
some of these strategies may lie on the left of the true path.)

(B) Start accessing the nodes of the tree starting from the top node , running
the corresponding strategies and determining the successor according to the
outcome suggested by the previous strategy. Continue until either stage s

is terminated by a request of a strategy we run or we reach a strategy α

with |α| = s. If α is the last node we access, initialize all nodes to the left
of it. If a Q strategy α was in off-state at the beginning of the stage and
g � rα or f � rα changed, α changes to f or g-state respectively.

G. Barmpalias, A. Montalbán / Electronic Notes in Theoretical Computer Science 167 (2007) 17–31 27

2.3 Verification

The following lemma is evident from the construction.

Lemma 2.3 The state of a Q node α can only change provided that it is
active (i.e. rα = 0) and one of the following reasons holds.

(i) Initialization of α sets its state to off.

(ii) A node to the right of α on the same level changes the state of α from
f -switched to g-switched.

(iii) A domination node of lower priority (i.e. below or to the right of it)
changes its state from off to f -switched.

(iv) A simplicity strategy for g below α switches its state from off to g-
switched.

Lemma 2.4 The following basic facts are true.

• There is an infinite leftmost infinitely often visited path TP through the tree.

• The states and restraints of the Q and D nodes to the left of TP reach a
limit.

• If a node lies on TP then it is initialized finitely many times.

Proof. We prove these claims by simultaneous induction on TP . Note that
every node has finitely many branches and so we can immediately conclude
that the outcomes of a node on TP will have limit infimum. For the top node
all claims are trivial since it is a backing strategy. Suppose that α = TP � n

in an infinitely often visited node such that after some stage s0 no node to
the left of it is visited. Since α has finitely many branches there will be an
outcome o such that the node α+ = α�o is accessed infinitely often and any
node to the right of it finitely often. So α+ belongs to TP and after some stage
s1 no node to the left of it is visited. At s1 there are only finitely many active

Q or D nodes to the left of α+ and so, after some stage s2 > s1 there will
be no initializations of α+. According to lemma 2.3 the only state transitions
that can happen to nodes on the left of α+ after s2 concern active Q nodes
(of which there are finitely many) which turn from off to f -switched or from
f -switched to g-switched. This can only happen finitely often and thus the
states of all nodes to the left of α+ will stabilize at some stage s3 > s2. At stage
s3 the restraints rβ of the nodes β <L α+ have reached their final values. �

Lemma 2.5 If α is a Q node and α�fin is on TP then rα reaches a limit.

Proof. After some stage α�fin will stop being initialized and so, it will stop
having expansionary stages. Then rα can not be increased anymore. �

G. Barmpalias, A. Montalbán / Electronic Notes in Theoretical Computer Science 167 (2007) 17–3128

Lemma 2.6 If α is a P or D strategy on TP then the restraint imposed on
α reaches a limit. Hence all P are satisfied.

Proof. Suppose that α is a P node. By lemma 2.4 the g restraint coming
from nodes to the left of α will reach a limit. The only other restraint that
α has to consider come from g-switched Q nodes β such that β�fin ⊆ α.
But according to lemma 2.5 this reaches a limit as well. The same argument
applies to the case where α is a Q node, only that now we do not have to
consider the restraint “last stage where a node to the left was accessible”.
The satisfaction of P is evident. �

By construction at any stage there is at most one strategy at each level
which restrains f (i.e. which is an f -switched Q strategy or an active D strat-
egy). So at each level of the tree there is at most one strategy with a permanent
restraint on f (i.e. a permanently active D node or a permanently f -switched
Q node with a final restraint). Let (σi) be inductively defined as follows. Set
σ0 = ∅ and let σi+1 be the node β of least length which holds a permanent
restraint on f and has |β| > |σi|. Then |σi| < |σi+1| and all these nodes lie to
the left or on TP . Also, if Ni is the final value of rσi

(and N0 = 0) we have
Ni < Ni+1.

Lemma 2.7 The sequence (σi) is infinite.

Proof. Suppose for a contradiction that σi, Ni is the last term of the sequence.
Let σ ⊃ σi be a D node on the true path. If q0, . . . , qk are the outcomes of its
backing strategy and μ(domΦ) ∈ [qi, qi−1) then σ will be under qi = qσ. Also
all markers μDm will eventually pass the threshold qσ − δσ. After all states
and restraints on the left of σ have stabilized no node on the same level as σ

and to the left of it will be active (according to hypothesis). After such a stage
and when μDrσ

> qσ − δσ (where rσ = Ni) σ will be visited and it will define
f such that μD[Ni,rα)[f] > qσ − δσ thus becoming active. By hypotheses it
will remain active and this is a contradiction. So (σi) is infinite. �

Lemma 2.8 f = lims fs exists.

Proof. Once σi becomes active for the last time thus imposing restraint Ni,
the segment f � Ni will not change. �

Lemma 2.9 For every i ≥ 1 the measure of the reals β in the domain of Φ
such that Φβ is not dominated by f in [Ni−1, Ni) is less than 2 · 3−ni, where
3ni + 1 is the level of σi. Formally,

μ(domΦ − D[Ni−1,Ni)[f]) < 2 · 3−ni.

Also, ni ≥ i.

G. Barmpalias, A. Montalbán / Electronic Notes in Theoretical Computer Science 167 (2007) 17–31 29

Proof. If 3ni + 1 or 3ni + 2 is the level of σi then its resolution is ni and
i ≤ ni. Also the error allowance is δi = 3−ni. Let qj be the outcome of its
backing strategy. Then if σi became permanently active at stage s0 and m

is least such that μDm[s0] ∈ [qj , qj−1), by step A of the construction we have
μDm[s] ∈ [qj, qj−1) for all s ≥ s0 , so μ(domΦ) ∈ [qj , qj−1); we also have that
μ(D[Ni−1,Ni)[f]) > qj − δi (otherwise σi would not be active). So the reals β

for which Φβ is not majorized by f in [Ni−1, Ni) can have measure at most 2δi

which is 2 · 3−ni. �

Lemma 2.10 The degrees of f, g form a minimal pair.

Proof. Suppose that h ≤T f and h ≤T g for some function h. We show that
h is computable. Let Φe, Ψe be programs such that

Φf
e = Ψg

e = h. (4)

Then there is α ⊂ TP such that Φα = Φe and Ψα = Ψe. We show that
h = hα. By (4) we have that α�inf ⊂ TP . The whole argument takes place
in a final segment of stages where α is not initialized and all nodes to the left
of α have finalized their states and restraints. It follows by 4 that there will
be no f -switched strategy to the left and on the same level as α.

First we wish to show that outcome inf is accessed infinitely often and
thus hα is total. Since we get infinitely many expansionary α-stages (stages
where α is accessible) it is enough to show that

μD[Ni,N)[f] > qα − δα

where N > Ni is a fixed number, qα, δα are the outcome and resolution
respectively of the backing strategy of α and i is the maximum such that
|σi| < |α|. If |α| = 3e + 1 then δα = 3−e. The level 3ni+1 + 1 of σi+1 will be
larger than the level 3e + 1 of α. So by lemma 2.9 we have

μ(domΦ − D[Ni,∞)[f]) ≤
∑

j>i

μ(domΦ − D[Nj−1,Nj)[f]) ≤
∑

j>e

2 · 3−j ≤ 3−e.

So
μ(D[Ni,N)[f]) ≥ μ(D[Ni,∞)[f]) > μ(domΦ) − 3−e ≥ qα − 3−e.

So α will be allowed to access outcome inf infinitely many times thus increas-
ing |hα| infinitely often. Now we only need to show hα = h. For a contradiction
suppose that for a least x, hα(x) = h(x). When hα(x) was defined at some
expansionary α-stage s0 we had

hα(x) = Φf
α(x) = Ψg

α(x). (5)

G. Barmpalias, A. Montalbán / Electronic Notes in Theoretical Computer Science 167 (2007) 17–3130

If s1 is the largest expansionary stage for �α at which (5) holds, rα is larger
than the corresponding uses of the computations. Let s2 be the least stage
after s1 at which one of f � rα, g � rα changes (from the value they had at s1),
and s3 the next expansionary stage after s1. By construction at each stage at
most one of f , g can change. So we have the following cases:

(i) f changes: When the change happens α becomes g-switched. Note that
before s3 the outcome α�inf will not be accessible and so α remains
g-switched until s3. So no node to the right of α or below it will change
g � rα before stage s3. This means that at s3 (5) will hold again, a
contradiction.

(ii) g changes: When the change happens α becomes f -switched. If it remains
in this state until s3 by the same argument we get that (5) will hold at
stage s3, a contradiction. Otherwise a node to the right of α turns this
strategy to g-switched state at a stage s∗ between s2 and s3. But at that
stage (5) must hold (possibly with new use u) and rα will increase to
cover the use of these (possibly new) computations. From stage s∗ to
stage s3 the node α will remain in g-state and as before it will preserve
the g-side of the computation (5), thus guaranteeing that this equality
survives until stage s3; this is a contradiction.

This shows that (5) holds for all x. �

Lemma 2.11 The function f is almost everywhere dominating.

Proof. If a real β is such that the function Φβ is total and is not dominated
by f , then it must belong to infinitely many of the sets domΦ − D[Ni−1,Ni)[f]
for i ≥ 1. So according to lemma 2.9 these reals belong to a set of measure
0. �

References

[1] Binns, Stephen, Bjørn Kjos-Hanssen, Joseph Miller and Reed Solomon, Lowness notions,
measure and domination, in preparation.

[2] Binns, Stephen, Bjørn Kjos-Hanssen, Manuel Lerman and Reed Solomon, On a conjecture of
Dobrinen and Simpson concerning almost everywhere domination, J. Symbolic Logic 71 (2006),
no. 1, 119–136.

[3] Cholak, Peter, Noam Greenberg and Joseph Miller, Uniform almost everywhere domination, to
appear.

[4] Dobrinen, Natasha, and Stephen Simpson, Almost everywhere domination, J. Symbolic Logic
69 (2004), no. 3, 914–922.

[5] Kurtz, Stuart, ”Randomness and Genericity in the Degrees of Unsolvability”, Ph.D. thesis,
University of Illinois at Urbana-Champaign, 1981. VII + 131 pages.

[6] Soare, Robert I., “Recursively enumerable sets and degrees”, Berlin London: Springer-Verlag,
1987.

G. Barmpalias, A. Montalbán / Electronic Notes in Theoretical Computer Science 167 (2007) 17–31 31

	Introduction
	Proof of theorem 1.2
	Formal strategies
	Construction
	Verification

	References

