=

View metadata, citation and similar papers at core.ac.uk brought to you by i CORE

provided by Elsevier - Publisher Connector

Available online at www.sciencedirect.com

ScienceDirect NucLEar[ ]
PHYSI

CrossMark

ELSEVIER Nuclear Physics B 887 (2014) 265-275
www.elsevier.com/locate/nuclphysb

N =1 supersymmetric Proca—Stueckelberg mechanism
for extra vector multiplet

Hitoshi Nishino *, Subhash Rajpoot

Department of Physics & Astronomy, California State University, 1250 Bellflower Boulevard, Long Beach, CA 90840,
United States

Received 25 September 2013; received in revised form 24 June 2014; accepted 9 August 2014
Available online 27 August 2014
Editor: Stephan Stieberger

Abstract

We present a variant formulation of N = 1 supersymmetric Proca—Stueckelberg mechanism for an
arbitrary non-Abelian group in four dimensions. This formulation resembles our previous variant supersym-
metric compensator mechanism in 4D. Our field content consists of the three multiplets: (i) a non-Abelian
Yang—-Mills multiplet (A MI Y ), (ii) a tensor multiplet (B,wl R XI R ga’ ) and (iii) an extra vector multiplet
(Kp ool c wp I'y with the index I for the adjoint representation of a non-Abelian gauge group. The C wp I
is originally an auxiliary field dual to the conventional auxiliary field D! for the extra vector multiplet. The
vector K ,LI and the tensor C pr[ get massive, after absorbing respectively the scalar (pI and the tensor
B,wl . The superpartner fermion p! acquires a Dirac mass shared with x/. We fix non-trivial quartic inter-
actions in the total lagrangian, with corresponding cubic interaction terms in field equations.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

Recently, there have been considerable developments [1,2] in the supersymmetrization of
the Proca—Stueckelberg compensator mechanism [3]. The supersymmetrization of non-Abelian
compensator mechanism was first performed in late 1980s [4]. The Abelian supersymmetric
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Table 1
DOF of our field content.

A[Ll A By Xl ‘pl KIL[ pl C/LVPI
DOF before absorptions
Physical 2 2 1 2 1 2 2 0
Unphysical and physical 3 4 3 4 1 3 4 1
DOF after absorptions
Physical 2 2 0 0 0 3 4 1
Unphysical and physical 3 4 0 0 0 6 8 2

Proca—Stueckelberg mechanism in [5] has a direct application to MSSM [6]. In [1], general
representations of non-Abelian group are analyzed, and higher-order terms have been also fixed.
Even though the original Higgs mechanism [7] has been established experimentally [8], the
Proca—Stueckelberg-type compensator mechanism for massive gauge fields [3] is still an im-
portant theoretical alternative.

In our recent paper [2], we presented a variant supersymmetric compensator mechanism, both
in component and superspace [9], with a field content different from [4]. Our formulation in [2]
differs also from [1], because the field content in [2] consists of two multiplets: Yang—Mills
(YM) vector multiplet (VM) (A, 7, A7, C,.,"), and the tensor multiplet (TM) (B!, x7, 7).
The C Wpl -field is Hodge-dual to the conventional auxiliary field D! . The ‘dilaton’ (pI (or Blwl )
is absorbed into the longitudinal component of A MI (or C ,wpl ), making the latter massive [2].
Our compensation mechanism in [2] works even with C,,,,,! in the adjoint representation.

In this present paper, we demonstrate yet another field content as a supersymmetric com-
pensator system in which an extra vector in the adjoint representation absorbs a scalar. We
have three multiplets VM (4,7, 17), TM (B,,", x!, ¢'), and the extra vector multiplet (EVM)
(Ku!', p!, Cuyp’). The ¢! and B! in the TM are compensator fields, respectively absorbed
into K #1 and C ,wpl -fields in the EVM. Before the absorptions, the physical degrees of freedom
(DOF) count as A, 7 (2), 21(2); By (1), x1(2), T (1); K,.'(2), p!(2), Cpuvp’ (0). After the ab-
sorption, the physical DOF count as A/LI 2), A1 (2); KMI 3), ,01(4), C,wpl (1), as summarized in
Table 1.

Our new system differs from our recent works [2,10] in terms of the four aspects:

(i) Our present system has three multiplets VM, TM and EVM, while that in [2] has only VM
and TM. The new multiplet is EVM (KMI, ol C,wpl), where KMI (or C,wpl) absorbs ¢!
(or By, "), getting massive.
(ii) The vector field getting massive is not A, ’, but is the extra vector field K.’
@iii) In[10], the TM (B,wl, x!, ') absorbs the EVM (CMI, o!), while in our present system the
EVM (K, !, p', Cpup’) absorbs the TM (B, 7, x7, 7). In other words, the roles played by
the TM and extra vector multiplets are exchanged.

This paper is organized as follows. In the next section, we give the definitions of field strengths
with their Bianchi identities, and tensorial transformations. In Section 3, we present our la-
grangian with the N = 1 supersymmetry transformation rule. In Section 4, we give the field
equations, with a related important lemma. In Section 5, we give the brief sketch of superspace
re-formulation. Concluding remarks are given in Section 6.
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2. Field strengths and tensorial transformations

The field strengths for our bosonic fields A,LI, B,wpl, C,wpl, KMI and ¢ are respectively

Fu!l =120, A0 +mfl7%A,7 A, (2.1a)
Guvp! = 43D Bupy’ +mCpip’ —3m™ f1E F Dok, (2.1b)
Hyvpo! = +4D1,Copot! +6 17X Fun” Bpo®, (2.1¢)
L' =42D K + 17K F, T ok, (2.1d)
Duo! =+Duo" + mK,!. 2.1e)

We use m for the YM coupling constant, while D,, is the YM-covariant derivative. The G in
(2.1b) instead of G is a reminder that this field strength has an extra term m~' F A Dg. Similarly,
D, in (2.1e) is used to be distinguished from D,. The mC and mK-terms in the respective
field strength G and Dy are suggestive that these field strengths can be absorbed into the field
redefinitions of C and K.

The Bianchi identities for our field strengths are

Dy Fup! =0, (2.2a)
DyyuGopo)’ = +§mHMvpa’ - %f”KF[W’LW]K, (2.2b)
DiuLupy" =+ """ F’ Dpie”, (2.20)
Dy Dy’ = +%mLW1. (2.2d)

There should be proper tensorial transformations [1,2] associated with By,,/, Cy.p! and K,/
which are symbolized as dg, §,, and §,.. The last §, is for the extra vector K| /LI which is also a
kind of ‘tensor’ in adjoint representation:

Sa(Au" B, Crvp” K" 0")
:(Dﬂal,_fIJKaJBMUK’_fIJKaJCprK’_fIJKaJKMK,_fIJK J K) (2.3a)

3 (Au,l, Buvla C//,v,ola ;Lla (PI) = (0, +2D[/j,ﬂl)]1a _3fIJKF[/wJ,Bp] ,0, ), (2.3b)
8y (AL B!, Cup’ K 0") = (0, =mypun, +3Dpuyip ', 0,0), (2.3¢)
8e(A" B Cunp” K 9") =(0,0,0, Dk’ —mic"), (2.3d)

where §, is the standard YM gauge transformation. The transformations (2.3c) and (2.3d) indi-
cate that the C,,,” and K, ! -fields respectively can absorb the compensators By,,! and ¢’ .
Our field strengths are covariant under §y, while invariant under dg, 8,,, 8, and §,:

80{ (Fp.vl, g,uupl, H/wpl, L,uvl, D/A(pl)

= —f”" T (Fun®, Gup™ s Hyunpo ™, L™, Dug®), (2.4a)
( ,LLU k] g;,LVp ’ H[,H)pls LMV[a Du(pl) = (O! 07 07 Os 0)7 (2'4b)
( Hy s g;wp ) Hp.vp s L/w ’ D I) = (O, 0, 07 0, 0)7 (24C)

8e(Fuv's Guvp” s Huvp' s L’ , Do’ ) = (0,0,0,0,0). (2.4d)
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3. Lagrangian and N = 1 supersymmetry

Once the invariant field strengths F, G, H, L and D¢ have been established, it is straight-
forward to construct a lagrangian, invariant also under N = 1 supersymmetry. Our action
I = [ d*x L has the lagrangian'

1 1

1, 1 1,
L= _Z(sz)z + E(Alpkl) - E(guvpl)z + E(XIPX ) — —( Dup)® — 28 —(Ha")?

1 1 1 _
+ 5(I(—)l¢p1) . Z(L‘“’I)z +m()—([pl) + &f”[{()»ly[“]xl)H[ax]K

l_lzfle()_‘IVB] J)g[3 _ifIJK(X )/MU,OJ)F _%fIJK(XIVMpJ)DM(pK
+%f[JK()\1yl“}X )LMVK_i_éh[J,KL(XI)LK)[(ﬁLpJ)_(XLXJ)]

1 )
+ gh! K s ) (R vse) + (kK vsx)]

1 _
- gh”’KL()\IVSVM»K)[(/_)LVSJ/“/?]) — (xFrsv“x”)]

L 1rkL
+ 8h
The symbol h!”/-KL is defined by h!/-KL = fI/M fMKL
The kinetic terms of B and ¢, namely, the (g,wpl )2 and (Dﬂtp)2-terms, which respectively
contain m*>C? and m?K?-terms, play the role of mass terms for the C and K -fields, after the
absorptions of DB by C and D¢ by K. Because of N = 1 supersymmetry, this compensator
mechanism between TM and EVM works also for fermionic partners. Namely, the original
x!-field in TM is mixed with the p!-field in EVM, forming the Dirac mass term m (' p7).
The N = 1 supersymmetry transformation rule of our multiplets is

(x"vso”) (XX vsp"). (3.1)

8oAu" =+(€yurt), (3.22)
1 1

s0r! =45 (") Fu + 51 (s (" vsp "), (3.20)

aQBW'=+(mux')+2m-1f’”f(mw>vlu —m R ) FuR L G20

1
BQXI - +8(pr€)guvp1 - (Vﬂ )DM" +5 f”K( )(gyu)‘K)

_ %fIJKpJ(aK) + %fI]K(ySpJ)(EySAK)’ (3.2d)
Sop’ =+(ex’), (3.2¢)
SQKM[ = (€yu,01) f”K(ey kj)ga (3.2f)

1 We also use the symbol [r] for totally antisymmetric indices pj---p, to save space. Our notation
is (nuv) = diag(—, +, +.+). €123 = +1 €, py (€11 = (1)@ — NUEDSY, LSy T
¥s = +ivor1vays, €4y = —i (=1 D2 sy 4,
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1 1 1
anl = +§(VMUG)LMVI - ﬁ(V“vﬂdG)Huw)al + EfIJK(VMXJ)(gyu)‘K)
1 1
n EfIJKXJ(EAK) " EfIJK(ysxj)(EySAK)

1 _ _ _
+ Zm_lh”’“[()/“é) (A25) + (s e) (W ysaX) + (rse) (W ysy 2 5) | Dot

+ im71hIJ’KL[()/5]/'“")’06)()_»1]/5)»[() + (yp.vpe)(xjkl()

24
— (MY K) +3(psyte) (M ysy ) G (3.2¢)
80Cup’ =+(Evunpp”) =35 (Enur”) B ™. (3.2h)

An important corollary is for the arbitrary variations of our field strengths:

8Fun' = +2Dy (8Aw"), (3.3a)
8Guvp’ = +3D1 (8Bjupy") +m(3Cup")
=3f1 K8 AL ) L™ = 3£ K Fy? (5K %), (3.3b)
8Hyuvpo' = +4Dpu(8C10p01") + 411K (8 Ay ) (Gropor™ +3m ™" FEM Lyyp P Digy™)
— 6K (5B’ ) Floo™. (3.30)
8Ly’ =+2Dp (K ') + 2K (8447 )Die® + 17K F? (805), (3.3d)
3(Due’) = +Du(8¢") +m(3K,."). (3.3¢)

The modified transformations SB, 8C and 8K are defined by

8B’ =+6B" —2m™ FIVK(8 AL ) DX —m ™ f1VK LK (505), (3.4a)
8Cunp! =+8Cup” +3 1K (8 AL ) Bup X,
SK =48k, + 17K (54,7 ). (3.4b)

A special case of (3.3) is the supersymmetry transformation rule,

8o Fun' = =2(eyuDup’), (3.5a)
830G’ = +3(€y[leP]XI) + m(EVuuppl)
=318 (Enmun? ) Loy +3 11K (nuio”) Fo ™, (3.5b)
5QHMWOUI = _4(€V[MUPD0]/)I) +a4flK (gy[ul)‘J)QIVpG]K
—6f1K (éV[WIXJ)Flpd]Kv (3.5¢)
8oL’ ==2(€yuDuip’) + 2K (enur”)Dpye™ — 175 (ex ) Fun ¥, (3.5d)
30(Dup’) = +(eDux’) +m(eyup’). (3.5¢)

In particular, there should be no ‘bare’ potential-field terms, such as ‘bare’ Blwl or ‘bare’
gol -term without derivatives in (3.3) or (3.5). The modified transformations (3.4) explain why
the terms in 8o By’ (3.2¢), 80Cpuvp’ (3.2h) and 89K, ' (3.2f) other than their first linear terms
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are required. In other words, all the tilted transformations §Q BWI , :fQ (o ,wpl , 'SQ K ﬂl contain
only the linear terms in (3.2¢), (3.2h) and (3.2f), respectively.
Note the peculiar m~! F A B-term in G in (2.1b). The general variation of this term is

8(_3m—lf1JKF[MUJDp]¢K)
=+3Dpu [ —2m ™" 1R (3417 ) D" ] = 6m™ K (8 AL ) DD (3.6)

The last term is proportional to (8A) A L with the original m~! canceled by m in the former
resulting in only an mO-term, interpreted as the third term in (3.3b). The first term of (3.6) with
m~! is absorbed into the second term of ngpI in (3.4a). This sort of sophisticated Chern—Simons
terms at order m ! has not been presented in the past, to our knowledge. This is the result of
intricate play between the TM and EVM, where the latter absorbs the former as a compensator
multiplet.

The confirmation of the action invariance §p/ = 0 is performed as follows. Including the
fermionic quartic terms, the confirmation is performed at O(®2), O(®3) and O(P*)-terms,
where @ stands for any fundamental field. Depending on the context, we distinguish fermionic
fields and bosonic fields by the symbols ¥ and ¢, respectively: (@) = (¥, ¢). To be more precise,
there are four categories of terms to consider: (I) m®®2, (I1) m®2, (1) m°®3, IV) mP3, and
(V) mY o4,

The categories (I) and (II) are straightforward quadratic-order confirmations. The category
(I1T) for m®@3-terms is non-trivial with nine sectors: (i) AGH, (ii) x F H, (iii) AHDg, (iv) AGL,
(v) pFG, (vi) ALDg, (vii) x FL, (viii) p FDg, and (ix) Ax Dp or ApD x. The only subtle sector
is (ix), where upon partial integrations, we can get rid of derivatives on X, such that we are left
only with A x Dp or Ap D x-terms.” After Fierz rearrangements, only the structures (€y1)(Xy Dp)
and (€yA)(py D x) remain, all of which cancel amongst themselves. The cancellation confirma-
tion of these terms are involved, depending on the number of y-matrices sandwiched by € and A.
This is carried out by adding the non-trivial Ap-terms in g x, Ax-terms in §p o, and xp-terms
indgA.

The category (IV) for m®3-terms has four sectors: (i) mAp?, (i) mA3, (iii) mAix?2, and (iv)
mAp®. The confirmation of all of these sectors are relatively easy, consistently with the Ap-terms
in8px, Ax-terms in g, and xp-terms in §pA.

The computation to fix the O(®*)-terms in the lagrangian is the most involved. All terms
in the sector (V) m°®* are actually of the type m%y3¢, i.e., (fermion)3(boson)-terms. They
arise, e.g., from the variations of the O(y*)-terms in the lagrangian. They are categorized into
ten sectors: (i) A2pH, (i) p2AF, (iii) x2pH, (iv) p*xG, (v) A2xDe, (vi) x2AF, (vii) p2xDe,
(viii) A2xG, (ix) x%pL, and (x) A2pL. The confirmation of these sectors (i) through (x) are the
outlined as follows: For (i), there are two sources of terms: AZp%-terms and A x H-term in the
lagrangian. After the Fierzing of the latter terms, these contributions simply cancel themselves.
For (ii), there are three sources of terms: xp F, ApG and A% p?-terms. The first two group of terms
need Fierzing, and they eventually cancel themselves. Similarly for (iii), there are two sources of
terms: A x H and x2p?. For (iv), there are two sources of terms: ApG and x2p?2. For (v), there are
four sources: ApDg@, Ax L, mip and p®x2-terms. In particular, the m~'A2Dg-terms in § op via
mA8gp cancel other terms. For (vi), there are four sources: xpF, AxL, Ax H and A2 x2-terms.
For (vii), there are two sources: ApD¢ and 2 p>-terms. For (viii), there are four sources: ApG,

2 Here we do not necessary mean the terms of the type (€yA)(xy Dp) or (€yL)(py Dy), which are reached after Fierz
arrangements.
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AxH, myp and A%y2-terms. For (ix), there are two sources: Ay L and x2p2-terms. For (x),
there are three sources: Ax L, ApG and A%p2-terms. All of these terms cancel themselves, after
appropriate Fierz-rearrangements.

4. Field equations
The field equations in our system are highly non-trivial. This is due to the extra Chern—Simon-

type terms in various field strengths. Even the simplest field strength Duq)l has an extra term
mK,!. The explicit forms of our field equations are

L. 1 _ 1 _ 1 -
- =—DUFIWI+—fI'IK(XJDM,OK)+—f[lK(,OJDMXK)——mfIJK()nJ}/H)LK)
5A, 2 2 2
1 1
+ 5fIJKLwo]gpw,OK _ 8J(‘I‘/ngoaJliuv,(m’K +fIJKLMVJDp§0K iO, (413)
5L 1 1 - 1
~4-D pvpl _ — 1JK )LJ nv K - IJKF JH;u)paK
8B;w1 +2 G 4mf ( yoX )+4f po
1 - 1
_EfIJK()\-J'}/[M’DV]pK)+§fIJK(,(_)JJ/[MDU])\,K)io, (41b)
3L 1 1 1 _
~__D H,uvpa[__ puvpl 1JK )»‘I nvp K
1 - 1
_ZfIJK()\])/[PWDp]XK)"‘ZfI]K()_(JV““)Dp])VK)iov (410)
SL . 1 _
aKﬂI - _DUL/WI —m'DM(pI o EfIJKFVpJgMV’OK —mfIJK()»JJ/M,OK)
1 - 1 _ .
—szJK(AJD“XK)—Ef”K(x]D“AK)zo, (4.1d)
8L . w1 1 1JK (7J K 1 1JK JyuwkK -
$L - 1 1 1JK (., uvpo ., J K 1 I1JK (,,uvp J K
WZ p)‘ +ﬁf ()/ X )H,uvpa _Ef (V 1% )g;wp

1 1 1
- E(VMPJ)DM‘/’K n Z(VWXJ)LWK . ZhIJ,KLAK[(ﬁLpJ) . ()—(LXJ)]

1
+ Zh”’“ (ysr®)[(B vsp”) + (x"vsx”)]

1
B ZhlJ,KL(ysyu)\K)[(/—)LysyﬂpJ) — (xtysytx’)] =0, (4.1
5L 1 1
SXTI = Py +mp! — ngljk(y“"p“AJ)prak + Zf”K()/W/OJ)F;wK

+ifIJK()/lw)\])Lle+thJ'KLXK(XL)\J)+%hIJ’KL(VSXK)(XLVS)\.J)

1 _
+Zh”’KL(VSVMXK)()»LVSVM)»]) =0, (4.1g)
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5L 1 1

T1:+¢pl +mXI+—fIJK()/MVp)»J)g;wpK——fIJK(]/‘WXJ)F K

P 12 4
1
T4

1 _
= (s (K sytat) =0, (4.1h)

fIJK( )D (P hIJ’KL,OK(XL)»J)+%h11’KL()/5pK)(XL)/5)»J)

where the symbol = is for an equality by the use of field equation(s).

The mG-term in the C-field equation (4.1c) plays the role of the mass term for the C-field after
a field-redefinition of C absorbing the 3D B-term in G. So does the mDy-term in the K-field
equation (4.1d).

Our result (4.1) is based on an important lemma about the general variation of our lagrangian
up to a total divergence:

SL 5/:,,/,@1/, §L
8= (8A,1)| +2D, =3fKL | —=
£= 0 )[+ <8F,,w’>+( SAL! / T

L
4 1JK UUJ 2 1JK Dv J
+ f g,O (SH,L“),UGK + f ( (p) (SLMVK

N _ L IJK J

+ (8Bu )[ 3Dp(ag,wp1) Fpo SHWW
J 5L

66w +i0e (s ) + ()|

§L §L 5L
+ (8K,' [+2Dv(—)+ {7}+3 VK, f( )}
(¢5.7) 8Lyt " 8(Duoh) ! 7 \8GuX

N _ 8L —1 ¢1JK 8L
+(8w)[D{8(D )}+3 fEE,, Dp<8gwp[(>

_ fszWJ((Sf:Kﬂ
() () o (5)

The symbol (8Lypy /8A,") in the first line is for the contributions from the minimal couplings
in the fermionic kinetic terms of A, x and p. Use is also made of the general-variation formulae
in (3.3) for arranging the whole terms.

In getting the expression (4.2), there are many non-trivial cancellations. For example, the two
terms:

5L 5L
317K (5A,1)B ’[+4D (7>+m(7>i| 4.3
f ( u) vp o 5H;wpoK 8gp,vpK ( )
cancel upon the use of the C-field equation (4.1c). Similarly, the two terms:
8L 8L

1JK n,J

A 2D, —— _ 4.4
A [+ ”(8LMVK)+'"{6(DM¢K>H @y

also cancel upon the K -field equation (4.1d).
As an additional confirmation, we can show that the divergence of the A, B, C and K-field
equations all vanish. For example, the divergence of the A-field equation is



H. Nishino, S. Rajpoot / Nuclear Physics B 887 (2014) 265-275 273

? L\ . _ _ 1
0= DM( ) = +mf”K(XJpK) +mf”K(i0JXK) - ﬁmf”KHuvpaJH“UpUK

8A,!
1 1 .
_ gfIJKgVPUngpGK _ Emf”KLWJLWK =0 (Q.E.D.). 4.5)
Here we have used other field equations, such as PA! = --. or DMHWP"’ = +mg@gvrol 4 ...,

etc. Similarly for the case of C-field equation:

0Lp, (25
TP\ 8C !
1

1 1 _
— __mfIJKFpUJH,uvpaK _ ngpguvp _ EmfIJKDp()»J)/MU’O,OK)

12
. 1 1 1 - 1
- _EfIJKFpGJHMUpJK _ gm[—EfIJKDp()LJ)/Iw’O,OK) _ 5fIJKFpalI_Ip.v,och]
1 _
_ EmijKDp()»j)/“v’opK)io, (4.6)

where we used the B-field equation for the DG-term.
5. Superspace reformulation

We have so far discussed only component formulation. We can re-formulate our component
results in terms of superspace language. In the conventional superspace formalisms for the typ-
ical multiplets of VM, chiral multiplets, or singlet tensor multiplets are performed in terms of
unconstrained pre-potential superfields. For example, for a singlet (Abelian) tensor multiplet, the
unconstrained superfield is L [11]. This is possible for the case of singlet tensor multiplet, but
not for our present non-Abelian TM. The obstruction against using the unconstrained superfield
L is described with Eq. (4.11) in our previous paper [2]. For this reason, we can not rely on the
so-called unconstrained pre-potential formulation.

Our formulation to be given here is very similar to our previous superspace reformulation
for Proca—Stueckelberg mechanism such as in [2]. Our superspace notation has slight difference
from our component formulation. We use the indices A = (a, o), B = (b, B), ... for superspace
coordinates, where a = 0,1,...,3 (or @ =1, ..., 4) are for the bosonic (or fermionic) coordi-
nates. Accordingly, our fundamental field content will be VM (A,’, A7), TM (Bup!, xo', ¢7)
and EVM (K,7, pal , Cabel). The superfield strengths of A.l, B! and Cup.! are respectively
Fabl, Gabcl and Habcl'

These superfields satisfy the superspace Bianchi identities (Bids)®

1 ;1 D I
+§V[AFBC) - ETIABl Fpic)’ =0, (5.1a)
1
+6V[AGBCD)I 2 [AB|EGE|CD)I —mHapcp!
1 1
+ Zf”KF[ABJLCD)K - EM[ABCVD)QDI =0, (5.1b)

3 In superspace we use the convention for (anti)symmetrizations of indices, e.g., [AB) = AB — (=DABBA, so that
[ab] = ab — ba, and (af) = af + Ba.
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1
+§V[ADB)(01 —TapVep! =0, (5.1¢)
+ﬁV[AHBCDE)I R [AB|FHF\CDE)I
_L a8’ Gepp)® — iM ascLpe) =0 (5.1d)
12 [ ) 12 [ ) =Y .
+1v F ’—lr PEpiey =0 (5.1e)
7 ViaFso)y = ST Fpiey =0, .
1 1
+8V[AMBCD)_ZT[ABlEMElCD)EO- (5.1f)

The constraints at the engineering dimensions d =0, 1/2 and 1 are

Tup" = +2(V) g Mape = +2(v)ap. (5.2a)
Ve@' =o' Hapea' =—(vbear’), (5.2b)
Gave' =—(voex"), —m " K (yp?)  Vieww® +m™" 1Ky Fy X (5.2¢)
Fap' =—(wr"),.  Lap' =—(wp’),. (5.2d)
1 1
Vohg! = +5(V6d)aﬂch1 - EfIJK(VS)aﬂ()_(JVSPK), (5.2¢)
1 1 .
Vaxp' = =2 (r")y, Geae' = rapVeo' + 3 175 (rer!), (vo")
1 1
_EfIJK)‘faJpﬂK+§f[lK(y5)\f‘l)a(V5,0K)ﬁy (52{:)
1, . 1 . 1 ,
Vouoﬂl = +§(V6d)aﬁLcd1 + ﬂ(ycdef)aﬂHcdefl + EfIJK(VC)\J)a(VcXK)ﬁ

1 1
" 5fIJK)WJXﬂK n EfIJK()/5)\1)0[(7/5)(1<)/3

1 _ _
- lhIJ,KL[_}_(yd)aﬁ()LJ)LK) _ (VSVd)aﬂ()\JVS)“K)
— (r9)ap (M ysyIAE) = (v57?) s (W vsver ) Dag®

1 . — i _

+ Cap (A7 yaK) +3(ysy ) g (W y57 25 ) [Geae™ (5.29)

Even though nor explicitly shown, all other independent components are zero, e.g., Fa,gl =0
or Haﬁygl =0, etc. As usual in superspace, the Bids at d = 3/2 and d = 2 give the superfield
equations of all of our fundamental fields Al !, Bap!, Xal, K., ,oal and Cyp.!. Since these
are consistent with our field equations in (4.1), they are skipped in order to save space.

6. Concluding remarks
In this paper, we have presented a very peculiar supersymmetric system that realizes the

Proca—Stueckelberg compensator mechanism [3] for an EVM. Our present model has resem-
blance to our recent model [2], which had only two multiplets VM and TM.
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The peculiar features of our model are summarized as

(1) We have three multiplets VM, TM and EVM, where the EVM will be eventually massive.
(ii) Our peculiar field strength G =3DB 4+ mC — 3m~'F A B has the last term with m ™.
(iii) Our model provides yet another mechanism of absorbing the dilaton-type scalar field ¢!
into the extra vector K MI , different from the conventional YM gauge field A ,LI .
(iv) Even the tensor C ,wpl in the EVM gets a mass absorbing Blwl in the TM.

Even though our system is less economical than [2] with an additional multiplet EVM, it has
its own advantage. First, we provide a mechanism for giving a mass to the extra vector K ul in
the EVM, which may be not needed as a massless particle at low energy. Second, we have a new
compensator mechanism for an extra vector K MI in the adjoint representation, which is not the
YM gauge field. The derivative Dﬂ(pl is simpler than exponentiations [2].

General formulations for different representations (not necessarily adjoint representations)
for supersymmetric compensator mechanism have been given in [1]. However, we emphasize
here that the fixing of supersymmetric couplings for our system with a different field content
is a highly non-trivial task. Even superspace formulation does not help so much, because of
the obstruction described in Section 4 of [2]. The main reason is that the usual unconstrained
formalism in terms of the singlet superfield L [11] can not describe a tensor multiplet in the
adjoint representation.

Our results can be applied to diverse space—time dimensions and also to extended supersym-
metric systems.
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