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Abstract

We present a variant formulation of N = 1 supersymmetric Proca–Stueckelberg mechanism for an 
arbitrary non-Abelian group in four dimensions. This formulation resembles our previous variant supersym-
metric compensator mechanism in 4D. Our field content consists of the three multiplets: (i) a non-Abelian 
Yang–Mills multiplet (Aμ

I , λI ), (ii) a tensor multiplet (Bμν
I , χI , ϕI ) and (iii) an extra vector multiplet 

(Kμ
I , ρI , Cμνρ

I ) with the index I for the adjoint representation of a non-Abelian gauge group. The Cμνρ
I

is originally an auxiliary field dual to the conventional auxiliary field DI for the extra vector multiplet. The 
vector Kμ

I and the tensor Cμνρ
I get massive, after absorbing respectively the scalar ϕI and the tensor 

Bμν
I . The superpartner fermion ρI acquires a Dirac mass shared with χI . We fix non-trivial quartic inter-

actions in the total lagrangian, with corresponding cubic interaction terms in field equations.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

Recently, there have been considerable developments [1,2] in the supersymmetrization of 
the Proca–Stueckelberg compensator mechanism [3]. The supersymmetrization of non-Abelian
compensator mechanism was first performed in late 1980s [4]. The Abelian supersymmetric 
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Table 1
DOF of our field content.

Aμ
I λI Bμν

I χI ϕI Kμ
I ρI Cμνρ

I

DOF before absorptions
Physical 2 2 1 2 1 2 2 0
Unphysical and physical 3 4 3 4 1 3 4 1

DOF after absorptions
Physical 2 2 0 0 0 3 4 1
Unphysical and physical 3 4 0 0 0 6 8 2

Proca–Stueckelberg mechanism in [5] has a direct application to MSSM [6]. In [1], general 
representations of non-Abelian group are analyzed, and higher-order terms have been also fixed. 
Even though the original Higgs mechanism [7] has been established experimentally [8], the 
Proca–Stueckelberg-type compensator mechanism for massive gauge fields [3] is still an im-
portant theoretical alternative.

In our recent paper [2], we presented a variant supersymmetric compensator mechanism, both 
in component and superspace [9], with a field content different from [4]. Our formulation in [2]
differs also from [1], because the field content in [2] consists of two multiplets: Yang–Mills 
(YM) vector multiplet (VM) (Aμ

I , λI , Cμνρ
I ), and the tensor multiplet (TM) (Bμν

I , χI , ϕI ). 
The Cμνρ

I -field is Hodge-dual to the conventional auxiliary field DI . The ‘dilaton’ ϕI (or Bμν
I ) 

is absorbed into the longitudinal component of Aμ
I (or Cμνρ

I ), making the latter massive [2]. 
Our compensation mechanism in [2] works even with Cμνρ

I in the adjoint representation.
In this present paper, we demonstrate yet another field content as a supersymmetric com-

pensator system in which an extra vector in the adjoint representation absorbs a scalar. We 
have three multiplets VM (Aμ

I , λI ), TM (Bμν
I , χI , ϕI ), and the extra vector multiplet (EVM) 

(Kμ
I , ρI , Cμνρ

I ). The ϕI and Bμν
I in the TM are compensator fields, respectively absorbed 

into Kμ
I and Cμνρ

I -fields in the EVM. Before the absorptions, the physical degrees of freedom 
(DOF) count as Aμ

I (2), λI (2); Bμν
I (1), χI (2), ϕI (1); Kμ

I (2), ρI (2), Cμνρ
I (0). After the ab-

sorption, the physical DOF count as Aμ
I (2), λI (2); Kμ

I (3), ρI (4), Cμνρ
I (1), as summarized in 

Table 1.
Our new system differs from our recent works [2,10] in terms of the four aspects:

(i) Our present system has three multiplets VM, TM and EVM, while that in [2] has only VM 
and TM. The new multiplet is EVM (Kμ

I , ρI , Cμνρ
I ), where Kμ

I (or Cμνρ
I ) absorbs ϕI

(or Bμν
I ), getting massive.

(ii) The vector field getting massive is not Aμ
I , but is the extra vector field Kμ

I .
(iii) In [10], the TM (Bμν

I , χI , ϕI ) absorbs the EVM (Cμ
I , ρI ), while in our present system the 

EVM (Kμ
I , ρI , Cμνρ

I ) absorbs the TM (Bμν
I , χI , ϕI ). In other words, the roles played by 

the TM and extra vector multiplets are exchanged.

This paper is organized as follows. In the next section, we give the definitions of field strengths 
with their Bianchi identities, and tensorial transformations. In Section 3, we present our la-
grangian with the N = 1 supersymmetry transformation rule. In Section 4, we give the field 
equations, with a related important lemma. In Section 5, we give the brief sketch of superspace 
re-formulation. Concluding remarks are given in Section 6.
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2. Field strengths and tensorial transformations

The field strengths for our bosonic fields Aμ
I , Bμνρ

I , Cμνρ
I , Kμ

I and ϕI are respectively

Fμν
I ≡ +2∂[μAν]I + mf IJKAμ

J Aν
K, (2.1a)

Gμνρ
I ≡ +3D[μBνρ]I + mCμνρ

I − 3m−1f IJKF[μν
JDρ]ϕK, (2.1b)

Hμνρσ
I ≡ +4D[μCνρσ ]I + 6f IJKF[μν

J Bρσ ]K, (2.1c)

Lμν
I ≡ +2D[μKν]I + f IJKFμν

J ϕK, (2.1d)

DμϕI ≡ +DμϕI + mKμ
I . (2.1e)

We use m for the YM coupling constant, while Dμ is the YM-covariant derivative. The G in 
(2.1b) instead of G is a reminder that this field strength has an extra term m−1F ∧Dϕ. Similarly, 
Dμ in (2.1e) is used to be distinguished from Dμ. The mC and mK-terms in the respective 
field strength G and Dϕ are suggestive that these field strengths can be absorbed into the field 
redefinitions of C and K .

The Bianchi identities for our field strengths are

D[μFνρ]I ≡ 0, (2.2a)

D[μGνρσ ]I ≡ +1

4
mHμνρσ

I − 3

2
f IJKF[μν

J Lρσ ]K, (2.2b)

D[μLνρ]I ≡ +f IJKF[μν
JDρ]ϕK, (2.2c)

D[μDν]ϕI ≡ +1

2
mLμν

I . (2.2d)

There should be proper tensorial transformations [1,2] associated with Bμν
I , Cμνρ

I and Kμ
I

which are symbolized as δβ , δγ and δκ . The last δκ is for the extra vector Kμ
I which is also a 

kind of ‘tensor’ in adjoint representation:

δα

(
Aμ

I ,Bμν
I ,Cμνρ

I ,Kμ
I ,ϕI

)
= (

DμαI ,−f IJKαJ Bμν
K,−f IJKαJ Cμνρ

K,−f IJKαJ Kμ
K,−f IJKαJ ϕK

)
, (2.3a)

δβ

(
Aμ

I ,Bμν
I ,Cμνρ

I ,Kμ
I ,ϕI

) = (
0,+2D[μβν]I ,−3f IJKF[μν

J βρ]K,0,0
)
, (2.3b)

δγ

(
Aμ

I ,Bμν
I ,Cμνρ

I ,Kμ
I ,ϕI

) = (
0,−mγμν,+3D[μγνρ]I ,0,0

)
, (2.3c)

δκ

(
Aμ

I ,Bμν
I ,Cμνρ

I ,Kμ
I ,ϕI

) = (
0,0,0,DμκI ,−mκI

)
, (2.3d)

where δα is the standard YM gauge transformation. The transformations (2.3c) and (2.3d) indi-
cate that the Cμνρ

I and Kμ
I -fields respectively can absorb the compensators Bμν

I and ϕI .
Our field strengths are covariant under δα , while invariant under δβ , δγ , δγ and δκ :

δα

(
Fμν

I ,Gμνρ
I ,Hμνρ

I ,Lμν
I ,DμϕI

)
= −f IJKαJ

(
Fμν

K,Gμνρ
K,Hμνρσ

K,Lμν
K,DμϕK

)
, (2.4a)

δβ

(
Fμν

I ,Gμνρ
I ,Hμνρ

I ,Lμν
I ,DμϕI

) = (0,0,0,0,0), (2.4b)

δγ

(
Fμν

I ,Gμνρ
I ,Hμνρ

I ,Lμν
I ,DμϕI

) = (0,0,0,0,0), (2.4c)

δκ

(
Fμν

I ,Gμνρ
I ,Hμνρ

I ,Lμν
I ,DμϕI

) = (0,0,0,0,0). (2.4d)
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3. Lagrangian and N = 1 supersymmetry

Once the invariant field strengths F , G, H , L and Dϕ have been established, it is straight-
forward to construct a lagrangian, invariant also under N = 1 supersymmetry. Our action 
I ≡ ∫

d4xL has the lagrangian1

L = −1

4

(
Fμν

I
)2 + 1

2

(
λI/DλI

) − 1

12

(
Gμνρ

I
)2 + 1

2

(
χI/DχI

) − 1

2
(Dμϕ)2 − 1

48

(
H[4]I

)2

+ 1

2

(
ρI/DρI

) − 1

4

(
Lμν

I
)2 + m

(
χIρI

) + 1

48
f IJK

(
λI γ [4]χJ

)
H[4]K

− 1

12
f IJK

(
λI γ [3]ρJ

)
G[3]K − 1

4
f IJK

(
χIγ μνρJ

)
Fμν

K − 1

2
f IJK

(
λI γ μρJ

)
DμϕK

+ 1

4
f IJK

(
λI γ μνχJ

)
Lμν

K + 1

8
hIJ,KL

(
λIλK

)[(
ρLρJ

) − (
χLχJ

)]
+ 1

8
hIJ,KL

(
λIγ5λ

K
)[(

ρLγ5ρ
J
) + (

χLγ5χ
J
)]

− 1

8
hIJ,KL

(
λIγ5γμλK

)[(
ρLγ5γ

μρJ
) − (

χLγ5γ
μχJ

)]
+ 1

8
hIJ,KL

(
χIγ5ρ

J
)(

χKγ5ρ
L
)
. (3.1)

The symbol hIJ,KL is defined by hIJ,KL ≡ f IJMf MKL.
The kinetic terms of B and ϕ, namely, the (Gμνρ

I )2 and (Dμϕ)2-terms, which respectively 
contain m2C2 and m2K2-terms, play the role of mass terms for the C and K-fields, after the 
absorptions of DB by C and Dϕ by K . Because of N = 1 supersymmetry, this compensator 
mechanism between TM and EVM works also for fermionic partners. Namely, the original 
χI -field in TM is mixed with the ρI -field in EVM, forming the Dirac mass term m(χIρI ).

The N = 1 supersymmetry transformation rule of our multiplets is

δQAμ
I = +(

εγμλI
)
, (3.2a)

δQλI = +1

2

(
γ μνε

)
Fμν

I + 1

2
f IJK(γ5ε)

(
χJ γ5ρ

K
)
, (3.2b)

δQBμν
I = +(

εγμνχ
I
) + 2m−1f IJK

(
εγ[μ|λJ

)
D|ν]ϕK − m−1f IJK

(
εχJ

)
Fμν

K, (3.2c)

δQχI = +1

6

(
γ μνρε

)
Gμνρ

I − (
γ με

)
DμϕI + 1

2
f IJK

(
γ μρJ

)(
εγμλK

)
− 1

2
f IJKρJ

(
ελK

) + 1

2
f IJK

(
γ5ρ

J
)(

εγ5λ
K

)
, (3.2d)

δQϕI = +(
εχI

)
, (3.2e)

δQKμ
I = +(

εγμρI
) − f IJK

(
εγμλJ

)
ϕK, (3.2f)

1 We also use the symbol [r] for totally antisymmetric indices ρ1 · · ·ρr to save space. Our notation 
is (ημν) ≡ diag(−, +, +, +), ε0123 = +1, εμ1···μ4−r [r]ε[r]σ1···σ4−r = −(−1)r (4 − r)!(r!)δ[μ1

σ1 · · · δμ4−r ]σ4−r , 
γ5 ≡ +iγ0γ1γ2γ3, ε[4−r][r]γ[r] = −i(−1)r(r−1)/2(r!)γ5γ [4−r] .
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δQρI = +1

2

(
γ μνε

)
Lμν

I − 1

24

(
γ μνρσ ε

)
Hμνρσ

I + 1

2
f IJK

(
γ μχJ

)(
εγμλK

)
+ 1

2
f IJKχJ

(
ελK

) + 1

2
f IJK

(
γ5χ

J
)(

εγ5λ
K

)
+ 1

4
m−1hIJ,KL

[(
γ με

)(
λJ λK

) + (
γ5γ

με
)(

λJ γ5λ
K

) + (γ5ε)
(
λJ γ5γ

μλK
)]
DμϕL

+ 1

24
m−1hIJ,KL

[(
γ5γ

μνρε
)(

λJ γ5λ
K

) + (
γ μνρε

)(
λJ λK

)
− ε

(
λJ γ μνρλK

) + 3
(
γ5γ

μνε
)(

λJ γ5γ
ρλK

)]
Gμνρ

L, (3.2g)

δQCμνρ
I = +(

εγμνρρI
) − 3f IJK

(
εγ[μ|λJ

)
B|νρ]K. (3.2h)

An important corollary is for the arbitrary variations of our field strengths:

δFμν
I = +2D[μ|

(
δA|ν]I

)
, (3.3a)

δGμνρ
I = +3D[μ|

(̃
δB|νρ]I

) + m
(̃
δCμνρ

I
)

− 3f IJK
(
δA[μ|J

)
L|νρ]K − 3f IJKF[μν|J

(̃
δK|ρ]K

)
, (3.3b)

δHμνρσ
I = +4D[μ|

(̃
δC|νρσ ]I

) + 4f IJK
(
δA[μ|J

)(
G|νρσ ]K + 3m−1f KLML|νρ|LD|σ ]ϕM

)
− 6f IJK

(̃
δB[μν|J

)
F|ρσ ]K, (3.3c)

δLμν
I = +2D[μ|

(̃
δK|ν]I

) + 2f IJK
(
δA[μ|J

)
D|ν]ϕK + f IJKFμν

J
(
δϕK

)
, (3.3d)

δ
(
DμϕI

) = +Dμ

(
δϕI

) + m
(̃
δKμ

I
)
. (3.3e)

The modified transformations ̃δB , ̃δC and ̃δK are defined by

δ̃Bμν
I ≡ +δBμν

I − 2m−1f IJK
(
δA[μ|J

)
D|ν]ϕK − m−1f IJKFμν

K
(
δϕK

)
, (3.4a)

δ̃Cμνρ
I ≡ +δCμνρ

I + 3f IJK
(
δA[μ|J

)
B|νρ]K,

δ̃Kμ
I ≡ +δKμ

I + f IJK
(
δAμ

J
)
ϕK. (3.4b)

A special case of (3.3) is the supersymmetry transformation rule,

δQFμν
I = −2

(
εγ[μDν]λI

)
, (3.5a)

δQGμνρ
I = +3

(
εγ[μνDρ]χI

) + m
(
εγμνρρI

)
− 3f IJK

(
εγ[μ|λJ

)
L|νρ]K + 3f IJK

(
εγ[μ|ρJ

)
F|νρ]K, (3.5b)

δQHμνρσ
I = −4

(
εγ[μνρDσ ]ρI

) + 4f IJK
(
εγ[μ|λJ

)
G|νρσ ]K

− 6f IJK
(
εγ[μν|χJ

)
F|ρσ ]K, (3.5c)

δQLμν
I = −2

(
εγ[μDν]ρI

) + 2f IJK
(
εγ[μ|λJ

)
D|ν]ϕK − f IJK

(
εχJ

)
Fμν

K, (3.5d)

δQ

(
DμϕI

) = +(
εDμχI

) + m
(
εγμρI

)
. (3.5e)

In particular, there should be no ‘bare’ potential-field terms, such as ‘bare’ Bμν
I or ‘bare’ 

ϕI -term without derivatives in (3.3) or (3.5). The modified transformations (3.4) explain why 
the terms in δQBμν

I (3.2c), δQCμνρ
I (3.2h) and δQKμ

I (3.2f) other than their first linear terms 
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are required. In other words, all the tilted transformations ̃δQBμν
I , δ̃QCμνρ

I , δ̃QKμ
I contain 

only the linear terms in (3.2c), (3.2h) and (3.2f), respectively.
Note the peculiar m−1F ∧ B-term in G in (2.1b). The general variation of this term is

δ
(−3m−1f IJKF[μν

JDρ]ϕK
)

= +3D[μ|
[−2m−1f IJK

(
δA|ν|J

)
D|ρ]ϕK

] − 6m−1f IJK
(
δA[μ|J

)
D|ν|D|ρ]ϕK. (3.6)

The last term is proportional to (δA) ∧ L with the original m−1 canceled by m in the former 
resulting in only an m0-term, interpreted as the third term in (3.3b). The first term of (3.6) with 
m−1 is absorbed into the second term of ̃δBνρ

I in (3.4a). This sort of sophisticated Chern–Simons 
terms at order m−1 has not been presented in the past, to our knowledge. This is the result of 
intricate play between the TM and EVM, where the latter absorbs the former as a compensator 
multiplet.

The confirmation of the action invariance δQI = 0 is performed as follows. Including the 
fermionic quartic terms, the confirmation is performed at O(Φ2), O(Φ3) and O(Φ4)-terms, 
where Φ stands for any fundamental field. Depending on the context, we distinguish fermionic 
fields and bosonic fields by the symbols ψ and φ, respectively: (Φ) = (ψ, φ). To be more precise, 
there are four categories of terms to consider: (I) m0Φ2, (II) mΦ2, (III) m0Φ3, (IV) mΦ3, and 
(V) m0Φ4.

The categories (I) and (II) are straightforward quadratic-order confirmations. The category 
(III) for m0Φ3-terms is non-trivial with nine sectors: (i) λGH , (ii) χFH , (iii) λHDϕ, (iv) λGL, 
(v) ρFG, (vi) λLDϕ, (vii) χFL, (viii) ρFDϕ, and (ix) λχDρ or λρDχ . The only subtle sector 
is (ix), where upon partial integrations, we can get rid of derivatives on λ, such that we are left 
only with λχDρ or λρDχ -terms.2 After Fierz rearrangements, only the structures (εγ λ)(χγDρ)

and (εγ λ)(ργDχ) remain, all of which cancel amongst themselves. The cancellation confirma-
tion of these terms are involved, depending on the number of γ -matrices sandwiched by ε and λ. 
This is carried out by adding the non-trivial λρ-terms in δQχ , λχ -terms in δQρ, and χρ-terms 
in δQλ.

The category (IV) for mΦ3-terms has four sectors: (i) mλρ2, (ii) mλ3, (iii) mλχ2, and (iv) 
mλρ2. The confirmation of all of these sectors are relatively easy, consistently with the λρ-terms 
in δQχ , λχ -terms in δQρ, and χρ-terms in δQλ.

The computation to fix the O(Φ4)-terms in the lagrangian is the most involved. All terms 
in the sector (V) m0Φ4 are actually of the type m0ψ3φ, i.e., (fermion)3(boson)-terms. They 
arise, e.g., from the variations of the O(ψ4)-terms in the lagrangian. They are categorized into 
ten sectors: (i) λ2ρH , (ii) ρ2λF , (iii) χ2ρH , (iv) ρ2χG, (v) λ2χDϕ, (vi) χ2λF , (vii) ρ2χDϕ, 
(viii) λ2χG, (ix) χ2ρL, and (x) λ2ρL. The confirmation of these sectors (i) through (x) are the 
outlined as follows: For (i), there are two sources of terms: λ2ρ2-terms and λχH -term in the 
lagrangian. After the Fierzing of the latter terms, these contributions simply cancel themselves. 
For (ii), there are three sources of terms: χρF , λρG and λ2ρ2-terms. The first two group of terms 
need Fierzing, and they eventually cancel themselves. Similarly for (iii), there are two sources of 
terms: λχH and χ2ρ2. For (iv), there are two sources of terms: λρG and χ2ρ2. For (v), there are 
four sources: λρDϕ, λχL, mλρ and ρ2χ2-terms. In particular, the m−1λ2Dϕ-terms in δQρ via 
mλδQρ cancel other terms. For (vi), there are four sources: χρF , λχL, λχH and λ2χ2-terms. 
For (vii), there are two sources: λρDϕ and χ2ρ2-terms. For (viii), there are four sources: λρG, 

2 Here we do not necessary mean the terms of the type (εγ λ)(χγDρ) or (εγ λ)(ργDχ), which are reached after Fierz 
arrangements.
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λχH , mχρ and λ2χ2-terms. For (ix), there are two sources: λχL and χ2ρ2-terms. For (x), 
there are three sources: λχL, λρG and λ2ρ2-terms. All of these terms cancel themselves, after 
appropriate Fierz-rearrangements.

4. Field equations

The field equations in our system are highly non-trivial. This is due to the extra Chern–Simon-
type terms in various field strengths. Even the simplest field strength DμϕI has an extra term 
mKμ

I . The explicit forms of our field equations are

δL
δAμ

I

.= −DνF
μν I + 1

2
f IJK

(
χJ DμρK

) + 1

2
f IJK

(
ρJ DμχK

) − 1

2
mf IJK

(
λJ γ μλK

)

+ 1

2
f IJKLνρ

JGμνρK − 1

6
f IJKGνρσ

J HμνρσK + f IJKLμνJDνϕ
K .= 0, (4.1a)

δL
δBμν

I

.= +1

2
DρGμνρI − 1

4
mf IJK

(
λJ γ μνχK

) + 1

4
f IJKFρσ

J HμνρσK

− 1

2
f IJK

(
λJ γ [μDν]ρK

) + 1

2
f IJK

(
ρJ γ [μDν]λK

) .= 0, (4.1b)

δL
δCμνρ

I

.= −1

6
Dσ HμνρσI − 1

6
mGμνρI − 1

6
mf IJK

(
λJ γ μνρρK

)

− 1

4
f IJK

(
λJ γ [μνDρ]χK

) + 1

4
f IJK

(
χJ γ [μνDρ]λK

) .= 0, (4.1c)

δL
δKμ

I

.= −DνL
μνI − mDμϕI − 1

2
f IJKFνρ

JGμνρK − mf IJK
(
λJ γ μρK

)

− 1

2
f IJK

(
λJ DμχK

) − 1

2
f IJK

(
χJ DμλK

) .= 0, (4.1d)

δL
δϕI

.= +DμDμϕI − 1

2
mf IJK

(
λJ χK

) + 1

2
f IJKFμν

J LμνK .= 0, (4.1e)

δL
δλI

.= +/DλI + 1

48
f IJK

(
γ μνρσ χJ

)
Hμνρσ

K − 1

12
f IJK

(
γ μνρρJ

)
Gμνρ

K

− 1

2

(
γ μρJ

)
DμϕK + 1

4

(
γ μνχJ

)
Lμν

K − 1

4
hIJ,KLλK

[(
ρLρJ

) − (
χLχJ

)]
+ 1

4
hIJ,KL

(
γ5λ

K
)[(

ρLγ5ρ
J
) + (

χLγ5χ
J
)]

− 1

4
hIJ,KL

(
γ5γμλK

)[(
ρLγ5γ

μρJ
) − (

χLγ5γ
μχJ

)] .= 0, (4.1f)

δL
δχI

.= +/DχI + mρI − 1

48
f IJK

(
γ μνρσ λJ

)
Hμνρσ

K + 1

4
f IJK

(
γ μνρJ

)
Fμν

K

+ 1

4
f IJK

(
γ μνλJ

)
Lμν

K + 1

4
hIJ,KLχK

(
λLλJ

) + 1

4
hIJ,KL

(
γ5χ

K
)(

λLγ5λ
J
)

+ 1
hIJ,KL

(
γ5γμχK

)(
λLγ5γ

μλJ
) .= 0, (4.1g)
4
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δL
δρI

.= +/DρI + mχI + 1

12
f IJK

(
γ μνρλJ

)
Gμνρ

K − 1

4
f IJK

(
γ μνχJ

)
Fμν

K

− 1

4
f IJK

(
γ μλJ

)
DμϕK − 1

4
hIJ,KLρK

(
λLλJ

) + 1

4
hIJ,KL

(
γ5ρ

K
)(

λLγ5λ
J
)

− 1

4
hIJ,KL

(
γ5γμρK

)(
λLγ5γ

μλJ
) .= 0, (4.1h)

where the symbol .= is for an equality by the use of field equation(s).
The mG-term in the C-field equation (4.1c) plays the role of the mass term for the C-field after 

a field-redefinition of C absorbing the 3DB-term in G. So does the mDϕ-term in the K-field 
equation (4.1d).

Our result (4.1) is based on an important lemma about the general variation of our lagrangian 
up to a total divergence:

δL = (
δAμ

I
)[+2Dν

(
δL

δFμν
I

)
+

(
δLψ/Dψ

δAμ
I

)
− 3f IJKLνρ

J

(
δL

δGμνρ
K

)

+ 4f IJKGνρσ
J

(
δL

δHμνρσ
K

)
+ 2f IJK

(
Dνϕ

J
)( δL

δLμν
K

)]

+ (
δBμν

I
)[−3Dρ

(
δL

δGμνρ
I

)
− 6f IJKFρσ

J

(
δL

δHμνρσ
K

)]

+ (
δCμνρ

I
)[+4Dσ

(
δL

δHμνρσ
I

)
+ m

(
δL

δGμνρ
I

)]

+ (
δKμ

I
)[+2Dν

(
δL

δLμν
I

)
+ m

{
δL

δ(DμϕI )

}
+ 3f IJKFνρ

J

(
δL

δGμνρ
K

)]

+ (
δϕI

)[−Dμ

{
δL

δ(DμϕI )

}
+ 3m−1f IJKFμν

J Dρ

(
δL

δGμνρ
K

)

− f IJKFμν
J

(
δL

δLμν
K

)]

+ (
δλI

)( δL
δλI

)
+ (

δχI
)( δL

δχI

)
+ (

δρI
)( δL

δρI

)
. (4.2)

The symbol (δLψ/Dψ/δAμ
I ) in the first line is for the contributions from the minimal couplings 

in the fermionic kinetic terms of λ, χ and ρ. Use is also made of the general-variation formulae 
in (3.3) for arranging the whole terms.

In getting the expression (4.2), there are many non-trivial cancellations. For example, the two 
terms:

3f IJK
(
δAμ

I
)
Bνρ

J

[
+4Dσ

(
δL

δHμνρσ
K

)
+ m

(
δL

δGμνρ
K

)]
(4.3)

cancel upon the use of the C-field equation (4.1c). Similarly, the two terms:

f IJK
(
δAμ

I
)
ϕJ

[
+2Dν

(
δL

δLμν
K

)
+ m

{
δL

δ(DμϕK)

}]
(4.4)

also cancel upon the K-field equation (4.1d).
As an additional confirmation, we can show that the divergence of the A, B , C and K-field 

equations all vanish. For example, the divergence of the A-field equation is
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0
?= Dμ

(
δL

δAμ
I

)
.= +mf IJK

(
χJ ρK

) + mf IJK
(
ρJ χK

) − 1

24
mf IJKHμνρσ

J HμνρσK

− 1

6
f IJKGνρσ

JGνρσ K − 1

2
mf IJKLμν

J Lμν K .= 0 (Q.E.D.). (4.5)

Here we have used other field equations, such as /DλI .= · · · or DμHμνρσI .= +mGνρσI + · · ·, 
etc. Similarly for the case of C-field equation:

0
?= Dρ

(
δL

δCμνρ
I

)

= − 1

12
mf IJKFρσ

J HμνρσK − 1

6
mDρGμνρ − 1

12
mf IJKDρ

(
λJ γ μνρρK

)
.= − 1

12
f IJKFρσ

J HμνρσK − 1

6
m

[
−1

2
f IJKDρ

(
λJ γ μνρρK

) − 1

2
f IJKFρσ

J HμνρσK

]

− 1

12
mf IJKDρ

(
λJ γ μνρρK

) .= 0, (4.6)

where we used the B-field equation for the DG-term.

5. Superspace reformulation

We have so far discussed only component formulation. We can re-formulate our component 
results in terms of superspace language. In the conventional superspace formalisms for the typ-
ical multiplets of VM, chiral multiplets, or singlet tensor multiplets are performed in terms of 
unconstrained pre-potential superfields. For example, for a singlet (Abelian) tensor multiplet, the 
unconstrained superfield is L [11]. This is possible for the case of singlet tensor multiplet, but 
not for our present non-Abelian TM. The obstruction against using the unconstrained superfield 
L is described with Eq. (4.11) in our previous paper [2]. For this reason, we can not rely on the 
so-called unconstrained pre-potential formulation.

Our formulation to be given here is very similar to our previous superspace reformulation 
for Proca–Stueckelberg mechanism such as in [2]. Our superspace notation has slight difference 
from our component formulation. We use the indices A ≡ (a, α), B ≡ (b, β), . . . for superspace 
coordinates, where a = 0, 1, . . . , 3 (or α = 1, . . . , 4) are for the bosonic (or fermionic) coordi-
nates. Accordingly, our fundamental field content will be VM (Aa

I , λα
I ), TM (Bab

I , χα
I , ϕI )

and EVM (Ka
I , ρα

I , Cabc
I ). The superfield strengths of Aa

I , Bab
I and Cabc

I are respectively 
Fab

I , Gabc
I and Habc

I .
These superfields satisfy the superspace Bianchi identities (Bids)3

+1

2
∇[AFBC)

I − 1

2
T[AB|DFD|C)

I ≡ 0, (5.1a)

+1

6
∇[AGBCD)

I − 1

4
T[AB|EGE|CD)

I − mHABCD
I

+ 1

4
f IJKF[AB

J LCD)
K − 1

6
M[ABC∇D)ϕ

I ≡ 0, (5.1b)

3 In superspace we use the convention for (anti)symmetrizations of indices, e.g., [AB) ≡ AB − (−1)ABBA, so that 
[ab] ≡ ab − ba, and (αβ) ≡ αβ + βα.
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+1

2
∇[ADB)ϕ

I − TAB
C∇CϕI ≡ 0, (5.1c)

+ 1

24
∇[AHBCDE)

I − 1

12
T[AB|F HF |CDE)

I

− 1

12
F[AB

J GCDE)
K − 1

12
M[ABCLDE)

I ≡ 0, (5.1d)

+1

2
∇[AFBC)

I − 1

2
T[AB|DFD|C)

I ≡ 0, (5.1e)

+1

6
∇[AMBCD) − 1

4
T[AB|EME|CD) ≡ 0. (5.1f)

The constraints at the engineering dimensions d = 0, 1/2 and 1 are

Tαβ
c = +2

(
γ c

)
αβ

, Mαβc = +2(γc)αβ, (5.2a)

∇αϕI = −χα
I , Hαbcd

I = −(
γbcdρI

)
α
, (5.2b)

Gαbc
I = −(

γbcχ
I
)
α

− m−1f IJK
(
γ[b|λJ

)
α
∇|c]ϕK + m−1f IJKχα

J Fbc
K, (5.2c)

Fαb
I = −(

γbλ
I
)
α
, Lαb

I = −(
γbρ

I
)
α
, (5.2d)

∇αλβ
I = +1

2

(
γ cd

)
αβ

Fcd
I − 1

2
f IJK(γ5)αβ

(
χJ γ5ρ

K
)
, (5.2e)

∇αχβ
I = −1

6

(
γ cde

)
αγ

Gcde
I − (γc)αβ∇cϕ

I + 1

2
f IJK

(
γcλ

J
)
α

(
γ cρK

)
β

− 1

2
f IJKλα

J ρβ
K + 1

2
f IJK

(
γ5λ

J
)
α

(
γ5ρ

K
)
β
, (5.2f)

∇αρβ
I = +1

2

(
γ cd

)
αβ

Lcd
I + 1

24

(
γ cdef

)
αβ

Hcdef
I + 1

2
f IJK

(
γcλ

J
)
α

(
γ cχK

)
β

+ 1

2
f IJKλα

J χβ
K + 1

2
f IJK

(
γ5λ

J
)
α

(
γ5χ

K
)
β

+ 1

4
m−1hIJ,KL

[+(
γ d

)
αβ

(
λJ λK

) − (
γ5γ

d
)
αβ

(
λJ γ5λ

K
)

− (γ5)αβ

(
λJ γ5γ

dλK
) − (

γ5γ
cd

)
αβ

(
λJ γ5γcλ

K
)]
DdϕL

+ 1

24
m−1hIJ,KL

[−(
γ cde

)
αβ

(
λJ λK

) + (
γ5γ

cde
)
αβ

(
λJ γ5λ

K
)

+ Cαβ

(
λJ γ cdeλK

) + 3
(
γ5γ

cd
)
αβ

(
λJ γ5γ

eλK
)]
Gcde

L. (5.2g)

Even though not explicitly shown, all other independent components are zero, e.g., Fαβ
I = 0

or Hαβγ δ
I = 0, etc. As usual in superspace, the Bids at d = 3/2 and d = 2 give the superfield 

equations of all of our fundamental fields Aa
I , λα

I , Bab
I , χα

I , Ka
I , ρα

I and Cabc
I . Since these 

are consistent with our field equations in (4.1), they are skipped in order to save space.

6. Concluding remarks

In this paper, we have presented a very peculiar supersymmetric system that realizes the 
Proca–Stueckelberg compensator mechanism [3] for an EVM. Our present model has resem-
blance to our recent model [2], which had only two multiplets VM and TM.
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The peculiar features of our model are summarized as

(i) We have three multiplets VM, TM and EVM, where the EVM will be eventually massive.
(ii) Our peculiar field strength G = 3DB + mC − 3m−1F ∧ B has the last term with m−1.

(iii) Our model provides yet another mechanism of absorbing the dilaton-type scalar field ϕI

into the extra vector Kμ
I , different from the conventional YM gauge field Aμ

I .
(iv) Even the tensor Cμνρ

I in the EVM gets a mass absorbing Bμν
I in the TM.

Even though our system is less economical than [2] with an additional multiplet EVM, it has 
its own advantage. First, we provide a mechanism for giving a mass to the extra vector Kμ

I in 
the EVM, which may be not needed as a massless particle at low energy. Second, we have a new 
compensator mechanism for an extra vector Kμ

I in the adjoint representation, which is not the 
YM gauge field. The derivative DμϕI is simpler than exponentiations [2].

General formulations for different representations (not necessarily adjoint representations) 
for supersymmetric compensator mechanism have been given in [1]. However, we emphasize 
here that the fixing of supersymmetric couplings for our system with a different field content 
is a highly non-trivial task. Even superspace formulation does not help so much, because of 
the obstruction described in Section 4 of [2]. The main reason is that the usual unconstrained 
formalism in terms of the singlet superfield L [11] can not describe a tensor multiplet in the 
adjoint representation.

Our results can be applied to diverse space–time dimensions and also to extended supersym-
metric systems.
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