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Abstract

The main aim of the paper is to present a technique that allows to infer wellposedness, trace and Gevrey’s
regularity of hyperbolic-like PDE’s with non-monotone boundary conditions. The lack of monotonicity
prevents applicability of the known semigroup methods.

In this paper we show how recently developed tools of microlocal analysis [D. Tataru, A priori estimates
of Carleman’s type in domains with boundary, J. Math. Pure Appl. 73 (1994) 353–387] combined with
some spectral theory can be used successfully in order to obtain the needed inequalities. The method will
be illustrated on a simple example of beam equation with non-monotone boundary conditions.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The focus of this paper is on second order in time PDE scalar equations with boundary condi-
tions that are non-monotone. Since the boundary terms involved are not bounded by the topology
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of the underlying phase spaces, we deal with non-monotone problems which, moreover, are not
amenable to perturbation or fixed point type of methods.

The aim of this work is to present technique that allows not only to prove wellposedness and
appropriate energy estimates exhibited by traces of solutions, but also to infer (rather unexpected)
regularity of solutions that is classified as Gevrey’s class. In order to keep this paper focused and
simple, we choose to illustrate the method on a simple example of beam equation. However, the
methodology presented is applicable to more general, multidimensional problems.

Accordingly, we shall consider the following initial boundary value problem defined for the
forced beam equation

utt + uxxxx = f, x ∈ Ω = (0,1), t > 0, (1.1)

with non-monotone boundary conditions given by

u(0, t) = ux(0, t) = 0, (1.2)

uxxx(1, t) = 0, uxx(1, t) = −kut (1, t) + b(t), k � 0, (1.3)

and initial conditions: u(0, x) = u0(x), ut (0, x) = u1(x), x ∈ Ω .
We are interested in wellposedness and regularity of the corresponding solutions. Wellposed-

ness will be considered within the so called finite energy space, i.e. H ≡ H 2
cl(Ω)×L2(Ω), where

H 2
cl(Ω) is equipped with clamped boundary conditions at x = 0. The energy function associated

with the model is standard and given by

E(t) = 1

2

1∫
0

[∣∣uxx(t, x)
∣∣2 + ∣∣ut (t, x)

∣∣2]
dx.

The problem considered is a one-dimensional linear Euler–Bernoulli equation with feedback
boundary conditions. This class of problems has been studied extensively in the literature, in
fact in a much more challenging version when Ω ⊂ Rn (see [6,8] and many references therein).
Thus, a natural question that arises is the following: what is special about this particular model?
It turns out that boundary conditions destroy natural dissipativity of the underlying generator,
thus raising fundamental question of wellposedness of finite energy solutions, and of validity of
some energy inequality. On the other hand, this kind of boundary conditions arises naturally in
modeling of rotating beams under boundary force feedback control [3]. Thus, the model is of
both mathematical and physical interest.

In order to gain a better understanding of the problem and the questions raised let us recall that
the standard monotone boundary conditions associated with (1.1) and (1.2) are the following:

uxxx(x = 1) = 0, uxx(1, t) = −kuxt (1, t). (1.4)

Actually, the model (1.1) with f = 0, clamped end at x = 0 and absorbing moments as in (1.4)
is a classical model of a contraction semigroup that is exponentially stable. (This property is well
known not only for beams but also plates, where the analysis proves substantially more technical
[4,7].) The energy identity for model (1.1), (1.2), (1.4) takes a very simple form

E(t) + k

t∫
u2

xt (1, s) ds = E(0) +
t∫ 1∫

ut (x, s)f (x, s) dx ds. (1.5)
0 0 0
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Thus, when f = 0 the dissipation rate is proportional to the square of uxt (x = 1, t). Instead, in
the case of non-monotone boundary conditions (1.3), the situation is very different as no appar-
ent dissipation rate emerges from the energetic calculations. Indeed, standard energy argument
applied to unforced beam (with f = 0, b = 0) gives

E(t) + k

t∫
0

ut (1, s)uxt (1, s) ds = E(0). (1.6)

Thus, in contrast to (1.5), the energy relation in (1.6) does not provide (even with f = 0) any
a priori bound for the energy. The boundary term does not seem to provide any information about
an additional boundary regularity of solutions (which is the case in all problems with monotone
boundary dissipation). Even more, boundary terms display a troublesome unboundedness on the
boundary that is not controlled by the energy. In short, the non-monotone boundary conditions
considered above do not seem to yield any dissipative law.

Based on the discussion above, one easily concludes that the problem is not within the realm
of the theory of dissipative semigroups. This, of course, does not mean that there is no semi-
group structure behind the model. However, should such exist it is definitely not obvious and of
rather hidden structure. In fact, this issue has attracted attention of several researchers [3,11] who
studied the problem, by Riesz basis techniques. On the other hand, it is well known that Riesz
basis techniques, besides being computationally heavy, are limited in their applicability due to
the famous “gap condition” that a priori restricts the analysis to—essentially—one-dimensional
models. This has motivated our interest in studying the problem from a more intrinsic and general
PDE point of view without any reliance on Riesz basis generation. Questions that are of particu-
lar interest in this study are the following: (i) what is the mechanism behind the generation and
how the apparent lack of dissipation and appearance of the energy-unbounded boundary traces
can be eventually mitigated by the dynamics of the problem? (ii) What is the structure of energy
identity that provides information on some (rather peculiar) “smoothing” effect of boundary con-
ditions? Finally (iii) how to quantitize an overall interior “smoothness” of the dynamics induced
by the boundary conditions?

It is the goal of this paper to develop a technique that will provide an answer to the questions
raised above. Surprisingly, the methods employed are not that elementary as perhaps dictated by
the simplicity of the model. The main idea is to represent the original semi-flow as a suitable
“perturbation” of a “good” semi-flow generated by dissipative boundary conditions similar to
these in (1.4). We say “suitable,” since the perturbation is defined only at the microlocal level.
The main tool for achieving this is a technique, recently developed in [12], that allows for mi-
crolocal decomposition of the traces corresponding to hyperbolic-like equations. By using the
microlocal analysis tools we will be able to exhibit some dissipative law, but valid only on a
finite time horizon. This explains the fact that the semigroup is neither contractive nor dissipa-
tive. However, finite time dissipative law exhibits an additional regularizing effect caused by the
boundary conditions. Further spectral investigations of the model reaffirm this regularizing ef-
fect and, in fact, allow to prove that the resulting semigroup is of Gevrey’s class. This is stronger
regularizing effect than just differentiability recently obtained in [3] by Riesz basis techniques.

Our main results are formulated below.

Theorem 1.1. For any k � 0 the model (1.1)–(1.3) with f = 0 and b = 0 generates a strongly
continuous semigroup eAt on H ≡ H 2

cl(Ω) × L2(Ω) and the following energy inequality holds
for the forced equation: There exists a constant ct > 0 such that for all t > 0,
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E(t) + k
∣∣ut (x = 1)

∣∣2
H 1/4(0,t)

+ k
∣∣utx(x = 1)

∣∣2
H−1/4(0,t)

� ct

(
E(0) +

t∫
0

∣∣f (s)
∣∣2
L2(0,1)

ds + |b|2
H 1/4(0,t)

)
. (1.7)

Remark 1.2. Note that the inequality in (1.7) implies for k � 0 strong regularizing effect on the
boundary. There is a gain of 1

4 time derivative for the velocity component.

Our next result describes an additional interior regularity gained by the dynamics. In order to
formulate our result, we introduce the following definition.

Definition 1.3. A strongly continuous semigroup eAt is of Gevrey’s class δ for t > t0 if eAt is
infinitely differentiable for t > t0 and for every compact K ∈ (t0,∞) and each θ > 0, there exists
a constant C = C(K,θ) such that∥∥(

eAt
)(n)∥∥

L(H)
� Cθn(n!)δ, ∀t ∈ K, n = 0,1,2, . . . .

Theorem 1.4. Let 0 < k �= 1. The semigroup eAt , introduced above with a generator A on H , is
of Gevrey’s class δ > 2 with t0 = 0.

Remark 1.5. Gevrey’s regularity is described in terms of the bounds on all derivatives of the
semigroup. These bounds are weaker than the corresponding ones corresponding to characteri-
zation of analyticity, but they are stronger than the ones corresponding to differentiability (see
[2,10,13]).

Remark 1.6. The energy inequality in (1.7) allows to study semilinear problems with both
interior and boundary nonlinear terms. Because of space limitations, this topic is not pursued
here.

2. Energy inequality and generation of the semigroup

The proof of Theorem 1.1 is based on microlocal analysis. The main idea goes back to
the so called microlocal decomposition of traces corresponding to boundary value problems
[12,13]. Indeed, the goal is to express one boundary condition in terms of the remaining three
modulo a perturbation that is “smooth.” Since we already know that a “good” dissipative
(monotone) feedback has the form uxx = −kutx , x = 1, our aim is to rewrite (microlocally)
the imposed nondissipative boundary conditions with the term −kut . Of course, the price for
doing this is the introduction of lower order terms that destroy contractivity of the semigroup.
Thus, at the end of the process we obtain good energy estimate but polluted by lower order
terms.

In what follows we shall use by now classical anisotropic notation Hs
a (Σ) and Hs

a (Q), denot-
ing anisotropic Sobolev spaces that are of anisotropic order s (see [5,7,12]). By Hs

a (Q) we mean
that s derivatives in Ω and s

2 derivatives in time are square integrable. (This is in line with the
canonical scaling of principal part of the operator corresponding to Euler–Bernoulli, Shrodinger
and heat operators.)



B. Belinskiy, I. Lasiecka / J. Math. Anal. Appl. 332 (2007) 137–154 141
2.1. Preparation for the proof of Theorem 1.1

Motivated by the considerations elaborated in the introduction, it is clear that the crux of the
matter and difficulty of the problem lies in the boundary behavior of the underlying PDE. Thus,
our main goal is to analyze this behavior and to derive appropriate estimates for the corresponding
traces. The main task and technical effort goes into proving the following trace estimates for
solutions to (1.1)–(1.3).

Lemma 2.1. For any solution to (1.1)–(1.3), the following a priori trace regularity is valid:
∀t > 0, ∃Ctk > 0 such that:

|ut |2
H

1/2
a (Σt )

+ |utx |2
H

−1/2
a (Σt )

� Ct,k

[
E(0) +

t∫
0

‖f ‖2 dt + |b|2
H

1/2
a (Σt )

]
, (2.1)

where ‖u‖ ≡ |u|L2(0,1) and Σt ≡ {x = 1} × (0, t).

The proof of the lemma proceeds through several supporting lemmas and propositions. Before
we go into technical details involving microlocal analysis, we shall explain the main idea that
allows to “conjecture” the regularity of the traces postulated by Lemma 2.1.

Analysis near the boundary x = 1. By applying standard partition of unity and localization we
may consider the half space problem. The half space problem is then microlocalised. In line with
standard convention Dx = 1

i
d
dx

, so that d
dt

→ −is; d
dx

→ −iξ , where s ∈ R and ξ ∈ R are dual
variables.

Specializing to the one-dimensional case, the characteristic polynomial corresponding to

Euler–Bernoulli model represented by differential operator P = d2

dt2 + d4

dx4 becomes p(ξ, s) =
ξ4 − s2. The strategy taken from [12,13] is to decompose the symbol p(s, ξ) into the product
of two polynomials such that one of them has at least one root (in the variable ξ ) with a neg-
ative imaginary part. It is known [13] that the corresponding pseudodifferential operator is of
parabolic type, hence it induces typical parabolic smoothness of the dynamics. The remaining
part of the decomposition will correspond to backward diffusion (polynomial with a root of a
positive imaginary part) and two branches of conservative waves (polynomials with real roots).
Then, the idea developed in [12] is to “control” the non-diffusive part of the dynamics by only
“three” boundary conditions, while the diffusive part will provide for lower order terms. Putting
the above program into work leads to the following decomposition of the polynomial p(s, ξ).
p(s, ξ) can be decomposed (with respect to the normal direction ξ ) into p+ and p− where

p− ≡ ξ + i
√|s|, p+ ≡ (

ξ2 − |s|)(ξ − i
√|s| ). (2.2)

The variable ξ is a dual variable corresponding to the normal (to the boundary) direction, whereas
s is an anisotropic dual variable corresponding to time differentiation. Since p− has one root
with negative imaginary part, this part of the dynamics has smoothing (parabolic) like charac-
ter. Instead p+ corresponds to backward diffusions and two conservative (wave type) dynamics
(see [12,13]). The idea introduced in [12] is to express (algebraically) one boundary condition
in terms of the remaining three boundary conditions modulo the symbol (third order polyno-
mial) p+. Since the term corresponding to p+ will provide smooth (compact) contribution, the
topological properties of the system will be driven by the decomposition. In our case the trou-
blesome boundary trace corresponds to the symbol ξ2. Thus our aim is to express ξ2 as a linear



142 B. Belinskiy, I. Lasiecka / J. Math. Anal. Appl. 332 (2007) 137–154
combination of other traces. Without loss of generality we shall assume s > 0 (the analysis for
s < 0 is completely analogous, hence omitted). We shall also denote by Σ = R ×{x = 1} and by
T ∗(Σ) cotangent bundle to the boundary Σ—see [12,13]. Thus, for every (x = 1, t, s) ∈ T ∗(Σ)

we have the following decomposition:

ξ2 = r2(s) + r1(s)ξ + r−1(s)ξ
3 + S−1(s)p

+(ξ, s), (2.3)

where ri(s), i = 1,2,−1, are tangential PDO of anisotropic order i, S−1 ∈ S−1
a (T ∗(Σ)) (see

[12,13]). These operators are to be determined from algebraic relations (2.3 ) with p+(ξ, s)

replaced by (2.2). Comparing the powers of the dual variable ξ we obtain r−1(s) + S−1(s) = 0,
1 = −i

√|s|S−1(s), and r1(s) − S−1(s)s = 0, r2(s) + iS−1(s)
√|s|s = 0. This gives

S−1(s) = i√|s| ∈ S−1
a

(
T ∗(Σ)

)
, r−1(s) = −i√|s| ∈ S−1

a

(
T ∗(Σ)

)
,

r1(s) = i
s√|s| ∈ S1

a

(
T ∗(Σ)

)
, r2(s) = s ∈ S2

a

(
T ∗(Σ)

)
.

Combining with (2.3) yields

ξ2 = s + i
s√|s|ξ − i√

s
ξ3 + i√|s|p

+(ξ, s). (2.4)

By exploiting boundary condition uxxx(1) = 0 and uxx(1) = −kut (1) we obtain ξ3 = 0,
ξ2 = −iks and substituting into (2.4) yields

−isk = kξs
1√|s|(1 + ik)

− kp+(ξ, s)
1√|s|(1 + ik)

. (2.5)

On the other hand, the symbol of ut is equal to −is and the symbol utx is equal to −sξ . Since
boundary conditions imply that ut = −uxx

k
at x = 1, the symbol corresponding to uxx(x = 1)

can be written as iks. The equality in (2.5), at the symbolic level, gives us the relation between
the velocity of the normal derivative and the velocity of the trace on the boundary x = 1. PDE
version of (2.5) is given below

−kut (1, t) = uxx(1, t) = −Dutx(1, t) − (P̂ u)(x = 1, t), (2.6)

where PDO (pseudodifferential) operators D(t) and P̂ are represented by the following symbols

D ∼ d(s), d(s) ≡ k

1 + ik

(√|s| )−1
,

P̂ ∼ p̂(ξ, s) = k√|s|(1 + ik)
p+(s, ξ).

The relation between symbols and operators is classical [13], i.e.: Du(t) = ∫
R

d(s)Fu(s)eist ds

and Pu(x, t) = ∫
R

p̂(Dx, s)Fu(x, s)eist ds where Fu denotes Fourier’s transform with respect
to tangential (time) variable).

Since �d(s) = k

1+k2 (
√|s| )−1, d(s) ∈ S−1

a (T ∗(Σ)) and p̂(ξ, s) ∈ S2
a(Q), where Q ≡

Σ × (0,1). In other words, D is a tangential operator of anisotropic order −1 and P̂ is a second
order PDO operator (also anisotropic) in all variables. In particular, due to microlocal Garding’s
inequality [13] the following coercivity property holds

�
∫ 〈

Dz(s), z(s)
〉
ds � Ck|z|2

H
−1/2
a (R)

= Ck|z|2
H−1/4(R)

, (2.7)
R
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where we denote complex inner products by 〈u,v〉 ≡ uv̄ and (u, v) ≡ ∫ 1
0 u(x)v̄(x) dx. Since the

symbol p+ corresponds to smooth part of dynamics, the regularity of the solutions is driven by
the boundary conditions

uxx(1, t) = −Dutx(1, t), (2.8)

where D is a positive PDO operator with the symbol k
1+ik

(
√

s )−1. The above problem is dissipa-
tive, hence the energy of the unforced equation is non-increasing. However, the original problem
is “polluted” by the trace at x = 1 of the operator P̂ (x, t). However, this operator corresponds to
forward diffusion represented by p−, hence it is smoothing. In order to quantify this last state-
ment and to proceed rigorously with our program we need to introduce the backward adjoint
problem. The reason for this is that the original variable u(t) is not naturally defined for t < 0
(unless the initial conditions were zero, in which case we could extend (in t) solution to the entire
real line). Instead, the adjoint variable will have a natural extension to the entire real line. This
allows for rigorous application of the strategy explained above and based on microlocal analysis
tools.

2.2. The backward adjoint problem

In what follows we shall perform microlocal analysis on the following adjoint problem. Let
T > 0 be fixed. We consider:

ztt + zxxxx = 0, in (0,1) × (−∞, T ),

z(x = 0, t) = zx(x = 0, t) = 0, zxx(x = 1, t) = l(t),

zxxx(x = 1, t) = −kzxt (x = 1, t) + g(t),

z(x,T ) = zt (x, T ) = 0, on (0,1). (2.9)

First of all we extend the variable z by zero for t > T , so z(t) is defined for t ∈ R.

Step 1: Decomposition on the boundary. Microlocal decomposition of the boundary operators
proceeds as follows:

ξ3 = r3(s) + r2(s)ξ + r1(s)ξ
2 + S0(s)p

+(ξ, s). (2.10)

Comparing the powers of the dual variable ξ we obtain

S0(s) = 1, r1(s) = i
√|s|, r2(s) = s, r3(s) = −is

√|s|.
The above gives, after accounting for the boundary condition zxx(t) = l(t),

ξ3 = −is
√|s| + sξ − i

√|s|l(s) + p+(s, ξ). (2.11)

Exploiting boundary conditions zxxx(1) = −kztx(1) + g(t) yields

iξ3 = ksξ + g(s). (2.12)

Substituting into (2.11) yields ksξ + g(s) = s
√|s| + isξ + √|s|l(s) + ip+(ξ, s). Consequently

sξ = k + i

k2 + 1

[
s
√|s| − g(s) + √|s|l(s) + ip+(ξ, s)

]
,

iξ3 = k
k + i

k2 + 1

[
s
√|s| − g(s) + √|s|l(s) + ip+(s, ξ)

] + g(s), (2.13)

zxxx(1, t) = D1zt (1, t) + P1z(x = 1, t) + ckg(t) + Dkl(t), (2.14)
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where the symbols of respective operators are given by d1(s) = k ki−1
k2+1

√|s| and p̃1(ξ, s) =
k ki−1

k2+1
p+(ξ, s), ck = ik

k2+1
, dk = k k+i

k2+1

√|s|. Similarly, from (2.13)

ztx(1, t) = k + i

k2 + 1
g(t) + 1

k
Dkl(t) + 1

k
(P1z)(x = 1, t) + 1

k
D1zt (1, t). (2.15)

We note that � d1(s) = − k

k2+1

√|s|. By Garding inequality [13]

−�
∫
R

〈
D1z(t), z(t)

〉
dt � C1k|z|2

H
1/2
a (R)

� C1k|z|2
H 1/4(R)

(2.16)

as expected, after comparing to the analysis of u problem. The above inequality indicates
“smoothing” of the 1

4 time derivative. From (2.15) after noting that d1 ∈ S1
a(T ∗(Σ)) and

dk ∈ S1
a(T ∗(Σ)), we also obtain

|ztx |H−1/2
a (R)

� Ck

[|g|
H

−1/2
a (R)

+ |l|
H

1/2
a (R)

+ ∣∣(P1z)(x = 1)
∣∣
H

−1/2
a (R)

+ |zt |H 1/2
a (R)

]
.

(2.17)

Step 2: Localization of z problem near the boundary. We localize the adjoint equation (2.9) in
the nbh of the boundary x = 1. This is done with a help of smooth cutoff functions φ(x) such that
φ = 1 in the nbh of x = 1 and has support in say [1/2,1]. Since �z = 0 where � ≡ −D2

t +�2 =
∂2

∂t2 + �2, we have �(φz) = [�, φ]z ≡ R(z). Here [A,B] denotes the commutator of differential
operators A,B . With the above notation we can write down the Euler–Bernoulli equation in the
form

P −P +φz = R(z), for (x, t, ξ, s) ∈ Q × R2,

where the commutator R(z) is a third order operator in x. Denoting by v = P +φz we obtain that
v is a solution to a “parabolic” problem with respect to normal direction. This is because p−
has a root with a negative imaginary part, so we will be solving P −v = R(z). Noting that v has
a compact support at x = 0 we are in a position to apply parabolic energy estimates [12] (see
[12, p. 372]). This yields

|v|H−α
a (Σ) + |v|

L2(J ;H−α+1/2
a (Σ))

� C
∣∣R(z)

∣∣
L2(J,H

−α−1/2
a (Σ))

. (2.18)

Here (in line with the notation in [12]; see also [7]) we denote J = [1/2,1]. Parameter α is any
real positive number allowing for rescaling in the inequality tangential derivatives.

Applying (2.18) with α = 1/2 yields the following inequality for the “smooth” part P1,∣∣(P +φz
)
(x = 1)

∣∣
H

−1/2
a (Σ)

+ ∣∣P +φz
∣∣
L2(J×Σ)

� C
∣∣R(z)

∣∣
L2(J,H−1

a (Σ))
(2.19)

and since p̃1 = ckp
+, the above inequality gives∣∣P1(t)φz(x = 1)

∣∣
H

−1/2
a (Σ)

� C
∣∣R(z)

∣∣
L2(J,H−1

a (Σ))
. (2.20)

Now, let us analyze the effect of the commutator R(z). Direct computations give R(z) =
[�, φ]z = −[ d4

dx4 , φ]z. Thus, the principal part of this commutator is driven by D3
xz. This leads

to ∣∣R(z)
∣∣ −1 � C|zxxx | −1 . (2.21)

L2(J,Ha (Σ)) L2(J,Ha (Σ))
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On the other hand, from (2.9) zt ∈ L2(J ×Σ) ⇒ D4
xz ∈ H−1(R;L2(J )). Interpolating the above

with D2
xz ∈ L2(J × Σ) gives

‖zxxx‖L2(J,H−1
a (Σ))

� C
[‖zt‖L2(J× Σ) + ‖zxx‖L2(J×Σ)

]
. (2.22)

Estimates (2.21), (2.22) give∣∣R(z)
∣∣
L2(J,H−1

a (Σ))
� C

[|zt |L2(J×Σ) + |zxx |L2(J×Σ)

]
(2.23)

and from (2.20)∣∣(P +φ
)
(x = 1)

∣∣
H

−1/2
a (Σ)

� C
[|zt |L2(J×Σ) + |zxx |L2(J×Σ)

]
. (2.24)

Step 3: Energy inequality for the z problem. Let ΣT = (t, T ) × {x = 1}.

Lemma 2.2. Let z be a solution to (2.9). Then for any 0 � t � T the following a priori inequality
holds.∥∥zt (t)

∥∥2 + ∥∥zxx(t)
∥∥2 + ∣∣zt (1)

∣∣2
H

1/2
a (ΣT )

� Ct

[|g|2
H

−1/2
a (ΣT )

+ |l|2
H

1/2
a (ΣT )

]
,∣∣zxxx(1)

∣∣2
H

−1/2
a (ΣT )

+ ∣∣ztx(1)
∣∣2
H

−1/2
a (ΣT )

� Ct

[|g|2
H

−1/2
a (ΣT )

+ |l|2
H

1/2
a (ΣT )

]
. (2.25)

Proof. We begin with the estimate defined on R × (0,1). To this end we introduce new variable
ẑ ≡ z(t)eγ t for sufficiently large γ > 0. We also note that the estimates in Lemma 2.2 are invari-
ant with respect to addition to the equation of lower order term, say Nz, where N will be chosen
suitably large. Thus, the equation for the new variable becomes

ẑt t + ẑxxxx − 2γ ẑt + (
γ 2 + N

)
ẑ = 0 (2.26)

with terminal condition ẑ(T ) = ẑt (T ) = 0 and boundary conditions at x = 1 given by ẑxxx(1) =
−kẑtx + kγ ẑx + ĝ, ẑxx(1) = l̂.

The following estimate is valid for ẑ with N sufficiently large.

Proposition 2.3.∫
R

(‖ẑt‖2 + ‖ẑxx‖2)dt + k
∣∣ẑt (1)

∣∣2
H

1/2
a (R)

+ k
∣∣ẑxxx(1)

∣∣2
H

−1/2
a (R)

+ k
∣∣ẑtx(1)

∣∣2
H

−1/2
a (R)

� C
[|ĝ|2

H
−1/2
a (R)

+ |l̂|2
H

1/2
a (R)

]
. (2.27)

Proof. Standard energy identity along with zero values at T give∫
R

[
2γ ‖ẑt‖2 − 〈

ẑxxx(1), ẑt (1)
〉 + 〈

l̂, ẑtx(1)
〉]

dt = 0. (2.28)

By using (2.14) where we replace g by ĝ + kγ ẑx(1) we rewrite the first boundary integral as
follows:∫

R

〈
ẑxxx(1), ẑt (1)

〉
dt =

∫
R

(〈
D1ẑt (1), ẑt (1)

〉 + 〈
P1ẑ(x = 1), ẑt (1)

〉

+ 〈
ck

(
kγ ẑx(1) + ĝ

) + Dkl̂(t), ẑt (1)
〉)

dt (2.29)
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combining with (2.26) gives

2.30
∫
R

[
2γ ‖ẑt‖2 − 〈

D1ẑt (1), ẑt (1)
〉 − 〈

P1ẑ(x = 1), ẑt (1)
〉]

dt

=
∫
R

〈
ck

(
kγ ẑx(1) + ĝ

) + Dkl̂, ẑt (1)
〉
dt. (2.30)

Exploiting (2.16 ) and (2.21) applied with ẑ and taking real parts gives

2γ

∫
R

‖ẑt‖2 dt + ck
∣∣ẑt (1)

∣∣2
H

1/2
a (R)

�
∣∣P1ẑ(x = 1)

∣∣
H

−1/2
a (R)

∣∣ẑt (1)
∣∣
H

1/2
a (R)

+ |l|
H

1/2
a (R)

∣∣ztx(1)
∣∣
H

−1/2
a (R)

+ ck

(
kγ

∣∣ẑx(1)
∣∣
H

−1/2
a (R)

∣∣ẑt (1)
∣∣
H

1/2
a (R)

+ |ĝ|
H

−1/2
a (R)

∣∣ẑt (1)
∣∣
H

1/2
a (R)

)
(2.31)

and by (2.17), (2.24) along with |ẑx(1)| � ε‖ẑxx‖ + Cε‖ẑ‖, where we take ε ∼ 1
γ

,

2γ

∫
R

‖ẑt‖2 dt + ck
∣∣ẑt (1)

∣∣2
H

1/2
a (R)

� Ck

∫
R

[‖ẑt‖2 + ‖ẑxx‖2 + γ 2‖z|2]dt

+ Ck

(|ĝ|2
H

−1/2
a (R)

+ |l̂|2
H

−1/2
a (R)

)
. (2.32)

Our last step is the estimate for the potential energy. This is achieved by exploiting “equiparti-
tion” of the energy.

Multiplying (2.26) by ẑ and integrating by parts we obtain∫
R

(‖ẑxx‖2 + (
γ 2 + N

)‖ẑ‖2 − ‖ẑt‖2 + 〈
ẑxxx(1), ẑ(1)

〉 − 〈
l, ẑx(1)

〉)
dt = 0. (2.33)

We estimate the boundary term by using boundary conditions and integrating by parts in t ,∫
R

ẑxxx(1)ẑ(1) dt =
∫
R

[
kẑx(1)ẑt (1) + γ ẑx(1)ẑ(1) + ĝẑ(1)

]
dt (2.34)

hence, by Sobolev’s embeddings, interpolation inequalities and trace theorem along with
|ẑx(1)| � ε‖ẑxx‖ + Cε‖ẑ‖,∫

R

∣∣ẑxxx(1)ẑ(1)
∣∣dt � ε

[|ẑt |2
H

1/2
a (R)

+ ‖ẑxx‖2] + Cε |ĝ|2
H

1/2
a (R)

+ Cγ,ε

∫
R

‖ẑ‖2 dt (2.35)

and combining with (2.33) after taking ε small gives∫
R

[‖ẑxx‖2 + (
γ 2 + N − Cε,γ

)‖ẑ‖2 − ‖ẑt‖2]dt � C
[|ĝ|2

H
1/2
a (R)

+ |l̂|2
H

1/2
a (R)

]
. (2.36)

The above inequality along with (2.32) after taking γ large (to absorb ‖ẑt‖2) and N large (to
absorb ‖ẑ‖2) yields the estimate for the first three terms in Proposition 2.3. The estimate for
|ztx |H−1/2

a (R)
and |zxxx |H−1/2

a (R)
follows now from (2.14), (2.15) and (2.36), (2.32). This con-

cludes the proof of Proposition 2.3. �
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An immediate consequence of Proposition 2.3 is that the same estimates hold on every finite
interval [t, T ]. Even more, we can replace ẑ by the original z at the price of adding to the RHS
the term N

∫ T

t
‖z‖2. To continue with the proof of Lemma 2.2, we apply energy method to the

backward problem, after taking advantage of Proposition 2.3.

∥∥zt (t)
∥∥2 + ∣∣zxx(t)

∣∣2 = 2

T∫
t

zxxx(1, t)zt (1, t) dt

� 2
∣∣zxxx(1, t)

∣∣
H

−1/2
a (ΣT )

∣∣zt (1, t)
∣∣
H

1/2
a (ΣT )

� Ck

[
|g|2

H
−1/2
a (ΣT )

+ |l|2
H

1/2
a (ΣT )

+ C

T∫
t

‖z‖2 dt

]
. (2.37)

Cronwall’s inequality provides the estimate for the energy terms. Combining this with Proposi-
tion 2.3 completes the proof of Lemma 2.2. �
2.3. Proper proof of Lemma 2.1

The argument to be used exploits (2.25) along with duality. The goal is to obtain trace esti-
mates for the original problem u given by (1.1)–(1.3).

T∫
t

(f, zt ) ds =
T∫

t

[
(�u, zt ) + (ut ,�z)

]
ds =

T∫
t

d

dt

[
(ut , zt ) + (uxx, zxx)

]
ds

+
T∫

t

[
ut (1, t)zxxx(1, t) − uxx(1, t)ztx(1, t) − utx(1)zxx(1)

]
ds

= −(
ut (t), zt (t)

) + (
uxx(t), zxx(t)

) +
T∫

t

[
ut (1, t)(−k)ztx(1, t) − utx(1)l

+ kut (1, t)ztx(1, t) + ut (1, t)g(t) + ztx(1, t)b(t)
]
dt. (2.38)

Taking t = 0 in (2.38 ) and evoking (2.25), (2.15)

∣∣∣∣∣
T∫

0

ut (1, t)g(t) dt −
T∫

0

utxl(t) dt

∣∣∣∣∣
�

∥∥ut (0)
∥∥∥∥zt (0)

∥∥ + ∥∥uxx(0)
∥∥∥∥zxx(0)

∥∥ +
∣∣∣∣∣

T∫
0

(f, zt ) dt +
T∫

0

ztx(1)b dt

∣∣∣∣∣
� C

(|g|
H

−1/2
a (ΣT )

+ |l|
H

1/2
a (ΣT )

)(∥∥ut (0)
∥∥ + ∥∥uxx(0)

∥∥ +
T∫

0

‖f ‖dt + |b|
H

1/2
a (ΣT )

)
.

(2.39)



148 B. Belinskiy, I. Lasiecka / J. Math. Anal. Appl. 332 (2007) 137–154
Thus, by Riesz representation theorem, arbitrariness of l and g and arbitrariness of T we
obtain from (2.39) the estimate (2.1) stated in Lemma 2.1

2.4. Completion of the proof of Theorem 1.1

Lemma 2.1 provides the estimate for the boundary traces. In order to complete the proof of
energy inequality in (1.7) we need to estimate the interior norms. This can be done now by
standard energy estimate applied to u problem. Indeed, multiplying (1.1) by ut and integrating
by parts gives

∥∥ut (t)
∥∥2 + ∥∥uxx(t)

∥∥2 − 2

t∫
0

〈
uxx(1), uxt (1)

〉
dt

= 2

t∫
0

(f,ut ) dt + ∥∥ut (0)
∥∥2 + ∥∥uxx(0)

∥∥2
. (2.40)

Exploiting boundary conditions∥∥ut (t)
∥∥2 + ∥∥uxx(t)

∥∥2 � 2
∣∣kut (1) + b

∣∣
H

1/2
a (Σt )

∣∣uxt (1)
∣∣
H

−1/2
a (Σt )

+ 2

t∫
0

‖f ‖‖ut‖dt + ∥∥ut (0)
∥∥2 + ∥∥uxx(0)

∥∥2 (2.41)

and recalling the result of Lemma 2.1

E(t) � Ctk

[
E(0) + |b|2

H
1/2
a (Σt )

+
t∫

0

‖f ‖2 dt +
t∫

0

E(τ)dτ

]
, (2.42)

application of Gronwall’s lemma together with Lemma 2.1 completes the proof of energy in-
equality (1.7).

The proof of generation of the semigroup eAt on H , due to linearity of the problem, is now
standard. We exploit a priori estimates for the original and the adjoint problem. See the proof of
Theorem 3 in [9].

3. Gevrey’s regularity

Applying Laplace transform to the initial boundary value problem (1.1)–(1.3) yields the
boundary value problem

uxxxx + λ2u = 0, u(0) = ux(0) = uxxx(1) = uxx(1) + λku(1) = 0, (3.1)

that may be rewritten as a system

uxxxx + λv = 0, v − λu = 0, (3.2)

u(0) = ux(0) = uxxx(1) = uxx(1) + kv(1) = 0. (3.3)

It is straightforward to verify that the generator A has the form

A ≡
(

0 I

−D4 0

)

x
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with D(A) ≡ {(u, v) ∈ H, v ∈ H 2
cl(Ω), u ∈ H 4(Ω), uxx(1) = −kv(1), uxxx(1) = 0}. Let

R(λ,A) = (λI − A)−1 denote resolvent operator corresponding to the generator A. The crux
of the proof of Theorem 1.4 is based on the following estimate for the resolvent valid on the
imaginary axis.

Lemma 3.1. Let 0 < k and k �= 1. Then the following estimate takes place:

lim|τ |→∞
∥∥R(iτ,A)

∥∥2
L(H)

� C

|τ | , τ ∈ R.

Indeed, Lemma 3.1 along with Theorem 1.1 and Theorem T.4 in [1] (see also [2, Theo-
rem 1.1]) imply that eAt has Gevrey’s regularity of order δ > 2, t0 = 0.

Proof of Lemma 3.1. Let us begin by writing down explicitly the resolvent operator. We find
from (3.2):

(u, v) = R(λ,A)(f,g) ⇐⇒ u − v = f, λv + uxxxx = g (3.4)

with the boundary conditions

u(0) = ux(0) = 0, uxx(1) = −kv(1), uxxx(1) = 0. (3.5)

This is equivalent solving

uxxxx + λ2u = g + λf,

u(0) = ux(0) = 0, uxx(1) = −kv(1), uxxx(1) = 0. (3.6)

Thus, the result of Lemma 3.1 is established as soon as we prove:

‖uxx‖2
L2(0,1) + ‖v‖2

L2(0,1) � C

|λ|
[‖f ‖2

H 2
cl (0,1)

+ ‖g‖2
L2(0,1)

]
, (3.7)

where the estimate is uniform for all λ = iτ with |τ | large. The rest of the paper is devoted to
the proof of this inequality. All absolute constants that appear in the proof will be denoted by
the same letter C with different indexes. Introduce the following selfadjoint Sturm–Liouville
problem,

w′′′′ − λ2w = 0, x ∈ (0,1), w(0) = w′(0) = w′′′(1) = w′′(1) = 0.

The standard methods of the operator theory imply that the problem has a discrete positive
spectrum {λ2

n} with the only point of accumulation at infinity, and the eigenfunctions {wn(x)}
form an orthogonal basis in both L2(0,1) and H 2(0,1),

∫
w′′

i w′′
m = ∫

wiwm = 0 if i �= m,∫
(w′′

m)2 = λ2
m

∫
w2

m. It is easy to find the following form of the eigenfunction,

wn(x) = Nn × (
sin

√
λnx − sinh

√
λnx − Q(λn)(cos

√
λnx − cosh

√
λnx)

)
, (3.8)

Q(λn) = sinh
√

λn + sin
√

λn

cos
√

λn + cosh
√

λn

. (3.9)

Here we introduce the normalization factor Nn so that∫
w2

n = 1, and hence
∫ (

w′′
n

)2 = λ2
n. (3.10)

It may be shown that
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N2
n =

(
1 − cos

√
λn

1 + cos
√

λn

)σn

= 1 − σn cos
√

λn

1 + σn cos
√

λn

with σn = 1, if tan
√

λn > 0, σn = −1, if tan
√

λn < 0. (3.11)

The equation for eigenvalues has the form

1 + cos
√

λn cosh
√

λn = 0. (3.12)

An elementary asymptotic analysis of (3.12) shows that the eigenvalues have the following form:√
λn � πn + π

2
+ 2(−1)n e−(πn+π/2) as n → ∞, (3.13)

and hence Nn are bounded below and above. The following identities directly follow from (3.8)
and (3.12),

cosh
√

λn = − 1

cos
√

λn

, sinh
√

λn = tan
√

λn σn,

wn(1) = 2Nn

sin
√

λn

(1 + σn cos
√

λn ), w′
n(1) = −2Nn

√
λn σn. (3.14)

The following estimates directly follow from (3.14):∣∣w′
n(1)

∣∣ � C1
√

λn,
∣∣wn(1)

∣∣ � C2. (3.15)

Multiplying the equations for resolvent (3.4) by wn, integrating over (0,1), integrating by parts,
and using boundary conditions (3.5) yields

kv(1)w′
n(1) + λ2

n

∫
uwn + λ

∫
vwn =

∫
gwn,

−
∫

vwn + λ

∫
uwn =

∫
f wn,

which implies∫
uwn = 1

λ2
n + λ2

[
−kv(1)w′

n(1) +
∫

gwn + λ

∫
f wn

]
,∫

vwn = 1

λ2
n + λ2

[
−λkv(1)w′

n(1) + λ

∫
gwn − λ2

n

∫
f wn

]
.

Represent u,v,f, g as the (orthogonal) Fourier series with respect to the basis {wn}, with
Fourier coefficients denoted respectively by un, vn, fn, gn. The normalization of the eigen-
functions (3.10) implies un = ∫

uwn, vn = ∫
vwn, etc., so that ‖uxx‖2 = ∑

n λ2
n|un|2, ‖v‖2 =∑

n |vn|2,

‖fxx‖2 =
∑
n

λ2
n|fn|2, ‖g‖2 =

∑
n

|gn|2. (3.16)

We find:

u(x) =
∑
n

1

λ2
n + λ2

×
[
−kv(1)w′

n(1) +
∫

gwn + λ

∫
f wn

]
wn(x), (3.17)

v(x) =
∑ 1

λ2
n + λ2

×
[
−λkv(1)w′

n(1) + λ

∫
gwn − λ2

n

∫
f wn

]
wn(x). (3.18)
n
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The last equation implies

v(1) = 1

S(λ)

∑
j

1

λ2
j + λ2

[
λgj − λ2

j fj

]
wj(1) (3.19)

with

S(λ) = 1 + λk
∑
m

wm(1)w′
m(1)

λ2
m + λ2

. (3.20)

We further need an identity for S(λ) given by (3.20),

S(λ) = 1 + λk
∑
m

wm(1)w′
m(1)

λ2
m + λ2

= 1 + ik
sin

√−iλ sinh
√−iλ

1 + cos
√−iλ cosh

√−iλ
. (3.21)

Indeed, both functions are meromorphic and the direct calculation shows that their residues at
λ = ±iλn coincide. Further, it is easy to construct a system of extended contours such that the
RHS of (3.21) is uniformly bounded on it. All of the above proves identity (3.21) by referring to
the standard results on the theory of meromorphic functions. Comment. The eigenfunctions of
the original problem (see (3.6) with f = g = 0) have the form

un(x) = sin
√−iμnx − sinh

√−iμnx − Tn(cos
√−iμnx − cosh

√−iμnx)

with Tn = (cos
√−iμn + cosh

√−iμn)/(sinh
√−iμn − sin

√−iμn) and the eigenvalues μn

satisfying

1 + cos
√−iμn cosh

√−iμn + ik sin
√−iμn sinh

√−iμn = 0, (3.22)

which is, by (3.21), equivalent to S(μ) = 0. Location of the eigenvalues μn satisfying (3.22) is
described by the following

Lemma 3.2. Let 0 < k �= 1. Then the only point of accumulation of {μn} is ∞. There is no more
than finite number of eigenvalues on the bisectrix �μ = ±�μ. For large n, the eigenvalues have
the asymptotic form

μn � −2πnT + i
(
(πn)2 − T 2), (3.23)

where T ≡ tanh−1 1

k
= 1

2

(
ln

∣∣∣∣k + 1

k − 1

∣∣∣∣ + i arg
k + 1

k − 1

)
.

Hence, the spectrum is asymptotically located on the parabola. For k > 1, it has the form:

�μ � (�μ)2

4T 2
− T 2.

According to (3.16)–(3.19), the desired inequality (3.7) is equivalent to the following (we may
assume τ to be large and positive):

∑
n

λ2
n

(λ2
n − τ 2)2

∣∣∣∣gn + iτfn − kw′
n(1)

S(iτ )

∑
j

wj (1)

λ2
j − τ 2

(
iτgj − λ2

j fj

)∣∣∣∣
2

+
∑
n

1

(λ2
n − τ 2)2

∣∣∣∣iτgn − λ2
nfn − iτ

kw′
n(1)

S(iτ )

∑
j

wj (1)

λ2
j − τ 2

(
iτgj − λ2

j fj

)∣∣∣∣
2

� C3

τ

(∑
λ2

n|fn|2 + |gn|2
)

. (3.24)

n



152 B. Belinskiy, I. Lasiecka / J. Math. Anal. Appl. 332 (2007) 137–154
Substitution λnfn �→ fn and τ = s2, s > 0, yield a more convenient form of the last inequality:

∑
n

1

(λ2
n − s4)2

(∣∣∣∣λngn + is2fn − kλnw
′
n(1)

S(is2)

∑
j

wj (1)

λ2
j − s4

(
is2gj − λjfj

)∣∣∣∣
2

+
∣∣∣∣is2gn − λnfn − is2 kw′

n(1)

S(is2)

∑
j

wj (1)

λ2
j − s4

(
is2gj − λjfj

)∣∣∣∣
2)

� C3

s2

(∑
n

|fn|2 + |gn|2
)

. (3.25)

According to (3.21),

S
(
is2) = 1 + ik

sin s sinh s

1 + cos s cosh s
⇒ ∣∣S(

is2)∣∣ � 1.

Note, we may leave only a “tail” of the series in the LHS and RHS because any finite sum in the
LHS may be estimated as

O
(
s−4) N∑

n=1

(|fn|2 + |gn|2
)
� C4

s2

N∑
n=1

(|fn|2 + |gn|2
)
.

Hence, we may substitute λn by its asymptotic representation (3.13), λn � N2
n , Nn ≡ n + 1

2 ,
where we remove π by scaling s. The expressions inside absolute values in the LHS of (3.24)
and (3.25) are equal to zero as s → Nn, and hence, by their analyticity, the LHS do not have any
discontinuity at s = Nn. Yet, we prove the estimate (3.25) separately for s �= Nn and s = Nn. Let
first s be uniformly separated from all Nn. We find an estimate for the LHS of (3.25):

|LHS| � C5

∑
n

1

(Nn + s)2(N2
n + s2)2

×
(

N4
n |gn|2 + s4|fn|2 + C6N

6
n

∑
j

1

(Nj + s)2(N2
j + s2)2

(
s4|gj |2 + N4

j |fj |2
)

+ s4|gn|2 + N4
n |fn|2 + C7s

4N2
n

∑
j

1

(Nj + s)2(N2
j + s2)2

(
s4|gj |2 + N4

j |fj |2
))

.

(3.26)

The following asymptotic estimates hold:

sup
n

N2m
n

(Nn + s)2(N2
n + s2)2

= O
(
s−6+2m

)
, m = 0,1,2,3. (3.27)

Using (3.27) we continue the estimate (3.26) as follows:

|LHS| � C8

s2

∑
n

(|fn|2 + |gn|2
) = C8

τ

∑
n

(|fn|2 + |gn|2
)
, (3.28)

which proves the desired inequality (3.7) (see also (3.24)) but only for τ that is uniformly sep-
arated from ∀λn. The nbh of ∀λn, τ ∈ [λn − δ,λn + δ] (or s ∈ [Nn − δ,Nn + δ]) is considered
now.
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Let s ∈ [√λm −δ,
√

λm +δ] for a particular m. We may disregard all terms of the series over n

in (3.25) with n �= m because an estimate above is applicable. Hence, only the following estimate
is required:

1

(λ2
m − s4)2

(∣∣∣∣λmgm + is2fm − kλmw′
m(1)

S(is2)

∑
j

wj (1)

λ2
j − s4

(
is2gj − λjfj

)∣∣∣∣
2

+
∣∣∣∣is2gm − λmfm − is2 kw′

m(1)

S(is2)

∑
j

wj (1)

λ2
j − s4

(
is2gj − λjfj

)∣∣∣∣
2)

� C9

s2

(∑
n

|fn|2 + |gn|2
)

∀s ∈ [√λm − δ,
√

λm + δ]. (3.29)

We further split the series over j in (3.29) in j = m and j �= m and prove the corresponding
estimates separately. For j �= m, we find

1

(λ2
m − s4)2

(∣∣∣∣kλmw′
m(1)

S(is2)

∑
j �=m

wj (1)

λ2
j − s4

(
is2gj − λjfj

)∣∣∣∣
2

+
∣∣∣∣is2 kw′

m(1)

S(is2)

∑
j �=m

wj (1)

λ2
j − s4

(
is2gj − λjfj

)∣∣∣∣
2)

� C10

s2

∑
n

(|fn|2 + |gn|2
)

(3.30)

or equivalently

1

(λ2
m − s4)2

∣∣∣∣kw′
m(1)

S(is2)

∣∣∣∣
2(

λ2
m + s4)∣∣∣∣∑

j �=m

wj (1)

λ2
j − s4

(
is2gj − λjfj

)∣∣∣∣
2

� C11

s2

∑
n

(|fn|2 + |gn|2
) ∀s ∈ [√λm − δ,

√
λm + δ], (3.31)

so that |√λj − s| � C12, j �= m.
We now use (3.15) to estimate the sum over j �= m in (3.31):∣∣∣∣ ∑

j �=m

wj (1)

λ2
j − s4

(
is2gj − λjfj

)∣∣∣∣
2

� C13

∑
j

s4|gj |2 + λ2
j |fj |2

λ2
j + s4

· 1

(
√

λj + s)2

� C13

s2

∑
j

(|fj |2 + |gj |2
)
.

To prove (3.31) we need to prove that

1

(λ2
m − s4)2

∣∣∣∣kw′
m(1)

S(is2)

∣∣∣∣
2(

λ2
m + s4) � C14

or equivalently (see (3.15))∣∣(√λm − s)S
(
is2)∣∣ � C15, s ∈ [√λm − δ,

√
λm + δ]. (3.32)
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According to (3.20),

lim
s→√

λm

(
√

λm − s)S
(
is2) = ikλmwm(1)w′

m(1)

4λm

√
λm

= O(1) as m → ∞, (3.33)

which proves (3.32). We finally consider the case j = m in (3.29). We need to prove:

1

(λ2
m − s4)2

(∣∣∣∣λmgm + is2fm − kλmw′
m(1)

S(is2)

wm(1)

λ2
m − s4

(
is2gm − λmfm

)∣∣∣∣
2

+
∣∣∣∣is2gm − λmfm − is2 kw′

m(1)

S(is2)

wm(1)

λ2
m − s4

(
is2gm − λmfm

)∣∣∣∣
2)

� C16

s2

(∑
n

|fn|2 + |gn|2
)

, s ∈ [√λm − δ,
√

λm + δ]. (3.34)

Using the limit in (3.33) yields an equivalent form of (3.34):

1

λ2
m + s4

(
|gm − ifm|2 +

∣∣∣∣ is2

λm

gm − fm

∣∣∣∣
2)

� C16

s2

(∑
n

|fn|2 + |gn|2
)

,

which holds due to s ∈ [√λm − δ,
√

λm + δ]. All of the above proves the desired estimates for
the resolvent. �
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