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Abstract

Let {BH
t ; t ∈ [0; T ]} be a fractional Brownian motion with Hurst parameter H . We prove the

existence and uniqueness of a strong solution for a stochastic di#erential equation of the form
Xt = x + BH

t +
∫ t
0 b(s; Xs) ds, where b(s; x) is a bounded Borel function with linear growth in x

(case H6 1
2 ) or a H9older continuous function of order strictly larger than 1 − 1=2H in x and

than H − 1
2 in time (case H ¿ 1

2 ). c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let BH = {BH
t ; t ∈ [0; T ]} be a fractional Brownian motion with Hurst parameter

H ∈ (0; 1). That is, BH is a centered Gaussian process with covariance

RH (t; s) = E(BH
t BH

s ) =
1
2{|t|2H + |s|2H − |t − s|2H}:

If H=1
2 the process BH is a standard Brownian motion. Consider the following stochas-

tic di#erential equation

Xt = x + BH
t +

∫ t

0
b(s; Xs) ds; (1)

∗ Corresponding author. Tel.: +34-3-402-1656; fax: +34-3-402-1601.
E-mail address: nualart@mat.ub.es (D. Nualart).

1 Supported by the DGES grant BFM2000-0598.
2 Supported by Moroccan Program PARS MI 37.

0304-4149/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -4149(02)00155 -2

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82351783?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


104 D. Nualart, Y. Ouknine / Stochastic Processes and their Applications 102 (2002) 103–116

where b : [0; T ] × R is a Borel function. The purpose of this paper is to prove the
existence and uniqueness of a strong solution to this equation under the following
weak regularity assumptions on the coeJcient b(t; x):

(i) If H6 1
2 (singular case), we assume the linear growth condition

|b(t; x)|6C(1 + |x|): (2)

(ii) If H ¿ 1
2 (regular case), we assume that b is H9older continuous of order 1¿�¿

1− 1=2H in x and of order �¿H − 1
2 in time:

|b(t; x)− b(s; y)|6C(|x − y|� + |t − s|�): (3)

In the case H = 1
2 , the process BH is an ordinary Brownian motion. In this case

the existence of a strong solution is well known by the results of Zvonkin (1974)
and Veretennikov (1981). See also the work by Nakao (1972) and its generalization
by Ouknine (1988). In these papers the equation may contain a nonconstant di#usion
coeJcient which is supposed to be bounded below by a positive constant and of
bounded variation on any compact interval.
As we shall see, in the case of Eq. (1) driven by the fractional Brownian motion,

the weak existence and uniqueness are established using a suitable version of Girsanov
theorem established by Decreusefond and 9Ustunel (1999). Girsanov theorem for the
fractional Brownian motion has also been used in the works by Norros et al. (1999)
and Moret and Nualart (2002). Notice that in the regular case H ¿ 1

2 the coeJcient
b(t; x) is supposed to be H9older continuous, and this condition implies also the existence
of a pathwise solution. In the singular case H ¡ 1

2 , the existence of a strong solution
could be deduced from an extension of Yamada–Watanabe’s theorem to this context.
We have used another argument to construct a strong solution in the case H ¡ 1

2
which uses a comparison theorem and a Krylov-type estimate. This method has also
been used to handle one-dimensional heat equations with additive space–time white
noise in Gy9ongy and Pardoux (1993).
The paper is organized as follows. In Section 2 we give some preliminaries on frac-

tional calculus and fractional Brownian motion. In Section 3 we formulate a Girsanov
theorem and show the existence of a weak solution to Eq. (1). As a consequence we
deduce the uniqueness in law and the pathwise uniqueness. Finally, Section 4 discusses
the existence of a strong solution.

2. Preliminaries

2.1. Fractional calculus

An exhaustive survey on classical fractional calculus can be found in Samko et al.
(1993). We recall some basic deOnitions and results.
For f∈L1([a; b]) and �¿ 0 the left fractional Riemann–Liouville integral of f of

order � on (a; b) is given at almost all x by

I �a+f(x) =
1

�(�)

∫ x

a
(x − y)�−1f(y) dy;

where � denotes the Euler function.



D. Nualart, Y. Ouknine / Stochastic Processes and their Applications 102 (2002) 103–116 105

This integral extends the usual n-order iterated integrals of f for �= n∈N. We have
the Orst composition formula

I �a+(I
�
a+f) = I �+�

a+ f:

The fractional derivative can be introduced as inverse operation. We assume 0¡�
¡ 1 and p¿ 1. We denote by I �a+(L

p) the image of Lp([a; b]) by the operator I �a+ . If
f∈ I �a+(L

p), the function � such that f = I �a+� is unique in Lp and it agrees with the
left-sided Riemann–Liouville derivative of f of order � deOned by

D�
a+f(x) =

1
�(1− �)

d
dx

∫ x

a

f(y)
(x − y)�

dy:

The derivative of f has the following Weil representation:

D�
a+f(x) =

1
�(1− �)

(
f(x)

(x − a)�
+ �

∫ x

a

f(x)− f(y)
(x − y)�+1 dy

)
1(a;b)(x); (4)

where the convergence of the integrals at the singularity x = y holds in Lp-sense.
When �p¿ 1 any function in I �a+(L

p) is (�− 1=p)-H9older continuous. On the other
hand, any H9older continuous function of order �¿� has fractional derivative of order
�. That is, C�([a; b]) ⊂ I �a+(L

p) for all p¿ 1.
Recall that by construction for f∈ I �a+(L

p),

I �a+(D
�
a+f) = f

and for general f∈L1([a; b]) we have

D�
a+(I

�
a+f) = f:

If f∈ I �+�
a+ (L1), �¿ 0; �¿ 0; �+ �6 1 we have the second composition formula

D�
a+(D

�
a+f) = D�+�

a+ f:

2.2. Fractional Brownian motion

Let BH = {BH
t ; t ∈ [0; T ]} be a fractional Brownian motion with Hurst parameter

0¡H ¡ 1 deOned on the probability space (�;F; P). For each t ∈ [0; T ] we denote
by FBH

t the  -Oeld generated by the random variables BH
s ; s∈ [0; t] and the sets of

probability zero.
We denote by E the set of step functions on [0; T ]. Let H be the Hilbert space

deOned as the closure of E with respect to the scalar product

〈1[0; t]; 1[0; s]〉H = RH (t; s):

The mapping 1[0; t] → BH
t can be extended to an isometry between H and the Gaussian

space H1(BH ) associated with BH . We will denote this isometry by ’ → BH (’).
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The covariance kernel RH (t; s) can be written as

RH (t; s) =
∫ t∧s

0
KH (t; r)KH (s; r) dr;

where KH is a square integrable kernel given by (see Decreusefond and 9Ustunel, 1999):

KH (t; s) = �(H + 1
2)

−1(t − s)H−1=2F
(
H − 1

2 ;
1
2 − H;H + 1

2 ; 1−
t
s

)
;

F(a; b; c; z) being the Gauss hypergeometric function. Consider the linear operator K∗
H

from E to L2([0; T ]) deOned by

(K∗
H’)(s) = KH (T; s)’(s) +

∫ T

s
(’(r)− ’(s))

@KH

@r
(r; s) dr:

For any pair of step functions ’ and  in E we have (see AlPos et al., 2001)

〈K∗
H’; K∗

H 〉L2([0;T ]) = 〈’;  〉H:

As a consequence, the operator K∗
H provides an isometry between the Hilbert spaces

H and L2([0; T ]). Hence, the process W = {Wt; t ∈ [0; T ]} deOned by

Wt = BH ((K∗
H )

−1(1[0; t])) (5)

is a Wiener process, and the process BH has an integral representation of the form

BH
t =

∫ t

0
KH (t; s) dWs; (6)

because (K∗
H1[0; t])(s) = KH (t; s).

On the other hand, the operator KH on L2([0; T ]) associated with the kernel KH is an
isomorphism from L2([0; T ]) onto IH+1=2

0+ (L2([0; T ])) and it can be expressed in terms
of fractional integrals as follows (see Decreusefond and 9Ustunel, 1999):

(KHh)(s) = I 2H0+ s1=2−H I 1=2−H
0+ sH−1=2h; if H6 1=2; (7)

(KHh)(s) = I 10+s
H−1=2IH−1=2

0+ s1=2−Hh; if H¿ 1=2; (8)

where h∈L2([0; T ]).
We will make use of the following deOnition of Ft-fractional Brownian motion.

De�nition 1. Let {Ft ; t ∈ [0; T ]} be a right-continuous increasing family of  -Oelds
on (�;F; P) such that F0 contains the sets of probability zero. A fractional Brownian
motion BH ={BH ; t ∈ [0; T ]} is called an Ft-fractional Brownian motion if the process
W deOned in (5) is an Ft-Wiener process.

3. Existence of a weak solution, and pathwise uniqueness property

3.1. Girsanov transform

As in the previous section, let BH be a fractional Brownian motion with Hurst
parameter 0¡H ¡ 1 and denote by {FBH

t ; t ∈ [0; T ]} its natural Oltration.
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Given an adapted process with integrable trajectories u={ut ; t ∈ [0; T ]} consider the
transformation

B̃
H
t = BH

t +
∫ t

0
us ds: (9)

We can write

B̃
H
t = BH

t +
∫ t

0
us ds=

∫ t

0
KH (t; s) dWs +

∫ t

0
us ds

=
∫ t

0
KH (t; s) dW̃ s;

where

W̃ t =Wt +
∫ t

0

(
K−1

H

(∫ ·

0
us ds

)
(r)
)

dr: (10)

Notice that K−1
H (
∫ ·
0 us ds) belongs to L2([0; T ]) almost surely if and only if

∫ ·
0 us ds

∈ IH+1=2
0+ (L2([0; T ])). As a consequence we deduce the following version of the

Girsanov theorem for the fractional Brownian motion, which has been obtained in
(Decreusefond and 9Ustunel, 1999, Theorem 4.9):

Theorem 2. Consider the shifted process (9) de<ned by a process u= {ut ; t ∈ [0; T ]}
with integrable trajectories. Assume that

(i)
∫ ·
0 us ds∈ IH+1=2

0+ (L2([0; T ])); almost surely.
(ii) E(,T ) = 1; where

,T = exp

(
−
∫ T

0

(
K−1

H

∫ ·

0
us ds

)
(s) dWs − 1

2

∫ T

0

(
K−1

H

∫ ·

0
us ds

)2
(s) ds

)
:

Then the shifted process B̃
H

is an FBH

t -fractional Brownian motion with Hurst
parameter H under the new probability P̃ de<ned by dP̃=dP = ,T .

Proof. By the standard Girsanov theorem applied to the adapted and square integrable
process K−1

H (
∫ ·
0 us ds) we obtain that the process W̃ deOned in (10) is an FBH

t —
Brownian motion under the probability P̃. Hence; the result follows.

From (7) and (8) the inverse operator K−1
H is given by

K−1
H h= sH−1=2DH−1=2

0+ s1=2−Hh′; if H ¿ 1=2; (11)

K−1
H h= s1=2−HD1=2−H

0+ sH−1=2D2H
0+ h if H ¡ 1=2 (12)
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for all h∈ IH+1=2
0+ (L2([0; T ])). If h is absolutely continuous, we can write for H ¡ 1=2

K−1
H h= sH−1=2I 1=2−H

0+ s1=2−Hh′: (13)

In order to show (13) let us compute

KHsH−1=2I 1=2−H
0+ s1=2−Hh′ = I 2H0+ s1=2−H I 1=2−H

0+ s2H−1I 1=2−H
0+ s1=2−Hh′

= �H

∫ s

0
(s− u)2H−1u1=2−H

∫ u

0
(u− w)−1=2−Hw2H−1

×
∫ w

0
r1=2−H (w − r)−1=2−Hh′r dr dw du

= �H

∫ s

0
h′rr

1=2−H
∫ s

r
u1=2−H (s− u)2H−1

×
∫ u

r
(u− w)−1=2−Hw2H−1(w − r)−1=2−H dw du dr;

where �H=1=(�( 12−H)2�(2H)). Making the change of variable z=(u(w−r))=(w(u−r))
the integral in dw equals to B( 12 − H; 12 − H)uH−1=2rH−1=2(u− r)−2H , and we obtain

KHsH−1=2I 1=2−H
0+ s1=2−Hh′ =

∫ s

0
h′r dr;

which implies (13).
From (13) it follows that in the case H6 1

2 a suJcient condition for (i) is
∫ T
0 u2s ds¡

∞. On the other hand, from (11) we get that if H ¿ 1
2 we need u∈ IH−1=2

0+ (L2([0; T ])),
and a suJcient condition is the fact that the trajectories of u are H9older continuous of
order H − 1

2 + . for some .¿ 0.

3.2. Existence of a weak solution

Consider the stochastic di#erential equation

Xt = x + BH
t +

∫ t

0
b(s; Xs) ds; 06 t6T; (14)

where b is a Borel function on [0; T ]× R.
By a weak solution to Eq. (14) we mean a couple of adapted continuous processes

(BH ; X ) on a Oltered probability space (�;F; P; {Ft ; t ∈ [0; T ]}), such that:

(i) BH is an Ft—fractional Brownian motion in the sense of DeOnition 1.
(ii) X and BH satisfy (14).

Theorem 3. Suppose that b(t; x) satis<es the linear growth condition (2) if H ¡ 1
2 or

the HBolder continuity condition (3) if H ¿ 1
2 . Then Eq. (14) has a weak solution.
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Proof. Set B̃
H
t = BH

t − ∫ t
0 b(s; BH

s + x) ds. We claim that the process us =−b(BH
s + x)

satisOes conditions (i) and (ii) of Theorem 2. If this claim is true; under the probabil-
ity measure P̃; B̃

H
is an FBH

t —fractional Brownian motion; and (BH ; B̃
H
) is a weak

solution of (14) on the Oltered probability space (�;F; P̃; {FBH

t ; t ∈ [0; T ]}).
Set

vs =−K−1
H

(∫ ·

0
b(r; BH

r + x) dr
)
(s):

In order to show that the process v satisOes conditions (i) and (ii) of Theorem 2 we
distinguish the two cases H ¡ 1

2 and H ¿ 1
2 . Along the proof cH will denote a generic

constant depending only on H .
Case H ¡ 1

2 : From (13) and the linear growth property of b we obtain

|vs| = |sH−1=2I 1=2−H
0+ s1=2−Hb(s; BH

s + x)|

= cH sH−1=2

∣∣∣∣
∫ s

0
(s− r)−1=2−Hr1=2−Hb(r; BH

r + x) dr
∣∣∣∣

6 cHC(1 + |x|+ ‖BH‖∞): (15)

From (13) it follows that the operator K−1
H preserves the adaptability property. Hence,

the process v is adapted and then condition (ii) can be proved using Novikov criterion.
Indeed (see, for instance, Theorem 1.1 in Friedman (1975)) it suJces to show that
there exists a constant 0¿ 0 such that

sup
06s6T

E(exp(0v2s ))¡∞; (16)

which is an immediate consequence of (15) and the exponential integrability of the
square of a seminorm of a Gaussian process (see Fernique, 1974).
Case H ¿ 1

2 : Again (11) implies that the process v is adapted. From (11) we obtain

vs = −sH−1=2DH−1=2
0+ s1=2−Hb(s; BH

s + x)

:=−cH (�(s) + �(s));

where

�(s) = b(s; BH
s + x)s1=2−H

+
(
H − 1

2

)
sH−1=2b(s; BH

s + x)
∫ s

0

s1=2−H − r1=2−H

(s− r)1=2+H dr

+
(
H − 1

2

)
sH−1=2

∫ s

0

b(s; BH
s + x)− b(r; BH

s + x)
(s− r)1=2+H r1=2−H dr

and

�(s) =
(
H − 1

2

)
sH−1=2

∫ s

0

b(r; BH
s + x)− b(r; BH

r + x)
(s− r)1=2+H r1=2−H dr:
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Using the estimate

|b(s; BH
s + x)|6 |b(0; x)|+ C(|s|� + |BH

s |�)
and the equality∫ s

0

r1=2−H − s1=2−H

(s− r)1=2+H dr = cH s1−2H

we obtain

|�(s)|6 cH (s1=2−H [|b(0; x)|+ C(|s|� + |BH
s |�)] + Cs�+1=2−H )

6 cH s1=2−H (C‖BH‖�∞ + Cs� + |b(0; x)|):
As a consequence, taking into account that �¡ 1, we have for any 0¿ 1

E
(
exp
(
0
∫ T

0
�(s)2 ds

))
¡∞: (17)

In order to estimate the term �(s), we apply the H9older continuity condition (3) and
we get

|�(s)|6 cH sH−1=2
∫ s

0

|BH
s − BH

r |�
(s− r)H+1=2 r1=2−H dr

6 cH s1=2−H+�(H−.)G�;

where we have Oxed .¡H − 1
� (H − 1

2 ) and we denote

G = sup
06s¡r6T

|BH
s − BH

r |
|s− r|H−. :

By Fernique’s Theorem, taking into account that �¡ 1, for any 0¿ 1 we have

E
(
exp
(
0
∫ T

0
�(s)2 ds

))
¡∞;

and we deduce condition (ii) of Theorem 2 by means of Novikov criterion.

3.3. Uniqueness in law and pathwise uniqueness

Let (X; BH ) be a weak solution of the stochastic di#erential equation (14) deOned
in the Oltered probability space (�;F; P; {Ft ; t ∈ [0; T ]}). DeOne

us =
(
K−1

H

∫ ·

0
b(r; Xr) dr

)
(s):

Let P̃ deOned by

dP̃
dP

= exp
(
−
∫ T

0
us dWs − 1

2

∫ T

0
u2s ds

)
: (18)
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We claim that the process us satisOes conditions (i) and (ii) of Theorem 2. In fact, us

is an adapted process and taking into account that Xt has the same regularity properties
as the fBm we deduce that

∫ T
0 u2s ds¡∞ almost surely. Finally, we can apply again

Novikov theorem in order to show that E(dP̃=dP) = 1, because by Gronwall’s lemma

‖X ‖∞6 (x + ‖BH‖∞ + C1T )eC2T

and

|Xt − Xs|6 |BH
t − BH

s |+ C3|t − s|(1 + ‖X ‖∞)

for some constants Ci; i = 1; 2; 3.
By the classical Girsanov theorem the process

W̃ t =Wt +
∫ t

0
us dr

is an Ft-Brownian motion under the probability P̃. In terms of the process W̃ t we can
write

Xt = x +
∫ t

0
KH (t; s) dW̃ s:

Hence, X − x is an Ft-fractional Brownian motion with respect to the probability P̃
with Hurst parameter equal to H . As a consequence, the processes X − x and B̃

H
t have

the same distribution under the probability P. In fact, if 3 is a bounded measurable
functional on C([0; T ]), we have

EP(3(X − x)) =
∫
�
3(,− x)

dP

dP̃
(,) dP̃

= EP̃

(
3(X − x) exp

(∫ T

0

(
K−1

H

∫ ·

0
b(r; Xr) dr

)
(s) dWs

+
1
2

∫ T

0

(
K−1

H

∫ ·

0
b(r; Xr) dr

)2
(s) ds

))

= EP̃

(
3(X − x)

(
exp

∫ T

0

(
K−1

H

∫ ·

0
b(r; Xr) dr

)
(s) dW̃ s

− 1
2

∫ T

0

(
K−1

H

∫ ·

0
b(r; Xr) dr

)2
(s) ds

))

= EP

(
3(BH )

(
exp

∫ T

0

(
K−1

H

∫ ·

0
b(r; BH

r + x) dr
)
(s) dWs

))

− 1
2

∫ T

0

(
K−1

H

∫ ·

0
b(r; BH

r + x) dr
)2

(s) ds

))

= EP(3(B̃
H
)):
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In conclusion we have proved the following result

Theorem 4. Suppose that b(t; x) satis<es the assumptions of Theorem 3. Then two
weak solutions must have the same distribution.

As a corollary we deduce the pathwise uniqueness of the solution to Eq. (14):

Theorem 5. Suppose that b(t; x) satis<es the assumptions of Theorem 3. Then two
weak solutions de<ned on the same <ltered probability space must coincide almost
surely.

Proof. Let X 1 and X 2 be two weak solutions deOned on the same Oltered probability
space (�;F; P; {Ft ; t ∈ [0; T ]}) with respect to the same fractional Brownian motion.
It is easy to see that sup(X 1; X 2) and inf (X 1; X 2) are also solutions; then they have
the same laws which implies that X 1 = X 2.

4. Existence of strong solutions

Since b is continuous in the case H ¿ 1=2, we have existence of a solution. In
particular, if b satisOes the H9older continuity assumption (3) then we have existence and
pathwise uniqueness result and this is better than the corresponding result for ordinary
di#erential equations because the uniqueness fails. (Take, for instance, b(x) =

√|x|.)
Moreover, in the case H ¿ 1=2 we can establish the uniqueness and existence of a

strong solution for the equation

Xt = x +
∫ t

0
 (Xs) dBH

s +
∫ t

0
b(s; Xs) ds; 06 t6T; (19)

where  is a H9older continuous function of order 4¿ 1=H−1 such that | (z)|¿ c¿ 0.
By deOnition a solution to Eq. (19) is an adapted process whose trajectories are H9older
continuous of order H−. for all .¿ 0. Under these assumptions, the stochastic integral
that appears in Eq. (19) exists pathwise. We refer to Z9ahle (1998) for the deOnition
of this pathwise integral using fractional calculus.
Set

F(x) =
∫ x

0

1
 (z)

dz:

Then, using the change-of-variables formula for the fractional Brownian motion (see,
for instance, Z9ahle, 1998, Theorem 4.3.1) we obtain that a process X is a solution to
Eq. (19) if and only if the process Yt = F(Xt) is a solution of

Yt = F(x) + BH
t +

∫ t

0

b(s; F−1(Ys))
 (F−1(Ys))

ds:

We conclude that if 4¿ 1 − 1=2H then there is a unique strong solution to
Eq. (19).
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Let us now prove the existence of a strong solution in the singular case H ¡ 1
2 . Let

us Orst establish a Krylov-type inequality that will play an essential role in the sequel.

Proposition 6. Suppose now that b is uniformly bounded. Let X denote a weak so-
lution to Eq. (14). Fix 6¿H +1. There exists a constant K depending on T; ‖b‖∞
and 6 such that for any measurable nonnegative function g : [0; T ]×R→ R we have

E
∫ T

0
g(t; Xt) dt6K

(∫ T

0

∫
R
g(t; x)6 dx dt

)1=6
: (20)

Proof. Let Z = dP̃=dP be the Radon–Nikodym density given by (18). By H9older’s
inequality with 1=�+ 1=� = 1

E
∫ T

0
g(t; Xt) dt = ẼZ−1

∫ T

0
g(t; Xt) dt

=KT (ẼZ−�)1=�
(
Ẽ
∫ T

0
g(t; Xt)� dt

)1=�
:

The expectation ẼZ−� is uniformly bounded for any �¿ 1 because; by the arguments
used in the proof of Theorem 3 we obtain

ẼZ−� = Ẽ exp
(
�
∫ T

0
us dWs +

�
2

∫ T

0
u2s ds

)

= Ẽ exp
(
�
∫ T

0
us dW̃ s − �

2

∫ T

0
u2s ds

)
¡∞:

On the other hand; applying again H9older’s inequality with 1=�′+1=�=1 and �¿H+1
yields

Ẽ
∫ T

0
g(t; Xt)� dt =

∫ T

0

1√
29tH

∫
R
g(t; y)�e−(y−x)2=2t2H dy dt

6
1√
29

(∫ T

0

∫
R
g(t; y)�� dy dt

)1=�

×
(∫ T

0

∫
R
t−H�′e−4(y−x)2=2t2H dy dt

)1=�′

=
1√
29

(∫ T

0

∫
R
g(t; y)�� dy dt

)1=�(∫ T

0
t(1−�′)H dt

)1=�′

6
c�; T√
29

(∫ T

0

∫
R
g(t; y)�� dy dt

)1=�
:
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Proposition 7. Consider a sequence bn(t; x) of measurable functions uniformly bounded
by C; such that

lim
n→∞ bn(t; x) = b(t; x)

for almost all (t; x)∈ [0; T ] × R. Suppose also that the corresponding solutions X (n)
t

of the equations

X (n)
t = x + BH

t +
∫ t

0
bn(s; X (n)

s ) ds; 06 t6T;

converge a.s. to some process Xt for all t ∈ [0; T ]. Then the process Xt is a solution
of Eq. (14).

Proof. It suJces to show that

lim
n→∞E

∫ T

0
|bn(s; X (n)

s )− b(s; Xs)| ds= 0:

We can write

J (n) :=E
∫ T

0
|bn(s; X (n)

s )− b(s; Xs)| ds6 J1(n) + J2(n);

where

J1(n) := sup
k

E
∫ T

0
|bk(s; X (n)

s )− bk(s; Xs)| ds;

J2(n) :=E
∫ T

0
|bn(s; Xs)− b(s; Xs)| ds:

Let < :R→ R be a smooth function such that 06 <(z)6 1 for every z; <(z) = 0 for
|z|¿ 1 and <(0) = 1. Fix .¿ 0 and choose R¿ 0 such that

E
∫ T

0
|1− <(Xt=R)| dt ¡ .:

The sequence of functions bk is relatively compact in L2([0; T ]× [−R; R]). Hence; we
can Ond Onitely many bounded smooth functions H1; : : : ; HN such that for every k∫ T

0

∫ R

−R
|bk(t; x)− Hi(t; x)|2 dr dt ¡ .2

for some Hi. We have

E
∫ T

0
|bk(t; X

(n)
t )− bk(t; Xt)| dt 6 E

∫ T

0
|bk(t; X

(n)
t )− Hi(t; X

(n)
t )| dt

+
N∑

j=1

E
∫ T

0
|Hj(t; X

(n)
t )− Hj(t; Xt)| dt
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+E
∫ T

0
|bk(t; Xt)− Hi(t; Xt)| dt

:= I1(n; k) + I2(n) + I3(k):

By Proposition 6

I1(n; k) = E
∫ T

0
<(X (n)

t =R)|bk(t; X
(n)
t )− Hi(t; X

(n)
t )| dt

+E
∫ T

0
[1− <(X (n)

t =R)]|bk(t; X
(n)
t )− Hi(t; X

(n)
t )| dt

6K
(∫ T

0

∫ R

−R
|bk(t; x)− Hi(t; x)|2 dx dt

)1=2
+ CE

∫ T

0
[1− <(X (n)

t =R)] dt

for some constant C depending on ‖b‖∞ and supi ‖Hi‖∞. Hence;

lim
n→∞ sup

k
I1(n; k)6K.+ CE

∫ T

0
[1− <(Xt=R)] dt6 (K + C).:

Similarly;

sup
k

I3(k)6 (K + C).:

Consequently;

lim
n→∞ sup

k
I(n; k)6 2(K + C).;

and this implies that limn→∞ J1(n) = 0. For the term J2(n) we can write

J2(n) = E
∫ T

0
<(Xt=R)|bn(t; Xt)− b(t; Xt)| dt

+E
∫ T

0
[1− <(Xt=R)]|bn(t; Xt)− b(t; Xt)| dt

6K
(∫ T

0

∫ R

−R
|bn(t; x)− b(t; x)|2 dx dt

)1=2
+ CE

∫ T

0
[1− <(Xt=R)] dt

and we use the same arguments as before.

Theorem 8. Assume that b(t; x) satis<es the linear growth condition (2). Then; there
exists a unique strong solution to Eq. (14).

Proof. We already know that pathwise uniqueness holds by Theorem 5. For any R¿ 0
deOne bR(t; x) = b(t; (x ∧ R) ∨ (−R)). The linear growth condition implies that bR is a
bounded measurable function. Let 6 be a smooth nonnegative with compact support in
R such that

∫
R 6(z) dz = 1. For j∈N deOne

bR;j(t; x) = j
∫
R
bR(t; z)6(j(x − z)) dz:
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Moreover; let for n6 k

b̃R;n;k =
k∧

j=n

bR;j and b̃R;n =
∞∧
j=n

bR;j:

Clearly; b̃R;n;k is Lipschtiz in the variable x uniformly with respect to t; and b̃R;n;k ↓
b̃R;n as k → ∞; b̃R;n ↑ bR as n → ∞; for almost all x; for any t. Eq(b̃R;n;k) has a
unique solution X̃ R;n;k . By the comparison criterion for ordinary di#erential equations
the sequence X̃ R;n;k decreases with k; hence it has a limit X̃ R;n. Again by the comparison
theorem X̃ R;n;k (and hence X̃ R;n) is bounded from above (resp. from below) by the
solution with the constant coeJcient R (resp. −R). Moreover; X̃ R;n increases as n
increases. So again; X̃ R;n converges and its limit; denoted by XR.
Finally, we apply Proposition 7.
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