
Formalizing Web Service Choreographies 1

Antonio Brogia, Carlos Canalb, Ernesto Pimentelb

Antonio Vallecillob

a Dept. of Computer Science, University of Pisa, Italy.
Email: brogi@di.unipi.it

b Dept. of Computer Science, University of Málaga, Spain.
Emails: canal@lcc.uma.es, ernesto@lcc.uma.es, av@lcc.uma.es

Abstract

Current Web service choreography proposals, such as BPEL4WS, BPSS, WSFL, WSCDL or WSCI,
provide notations for describing the message flows in Web service collaborations. However, such
proposals remain at the descriptive level, without providing any kind of reasoning mechanisms or
tool support for checking the compatibility of Web services based on the proposed notations. In this
paper we present the formalization of one of these Web service choreography proposals (WSCI),
and discuss the benefits that can be obtained by such formalization. In particular, we show how to
check whether two or more Web services are compatible to interoperate or not, and, if not, whether
the specification of adaptors that mediate between them can be automatically generated —hence
enabling the communication of (a priori) incompatible Web services.

Keywords: Web services, choreography, WSCI, formal methods, process algebra, interoperability,
adaptation.

1 Introduction

Current Web service descriptions allow operations to define the contents and
direction of messages (incoming or outgoing), but they do not describe the
behaviour of services involving multiple individual operations — i.e., they do
not provide enough details of what the service is expected to do. In this

1 This work has been partly supported by the project NAPOLI funded by the Italian Min-
istry of Instruction, University and Research (MIUR), and the projects TIC2002-4309-C02-
02 and TIC2001-2705-C03-02 funded by the Spanish Ministry of Science and Technology
(MCYT).

Electronic Notes in Theoretical Computer Science 105 (2004) 73–94

1571-0661 © 2004 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.05.007
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82351733?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:brogi@di.unipi.it
mailto:canal@lcc.uma.es
mailto:ernesto@lcc.uma.es
mailto:av@lcc.uma.es
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

sense, the Web Service Description Language (WSDL [10]) may be adequate
for simple information retrieval in a stateless message exchange, such as a
stock quote. There is no standard way, though, of correlating the messages
that are exchanged by the Web service with the context in which the Web
service operates. This is an important function for building useful service col-
laboration, and this is the area addressed by current Web service choreography
proposals, such as BPEL4WS, BPSS, WSFL, WSCDL, WSCI, etc.

One of these proposals, WSCI (Web Service Choreography Interface [11]),
builds upon current Web service technologies to enable the users of a service
— such as another Web service, or an application — to understand how to
interact with it meaningfully. WSCI also enables developers and architects to
describe and compose a global view of the dynamics of the message exchange,
allowing to create greater collaborations of services.

Using WSCI we can raise the level of expressiveness currently provided by
Web service descriptions, capturing not only static information about the sig-
nature and direction of the operations supported by a given Web service, but
also the dynamic information (i.e. the behaviour or protocol of the service [9]),
describing the partial order in which messages are expected to be exchanged
during the collaborations in which the Web service may engage in.

Being able to express this kind of information on top of the WDSL descrip-
tions is a big step forward. However, once we count with this information,
the obvious question is about the benefits it can bring along. For instance,
what kind of properties can be inferred from the WSCI descriptions? How
such properties can be proved? In case two Web services are not compatible
to interoperate, can we remedy such situation by adapting them somehow?

Our present goal is to make use of the fair amount of work currently
available on the behavioural descriptions of objects and components at the
protocol level (e.g., [1,2]), in order to apply many of such theoretical results
to the practical field of the Web services. In particular, in this paper we show
how the WSCI descriptions can be formalized using a process algebra approach
(in particular CCS [5]), and then be in a position to check whether two or more
Web services are compatible to interoperate or not, and if not, whether the
specification of adaptors that mediate between them can be automatically
generated. In this context, compatibility can be described as the ability of
two Web services to work properly together, i.e., that all exchanged messages
between them are understood by each other, and that their communication is
deadlock-free [12].

The structure of this document is as follows. After this introduction, Sec-
tion 2 provides a brief introduction to Web services and WSCI. Then, Sec-
tion 3 discusses how to formalize WSCI. Using this formalization, Section 4

A. Brogi et al. / Electronic Notes in Theoretical Computer Science 105 (2004) 73–9474

describes how to reason about the compatibility and replaceability of Web
services, and the sort of properties that can be proved. Next, Section 5 dis-
cusses the possible automated generation of the adaptors, which enable, under
some circumstances, the communication of a priori incompatible Web services.
Finally, Section 6 draws some conclusions and outlines some further research
activities.

2 Web Services and WSCI

A Web service, as defined by the World Wide Web Consortium (W3C), is a
software application identified by a uniform resource identifier (URI), whose
interfaces and binding are capable of being defined, described, and discovered
by XML artifacts, and that supports direct interactions with other software ap-
plications using XML based messages via Internet-based protocols. Although
in theory independent from the Internet technology used, Web services nor-
mally use HTTP and SOAP for exchanging messages, WSDL for describing
their supported and required operations, and UDDI for being registered and
discovered.

On top of WSDL, WSCI is a proposal of an XML-based language used to
describe the flow of messages exchanged by a Web service. It allows the de-
scription of the observable behaviour of a Web service in a message exchange.
WSCI describes a one-sided interface for a single Web service, i.e., the message
exchange is described from the point of view of each Web service.

WSCI addresses Web service choreography from two primary levels. At the
first level, WSCI builds up on the WSDL <portType> capabilities to describe
the flow of messages exchanged by a Web service. The <interface> construct
introduced by WSCI permits the description of the externally “observable be-
haviour” of a Web service, facilitating the expression of sequential and logical
dependencies of exchanges at different operations in WSDL <portType>. In
addition, the WSCI <interface> allows the specification of correlations of
related exchanges, grouping of exchanges into transactions, and allows also
exception handling and process definition.

At the second level, WSCI defines the <model> construct, which allows
composition of two or more WSCI <interface> definitions (of the respective
Web services) into a collaborative process involving the participants repre-
sented by the Web services. WSCI calls this the “global model”. A WSCI
global model provides the ability to “link” operations in different interfaces
and to specify the direction of message flow between the linked operations,
into a collective message exchange among interacting Web services, providing
a global, message-oriented view of the overall process based on Web services.

A. Brogi et al. / Electronic Notes in Theoretical Computer Science 105 (2004) 73–94 75

<wsdl:portType name="BStoTraveller">
<wsdl:operation name="Book">

<wsdl:input message = "bookingRequest" />
<wsdl:output message = "bookingAck" />

</wsdl:operation>
<wsdl:operation name="Confirmation">

<wsdl:output message = "bookingConfirmation" />
</wsdl:operation>
<wsdl:operation name="Refusal">

<wsdl:output message = "bookingRefusal" />
</wsdl:operation>

</wsdl:portType>
...
<interface name = "BookingService">

<process name = "BookTrip" instantiation = "message" >
<sequence>

<action name = "ReceiveBooking"
operation = "BStoTraveller/Book"

</action>
<switch>

<case>
<condition>placesAvailable</condition>
<action name = "SendConfirmation"

operation = "BStoTraveller/Confirmation"
</action>

</case>
<default>

<action name = "SendRefusal"
operation = "BStoTraveller/Refusal"

</action>
</default>

</switch>
</sequence>

</process>
</interface>

Fig. 1. Example of WSCI description for a simple booking service.

The following subsections describe the main concepts defined in the WSCI
specification. It is important to note that WSCI builds on top of WSDL, so all
data, messages and operations types are defined using the WSDL mechanisms
— WSCI just adds to them the choreography descriptions.

2.1 WSCI interfaces

WSCI describes the behaviour of a Web service in terms of choreographed
activities. Activities may be atomic or complex. Atomic activities are also
known as actions. They constitute the basic unit of behaviour of a Web service,
such as sending or receiving a message, or waiting for a specified amount
of time. Actions dealing with messages are bound to WSDL operations, as
defined in a WSDL <portType>.

A. Brogi et al. / Electronic Notes in Theoretical Computer Science 105 (2004) 73–9476

Complex activities are recursively composed of other activities. Ultimately,
complex activities are built on actions. Each complex activity defines a spe-
cific kind of choreography for the actions it is composed of. WSCI supports
the definition of sequential and parallel executions of activities, conditional
executions, and loops (the activities are repeatedly executed based on the
evaluation of a conditional expression).

A process is a portion of behaviour that is labelled with a name. Processes
are the basic WSCI units of behaviour reuse. Processes can be instanced by
calling or spawning them from actions or from other processes, or by the re-
ceipt of one or more of the messages that are defined as triggering the process.

Exception handling behaviour can be declared in any context, and asso-
ciates exceptions with the set of activities that the service will perform in
response to such exceptional behaviour (that can be the receipt of a given
message, the occurrence of a fault, or the occurrence of a timeout). The oc-
currence of an exception causes the current context to terminate right after the
activities associated with the exception have been performed. At this point,
the behaviour defined in the parent context is resumed.

In order to illustrate these concepts, Figure 1 shows an example inspired
by [11] that describes a fragment of the WSCI description of a Web service
implementing a booking service functionality in an airline ticketing system.
The WSDL <portType> element describes the Web service operations, while
the WSCI interface describes their choreography. In this case, it defines a pro-
cess consisting of three actions. Each action is mapped to the corresponding
WSDL operation. Notice that for sake of simplicity we have omitted the pos-
sible parameters present in actions, which would notably increase the length
of the example.

2.2 WSCI global model

As previously described, a WSCI global model permits a global view of the
overall message exchange among the set of Web services involved in a conversa-
tion. It imports all the WSCI descriptions of all communicating participants,
and links the names of individual operations in each service. More precisely,
it provides a set of connections (or mappings) between pairs of individual
operations of communicating participants.

An example of a WSCI global model, describing an AirlineTicketing sys-
tem composed of three Web services (the BookingService in Figure 1, and
two hypothetical Traveller and Airline components) is shown in Figure 2.
The model specifies how the operations in the interfaces of the services are con-
nected (e.g. Book in the BookingService with BookFlight in the Traveller)
in order to orchestrate the choreography of the composite system. However,

A. Brogi et al. / Electronic Notes in Theoretical Computer Science 105 (2004) 73–94 77

<model name= "AirlineTicketing">
<interface ref="bos:BookingService" />
<interface ref="tra:Traveller" />
<interface ref="air:Airline" />
....

<connect operations = "bos:BStoTraveller/Book
tra:TravellerToBS/BookFlight" />

....
</model>

Fig. 2. Example of WSCI global model for an airline ticketing system.

these operations are supposed to be mirror images of each other, which is a
very strong assumption. For instance, the global model can associate opera-
tions that have been named differently in two communicating parties, but it
supposes that the arguments of these operations match perfectly. Therefore,
WSCI only provides very simplistic mechanisms at the global model level for
connection and adaptation.

3 Formalizing WSCI

The nature and intrinsic features of WSCI suggest the use of a process alge-
bra for formalizing it. For instance, the π-calculus would be a good candidate,
but since mobility is not required to formalize WSCI (all channels are known
beforehand, and there is no such things as object or web service “factories”),
CCS [5] will be sufficient for our purposes. Anyway, the encodings proposed
in this paper can be easily translated into any other standard process algebra.
Moreover, the choice of CCS (rather than π-calculus) reduces the complexity
of the verification of compatibility of behaviour and the adaptation of mis-
matching behaviour, as we shall discuss in the next sections.

Although we refer to [5] for a detailed description of CCS, we will give here
a brief introduction to its syntax 2 . A process P in CCS will be given by:

P ::= 0 | α.P | P + P | P ‖ P | A(x̃)

α ::= a?(x) | a!(x) | τ

where a is a channel name, x is a data value, x̃ is a sequence of values, and 0
denotes the empty process. Every process can be prefixed by an atomic action
α, or composed (either in parallel ‘‖’ or by means of the choice ‘+’ operator)
with other processes. Atomic actions are given by the internal (or silent)
action τ , input actions (a message x is received from a channel a) and output
actions (a message is sent through a channel). For any process identifier A

there must be a unique defining equation A(x̃) = P . Then, A(ỹ) behaves

2 Some CCS operators (e.g. restriction or conditinal) are not necessary for the discussion
below. Thus, we will present here only a subset of CCS.

A. Brogi et al. / Electronic Notes in Theoretical Computer Science 105 (2004) 73–9478

like P{ỹ/x̃}. Defining equations provide recursion, since P may contain any
process identifier, even A itself.

The operational semantics of CCS is defined by a transition system where
standard rules model parallel and choice operators, and synchronization is
produced by the parallel composition of two complementary actions, following
the transition rule:

P
a!(x)
−→ P ′ Q

a?(y)
−→ Q ′

P ‖ Q
τ

−→ P ′ ‖ Q ′{x/y}

where labelled transitions
a!x()
−→ and

a?(y)
−→ are provided by prefix actions. The

resulting communication is represented by a τ transition.

In spite of its simplicity, CCS presents a high expressive power, capable
of capturing WSCI. The formalization of WSCI in CCS can be described in
three steps:

(i) We first consider an “untagged” version 3 of WSCI — shown in Figure 1
— which is isomorphic to WSCI, but without the verbosity of the XML
tags.

(ii) Then, we show how the untagged version of WSCI can be translated into
CCS. This kind of translation is normal practice in process algebra, and
indeed it is quite similar to the translation of the procedural language M
into CCS originally described by Milner in [5] to show how non-trivial
programming languages can be quite simply encoded in CCS.

(iii) Finally, the connections between operations in the WSCI global model
are naturally translated into CCS by putting the corresponding processes
in parallel, and linking their channels accordingly to what is specified in
the global model.

Instead of providing the full formal definition of the WSCI to CCS trans-
lator, we will illustrate the translation process by selecting some WSCI con-
structs (following the syntax defined in Figure 3), and by showing the resulting
CCS processes. We think this gives the reader a clearer and easier view of the
approach followed.

A number of the WSCI constructs correspond trivially to some of the
CCS operators. This is the case of WSCI atomic actions for sending and
receiving messages. Each WSDL message is represented by a CCS chan-

3 The version of WSCI considered here does not include some constructs such as cor-
relations and transactions, and hence the corresponding XML elements <correlation>,
<correlate>, <transaction>, <compensation> and <compensate> have been omitted.
WSCI elements’ <documentation> attribute, as well as action roles, have been ignored
too, since they are not required at this level of abstraction.

A. Brogi et al. / Electronic Notes in Theoretical Computer Science 105 (2004) 73–94 79

interfaceDef ::= interface name = { processDef + }

processDef ::= process name = { [contextDef] activityDef + }

contextDef ::= context { processDef ∗ [exceptionDef] }

activityDef ::= actionDef

| sequence [name] { [contextDef] activityDef + }

| all [name] { [contextDef] activityDef ∗ }

| switch [name] { case+[default] }

| choice [name] {onMessage∗ | onTimeout∗ | onFault∗}

| foreach [name] { list } do { [contextDef] activityDef + }

| while [name] { boolExpr } do { [contextDef] activityDef + }

| until [name] { boolExpr } do { [contextDef] activityDef + }

| empty [name]

| fault [name] { faultName }

| call [name] { processName }

| spawn [name] { processName }

actionDef ::= operation [name] operation ; [call [name] { processName } ;]

operation ::= oneWay | requestResp | notification | solicitResp

oneWay ::= in msg

requestResp ::= in msg ; out msg

notification ::= out msg

solicitResp ::= out msg ; in msg

msg ::= wsdlPortType/wsdlOperation/msgName

case ::= case { boolExpr } do { [contextDef] activityDef + }

default ::= default { [contextDef] activityDef + }

exceptionDef ::= exception {onMessage∗ | onTimeout∗ | onFault∗}

onMessage ::= onMessage { (oneWay | requestResp) [contextDef] activityDef ∗ }

onTimeout ::= onTimeout { timeout } do { [contextDef] activityDef + }

onFault ::= onFault { name } do { [contextDef] activityDef + }

timeout ::= atDateTime timeInstant

| duration timeDuration

| fromStartOf name duration timeDuration

| fromEndOf name duration timeDuration

Fig. 3. Grammar for the untagged version of WSCI.

A. Brogi et al. / Electronic Notes in Theoretical Computer Science 105 (2004) 73–9480

nel, whose name is formed by the portType, operation, and message names
(e.g.,“port/op/msg”). Hence, WSCI atomic actions correspond to input and
output actions on the corresponding channels. The values transmitted through
channels correspond to the actual contents of the messages. Empty values are
used when we are not interested in the actual contents of the messages being
exchanged. For instance:

[[in port/op/msg]] = port/op/msg ?()

[[out port/op/msg]] = port/op/msg !()

Obviously, the empty action corresponds to the silent transition:

[[empty]] = τ

Similarly, the WSCI all construct can be directly translated by consid-
ering the parallel composition of CCS processes. Thus, the translation of an
activity as:

A = all P1 P2 ... Pn

will be given by a process [[A]] defined as:

[[A]] = [[P1]] ‖ [[P2]] ‖ · · · ‖ [[Pn]]

However, the sequence construct is not simulated in such a simple way.
In fact, an activity definition like:

Seq = sequence P1 P2 ... Pn

would be translated to the process [[Seq]] (sq0, sqn) ‖ sq0!(). 0, with:

[[Seq]] (sq0, sqn) = [[P1]] (sq0, sq1)
‖ [[P2]] (sq1, sq2)

· · ·
‖ [[Pn]] (sqn−1, sqn)

where

[[P]] (begin, end) = begin?() . [[P]] (end)

and [[P]] (end) is recursively defined on the process structure, in such a way
that after proceeding with all actions in P , a signal is sent on the channel end

(end!()). Therefore, actions in process [[Pi]] will only proceed when a signal
is sent on channel sqi−1 by the process [[Pi−1]] (i > 0), and this is made only
when all the actions in the latter process have been executed. The first process
P1 is immediately activated by the signal sq0!() in the initial call.

Loops are encoded accordingly, combining the choice operator (‘+’) and
recursion in CCS as described in [5].

Setting a timeout is modelled by spawning a CCS agent Timer that waits

A. Brogi et al. / Electronic Notes in Theoretical Computer Science 105 (2004) 73–94 81

for the timeout to expire, and then either sends back a notification through a
common channel (timeout), or accepts an input action to cancel the timeout:

T imer(timeout, cancel, end) = τ. timeout!(). 0

+ cancel?(). end!(). 0

where τ represents an internal (silent) action of the Timer agent, and end is
a channel on which a signal is sent when the timer is cancelled.

Faults are exception mechanisms declared, raised, and handled within the
same Web service. In WSCI, faults are raised by means of a fault construct,
which also indicates a fault name. Such name will be used to “catch” the
fault in an exception construct. Faults are modelled by channels, with the
same name as the fault. Causing a fault is modelled by performing an out-
put through the corresponding channel. Similarly, timing exceptions are also
managed by the exception action, but in this case, the way of proceeding
depends on what kind of timed property has to be fulfilled. For instance, a
context Exc composed by a process P and a timeout clause with an exception
handler Q as follows:

Exc = context {

process P

exception {

onTimeout t do Q

}

}

will be translated to:

[[Exc]] (begin, end) = [[P]] (begin, raised, cTO)
‖ T imer(eoTO, cTO, end)
‖ eoTO?().raised!().catch!().0
‖ [[Q]] (catch, end)

where invoking Exc corresponds to the process [[Exc]] (begin, end) ‖ begin!(). 0.

It is worth noting that the translation to CCS abstracts away some details
irrelevant to the choreography itself like the duration of the timeout. That is,
the resulting process [[Exc]] will behave as [[P]] or [[Q]] , depending on the Timer

behaviour, but does not take into account the argument t of the onTimeout

clause. Also observe that the translation of a process using an exception
handler introduces an extra argument for aborting its execution when the
exception is raised.

The WSCI conditional construct switch, in which one out of several sets
of activities is executed based on the evaluation of conditions is modelled using
the choice operator (‘+’) in CCS. For instance, a switch construct like:

A. Brogi et al. / Electronic Notes in Theoretical Computer Science 105 (2004) 73–9482

[[BookTrip]] = BStoTraveller/Book/bookingRequest?().

BStoTraveller/Book/bookingAck!().

(τ. BStoTraveller/Confirmation/bookingConfirmation!(). 0

+ τ. BStoTraveller/Refusal/bookingRefusal!(). 0

)

Fig. 4. Choreography of the booking service process BookTrip translated into CCS.

Sw = switch bExp

case exp1 do P1

case exp2 do P2

...

case expN do Pn

will be translated to:

[[Sw]] = τ. [[P1]]
+ τ. [[P2]]

· · ·
+ τ. [[Pn]]

where, once again, the translation process abstracts from some computational
details, which are irrelevant from the modeling point of view. Thus, the re-
sulting process [[Sw]] will non-deterministically proceed by one of the switch
branches; each one prefixed by a τ action, since the choice will be made ac-
cording to an internal decision of the process Sw (in this case, the evaluation
of certain boolean expression). Thus, for example, the process BookTrip de-
clared in the interface of Figure 1 is translated to the CCS term shown in
Figure 4.

Finally, the WSCI choice construct, that waits for given messages, faults
or timeouts to happen, can also be modelled with this choice operator. For
instance, a choice construct like:

Ch = choice

onMessage in msg P

...

onFault failure do Q

will be translated to:

[[Ch]] = msg?(). [[P]]

+ · · ·

+ failure?(). [[Q]]

A. Brogi et al. / Electronic Notes in Theoretical Computer Science 105 (2004) 73–94 83

4 Reasoning about Web service compatibility

The main advantage that we can get from using formal notations to describe
Web service choreography is the ability to reason about Web services be-
haviour. Once we have shown how Web service choreographies written in
WSCI can be translated into a process algebra, in particular CCS, in this
section we discuss the sort of checks that can be carried out, the moments in
which those tests can be done, and the mechanisms required for that purposes.

4.1 Web service compatibility

In previous works [2,3] we developed a formal notion of behavioural compat-
ibility for software architectures and CORBA components, respectively. In
this Section we will discuss how such notion can be directly applied to Web
services.

We will consider that a software system, formed by the composition of
several entities specified in a process algebra, is compatible when it terminates
without requiring any interaction with its environment, i.e. when it always
performs a finite number of silent actions τ leading to the inaction 0. However,
the majority of client/server systems are not terminating, since usually servers
provide their services running on an infinite loop. Therefore, we must extend
this definition in order to accommodate also infinite sequences of silent actions.
Thus, we give a negative definition, saying that a system fails when, considered
as isolated from its environment, it may perform a finite sequence of silent
actions leading to a process which is structurally different from the inaction,
and that cannot perform any further action by itself. Now, we can say that
a system is compatible, or that it succeeds, when it does not fail. Then, for
analysing compatibility we proceed recursively by matching the input and
output actions that the different system components may perform at a given
point, until we arrive either to inaction, or to a repeated state in the analysis.

The distinction between global and local choices plays a significant role
in compatibility analysis. Suppose that a certain service performs one out of
several outputs depending on an internal condition (e.g. the value of some in-
ternal variable, as in the switch construct in the choreography of the booking
service process BookTrip in Figure 1). In process algebra terminology this is
considered as a local choice, and it is represented in CCS by a combination of
the choice operator (‘+’) with tau actions, as shown in the CCS encoding of
BookTrip in Figure 4. Every local choice must be taken into account when
analysing absence of deadlocks, since the rest of the system cannot foresee
what the result of the choice will be, and consequently must be able to follow
this decision —otherwise the system would deadlock.

A. Brogi et al. / Electronic Notes in Theoretical Computer Science 105 (2004) 73–9484

On the contrary, when a service is waiting for the occurrence of one out
of several input messages (as in a choice construction in WSCI), this is con-
sidered as a global choice, since the selection of a particular branch will only
take place if another component in the system presents the complementary
action. If not, simply the global decision will not occur. Hence, only global
decisions which are common (in the form of complementary actions) to two or
more system elements must be taken into account for determining deadlock-
freedom.

In order to illustrate such notion of compatibility, let us consider again the
piece of CCS specification of the booking service choreography in Figure 4,
and let us suppose that the choreography corresponding to a potential client
of the service is as follows:

Traveller = TravellerToBS/Book/bookingRequest!().

TravellerToBS/Book/bookingAck?().

TravellerToBS/Book/bookingConfirmation?(). 0

In this simple example, it is evident that both choreographies are not com-
patible: the local choice in the service between actions bookingConfirmation
and bookingRefusal is not supported by the client, that just assumes the
former as the only possible answer of the service.

In summary, using this kind of compatibility analysis we are in a position
to check whether two (or more) Web services can be successfully composed or
not. This analysis can be performed either statically at design time, when a
Web service is constructed by composing several other services, or dynamically
at connection time, when a client wants to check its behavioural compatibility
against a given Web service that it is about to use.

4.2 Web service replaceability

Replaceability refers to the ability of a software entity to substitute another, in
such a way that the change is transparent to external clients [8]. Replaceability
and compatibility are the two flip sides of the interoperability coin. This issue
is not difficult to solve at the WSDL level, it is just a matter of checking that
the interface of a new Web service contains all the operations of the service
to be replaced. However, the situation is different at the behavioural level:

• In the first place, we also need to check that the services required by the
substitute when implementing the old service’s methods are a subset of those
required by the old one. Otherwise, we may need to add some additional
services to the system when replacing the old service with the new one.

• And second, the behaviour (i.e., relative order among incoming and outgoing

A. Brogi et al. / Electronic Notes in Theoretical Computer Science 105 (2004) 73–94 85

messages) of the new version of the service should be consistent with that
of the old one.

The first issue can be easily managed, since required operations are explicitly
declared in the WSDL interface of the services. With regard to the second
point, process algebras offer the standard axiomatization of bisimilarity, which
supports the replacement of processes. However, bisimulation is too strict for
our purposes since it forces the behaviour of both processes to be undistin-
guishable. Effective replacement of a Web service often implies that it must
be adapted or specialized to accommodate it to new requirements [8]. For
this reason, we make use of a specific mechanism for behavioural subtyping
of processes (less restrictive than bisimilarity) defined in [2], which allows to
decide whether a given software entity with behavioural description WS1 can
be replaced by another one with behavioural description WS2, while keeping
clients unaware of the change.

The detailed description of this relation of behavioural subtyping is beyond
the scope of this paper; we are here more interested in showing its applica-
bility than its technical aspects. However, we may roughly say that a certain
behaviour WS2 is a subtype of another one WS1 if (i) WS2 preserves the seman-
tics of behaviour of WS1 (i.e., if any global choice offered by WS1 is also offered
by WS2); (ii) WS2 does not extend WS1 (i.e., if any action present in WS2 is also
present in WS1); and (iii) WS2 terminates when WS1 does also terminate. If
these conditions are fulfilled we can ensure that WS2 may replace WS1 in any
context, that is, when combined with any client.

Since condition (ii) seems to be too restrictive, we have also introduced a
relation of extension of behaviour, derived from that of subtyping, that also
allows the new Web service to extend the old one by adding new operations
that do not interfere with the behaviour already present of the old service,
therefore ensuring safe substitution.

Let us consider once again the BookTrip CCS process in Figure 4, and
suppose that we want to replace it by a new version, whose behavioural de-
scription is as follows:

ImprovedBookTrip =

BStoTraveller/Book/bookingRequest?().

BStoTraveller/Book/bookingAck!().

BStoTraveller/Confirmation/bookingConfirmation!(). 0

This behaviour states that the now the (rather simplistic) Web service always
confirms the booking requests, being the original refusal branch cut off.

Using the definitions of replaceability in [2,3], it is easy to conclude that
the ImprovedBookTrip above is a valid substitute for the original service, and

A. Brogi et al. / Electronic Notes in Theoretical Computer Science 105 (2004) 73–9486

that any process that was compatible with the latter will be also compatible
with the improved version (hence, keeping clients unaware of the substitution).
Furthermore, if we check the new ImprovedBookTrip against the Traveller

described in Section 4.1, we will find that they are compatible, which illustrates
the intuitive notion that a service whose behaviour is a subtype of that of
another, is compatible with more clients than its supertype.

5 Web service adaptation

Available Web service description languages like WSDL specify the function-
ality offered (and required) by Web services in a similar way to what is done
with IDLs in component and object platforms (e.g., CORBA, COM, J2EE).
Such kind of interface descriptions are important for software adaptation,
since they highlight possible signature mismatches (i.e., differences in names
and parameters of operations and messages). However, solving all signature
problems does not guarantee that the entities described will be suitable for
interoperation, since mismatches may also occur at the behavioural level. As
we have seen in the preceding section, formalizing a choreography description
language such as WSCI allows us to detect behavioural mismatch by com-
patibility analysis. However, what happens if we find that the behaviour of
two entities is not compatible (as it happens with BookTrip and Traveller

in our example)? Is it possible to build any extra element that adapts their
interfaces, compensating their differences? In this section, we will focus on the
problem of adapting mismatching behaviour that Web services may exhibit.

In a previous work [1] we developed a formal methodology for the auto-
matic adaptation of software components. The main characteristic of that
methodology is the use of a simple notation for expressing the specification
of adaptors, which are intended to feature the interoperation between two en-
tities. Given a specification of that kind, the generation of an adaptor can
be fully automated by exhaustively trying to build a component that satisfies
the specification. The separation between adaptor specification and derivation
permits the automation of the error-prone, time-consuming task of generating
a detailed implementation of a correct adaptor, thus simplifying the task of
the (human) software developer.

Adaptation is a difficult problem which involves a large amount of domain
knowledge and may require complex reasoning. In the first place, it does not
simply amount to unifying names of messages and operations. Such kind of
adaptation, typical of IDL-based platforms like CORBA, can solve only name
mismatches of identical behaviour. Instead, we are interested in adapting
less trivial mismatches where, for instance, reordering and remembering of

A. Brogi et al. / Electronic Notes in Theoretical Computer Science 105 (2004) 73–94 87

messages is required.

We will specify an adaptor by means of a mapping specification that es-
tablishes a number of rules relating actions and data of two software entities.
For instance, consider another potential client of the booking service, whose
behaviour is given by the following specification:

Client = ClientToBS/BookFlight/request!().

ClientToBS/BookFlight/reply?(answer). 0

where the parameter answer contains a data value either representing a con-
firmation or a refusal from the booking service. It is obvious that such a client
is not compatible with the behaviour specified in BookTrip, not only because
they use different names for operations, messages, and parameters, but also
because their respective behaviour differ (in particular, the Client protocol
contains less actions and alternatives).

Our approach aims at providing a notation for specifying the required
adaptation between two components in a general and abstract way. The
adaptor specification consists of a set of correspondences between actions and
parameters of the two entities. For instance, the adaptor specification express-
ing the intended adaptation for the BookTrip process and the Client process
above can be simply given by:

S = { request!() <> bookingRequest?(), bookingAck!();

reply?("Confirmed") <> bookingConfirmation!();

reply?("Refused") <> bookingRefusal!() }

where the messages in the left hand side refer to the Client process, while
those in the right refer to the BookTrip process. The intended meaning of the
first rule is that whenever the client outputs a request message, the booking
service must eventually input one bookingRequest message, and output one
bookingAck message. Similarly, the second rule states that whenever the
booking service outputs a bookingConfirmation, the client will eventually
input it as a reply message with a special value as parameter for indicating
confirmation 4 . The third rule states that if the booking service outputs a
bookingRefusal, this will be again transmitted to the client by means of a
reply input message, now with a Refused parameter value.

The mapping S provides the minimal specification of an adaptor that will
play the role of a “component-in-the-middle” between the booking Web service
and its client, mediating their interactions. It is important to note that the
adaptor specification defined by a mapping abstracts away many details of the

4 Notice that since we have omitted parameters in the WSCI description of the BookTrip
in Figure 1 in order to reduce its verbosity, this kind of constant parameters are the only
ones we can use in the client’s part of the example.

A. Brogi et al. / Electronic Notes in Theoretical Computer Science 105 (2004) 73–9488

components’ behaviour. The burden of dealing with such details is left to the
automatic process of adaptor construction.

Mappings can be used to specify different important cases of adaptation, as
shown for instance in the previous example. They are not only able to express
one-to-one translations of message names, but also one-to-many correspon-
dences between messages (as in the first rule of S), many-to-many correspon-
dences, non-deterministic correspondences (as in the second and third rules of
S, where the reply message is either matched by a service confirmation or a
refusal), or even no-correspondences (e.g., when a message in the protocol of
one of the entities has no corresponding message in the protocol of its coun-
terpart). The adaptor derivation process will then be in charge of building an
adaptor capable of dealing with all the possible specified situations.

The description of the algorithm for adaptor derivation can be found in [1].
Roughly, we may say that the goal of the algorithm is to build an entity A

such that:

(i) The system formed by the composition of the adaptor and the entities
being adapted is successful (i.e., all its traces lead to success), and

(ii) The adaptor satisfies the specification S, i.e., all the message correspon-
dences and data dependencies specified in S are respected in any trace of
the system.

The algorithm incrementally builds the adaptor A by trying to eliminate
progressively all the possible deadlocks that may occur in the evolution of
the system. Informally, while the derivation tree of the system contains a
deadlock, the algorithm extends the adaptor by sending (resp., receiving) the
message that will match the reception (resp., sending) that is blocking one of
the entities being adapted.

Since there may be more than one possible message to match at a given
point, the algorithm non-deterministically chooses one of them, and spawns
an instance of itself for each possible choice. If there is no action that can be
triggered, the algorithm (instance) fails.

Each algorithm instance terminates when the derivation tree of the system
does not contain deadlocks. At this point, the generated adaptor may or may
not satisfy the specification S (i.e., all the correspondences between messages
have been respected, or not). If so, the algorithm returns the completed
adaptor. It not, the instance fails. The overall algorithm fails if all its instances
fail. Otherwise it returns one of the adaptors found.

The algorithm for adaptor derivation described above non-deterministically
returns one of the adaptors that satisfy the given specification. While the defi-
nition of a suitable pre-order on adaptors may lead to refining the algorithm so

A. Brogi et al. / Electronic Notes in Theoretical Computer Science 105 (2004) 73–94 89

as to derive only “minimal” adaptors, two issues arise: (1) it is not so obvious
which notion of minimality to employ in this case (e.g., “size” of the adaptors
vs. number of allowed interactions); (2) looking for “minimal” adaptors would
increase the complexity of the algorithm, as an enumeration of the minimal
results would be required.

Now, let us explain briefly how the algorithm proceeds for our example,
adapting the booking service and the client accordingly to the mapping spec-
ification S. Initially, the adaptor is represented by the empty process (A = 0),
and the system composed by the adaptor A and the processes BookingService
and Client is checked for deadlock. We can find two deadlocks, correspond-
ing to the initial actions of each of the components (client’s output request!
and agent’s input bookingRequest). Being an output action, the first one is
selected, and the adaptor is expanded with the corresponding action in order
to remove the deadlock:

A = ClientToBS/BookFlight/request?().

The resulting system is checked for deadlock, and once again we find two of
them: the client is blocked on input action reply?, while the booking service is
still deadlocked in bookingRequest?. From these, the latter is selected, since
accordingly to the first rule in the mapping S the adaptor has now performed
the input actions requested for matching it. Hence, the adaptor is expanded
to:

A = ClientToBS/BookFlight/request?().

BStoTraveller/Book/bookingRequest!().

Then, the construction of the adaptor goes on matching the actions of the
booking service, leading to (two steps in one):

A = ClientToBS/BookFlight/request?().

BStoTraveller/Book/bookingRequest!().

BStoTraveller/Book/bookingAck?().

BStoTraveller/Confirmation/bookingConfirmation?().

At this point the correspondence between actions indicated in the first
rule of S is fulfilled, and we are in a position for removing client’s deadlock on
action reply?, fulfilling also the second rule in S:

A = ClientToBS/BookFlight/request?().

BStoTraveller/Book/bookingRequest!().

BStoTraveller/Book/bookingAck?().

BStoTraveller/Confirmation/bookingConfirmation?().

ClientToBS/BookFlight/reply!("Confirmed"). 0

Both the client and the booking service process end at this point, but

A. Brogi et al. / Electronic Notes in Theoretical Computer Science 105 (2004) 73–9490

the derivation of the adaptor is not complete yet. There is still a deadlock
in the evolution of the system: after performing an internal tau action, the
booking service may deadlock on action bookingRefusal!. Hence, we have
to expand the adaptor with the corresponding input action, as an alternative
to bookingConfirmation?, leading to:

A = ClientToBS/BookFlight/request?().

BStoTraveller/Book/bookingRequest!().

BStoTraveller/Book/bookingAck?().

(BStoTraveller/Confirmation/bookingConfirmation?().

ClientToBS/BookFlight/reply!("Confirmed"). 0

+ BStoTraveller/Refusal/bookingRefusal?().

Finally, the last deadlock in the system is removed matching client’s action
reply? accordingly to what is indicated in the third rule in S, and the adaptor
derivation process end with success, returning the full adaptor:

A = ClientToBS/BookFlight/request?().

BStoTraveller/Book/bookingRequest!().

BStoTraveller/Book/bookingAck?().

(BStoTraveller/Confirmation/bookingConfirmation?().

ClientToBS/BookFlight/reply!("Confirmed"). 0

+ BStoTraveller/Refusal/bookingRefusal?().

ClientToBS/BookFlight/reply("Refused"). 0

)

that satisfies both the specification given by the above mapping S, and the
behavioural descriptions of the two entities being adapted. Hence, the adaptor
A will allow the BookTrip and the Client processes to interoperate successfully
despite their mismatches both in message names and behaviour.

Please note that in the case of WSCI, our adaptor specifications are much
more expressive than WSCI “global model” descriptions (that only provide
one-to-one correspondences). Our adaptor specifications permit the definition
of richer correspondences, which also provides some indications on how the
WSCI global model could be extended in this sense.

6 Concluding remarks

In this paper we have briefly shown how WSCI Web service choreographies
can be formalized using a process algebra approach (CCS), and the benefits
that can be obtained from such formalization, namely the definition of com-
patibility and replaceability tests between Web services, and the automatic
generation of adaptors that can bridge the differences between a priori incom-

A. Brogi et al. / Electronic Notes in Theoretical Computer Science 105 (2004) 73–94 91

patible Web services. Thus we have shown how existing formal methods can
be successfully applied in the context of Web services, providing useful and
practical advantages.

In addition, the formal support provided by the process algebra used to
represent choreographies provide us with a tool for expressing other safety and
liveness properties (apart from those already mentioned of compatibility and
replaceability). In fact, any property expressed as a CCS term can be consid-
ered as a choreographic specification, and therefore, checking that property
on a certain Web service, would consist in analysing the compatibility among
both choreographies. On the other hand, having a simple formal description
technique (like CCS) to describe Web service protocols will allow us the appli-
cation of model-checking techniques to construct (or extend existing validation
tools, as made in [6] with Promela.

There are currently two major approaches for describing Web services
choreographies, depending on whether they describe either (a) the common

view of the choreography of the system (built only on the individual WSDL
descriptions of the constituent Web services), or (b) the choreographies ex-
pected by each individual Web service, which are then joined together using a
(simple) “global model” that describes how such independently defined chore-
ographies relate.

BPEL4WS, WSFL and WSCDL are notations that use the common view

approach, whilst WSCI is an example of the individual view approach. Com-

mon view notations are in general more adaptable to each particular situation
and system, but are not as amenable to Web service reuse as individual view

descriptions are. Although the Web service community is currently divided
trying to decide which is the best approach, 5 we argue that they can be
considered as complementary tactics, rather than rivals.

Our proposal has been applied to WSCI, but in principle it is applicable to
other choreography notations either following the individual or the common
view approaches. It is our opinion that we cannot afford losing the benefits
that both approaches provide, specially when they can be combined together
to gain all the mutual benefits. Web service providers should supply both
the WSDL and WSCI (or similar) descriptions of the Web services they of-
fer, indicating not only the names of the supported operations, but also the
expected protocol that the client should follow (as in WSCI). On the other
hand, system designers should of course be able to use common view notations
for describing the choreography of their applications from a global perspective
(as in BPEL4WS or WSCDL).

5 see http://www.mywebservices.org/index.php/article/view/1178/ for an interest-
ing comparison between both approaches

A. Brogi et al. / Electronic Notes in Theoretical Computer Science 105 (2004) 73–9492

http://www.mywebservices.org/index.php/article/view/1178/

The way to marry both views can be achieved by using the results that
we have discussed in this paper, simply checking that the “projections” of the
global choreography of a system (defined by using a common view approach)
over its constituent Web services can be replaced (in our sense) by their indi-
vidual protocol descriptions (defined using an individual view approach). In
this way, both approaches could easily co-exist.

Apart from the previous work of the authors [3,2,1], there is a large
amount of proposals in the literature dealing with composition, interopera-
tion and adaptation issues in the field of Component-Based Software Engi-
neering (CBSE), and in protocol verification in general. Some of these works
have been also applied to Web service choreographies. In cite [4], building
on previous work in the field of Software Architecture by the same authors,
a model-based approach is proposed for verifying Web service composition,
using Message Sequence Charts (MSCs) and BPEL4WS. In [7], and from a
semantic Web point of view, a first-order logical language and Petri Nets are
proposed for checking the composition of Web services. In [6], model-checking
using Promela and SPIN is proposed for analysing the composability of chore-
ographies written in WSFL. All these works deal with the (either manual or
automated) simulation and analysis of Web service composites, been able to
detect mismatch between their choreographies, but to our knowledge, ours
is the first approach that proposes a way for overcoming mismatch between
choreographies by means of the automatic generation of adaptors.

There are at least two immediate extensions to the work we have pre-
sented here. First, we intend to integrate the translation from WSCI to CCS
with the existing tools we have already developed. And second, we intend to
make effective use of the tools currently available for CCS to reason about the
Web specifications, e.g., model check them. Finally, the translation into CCS
presented here must be extended in order to consider full WSCI; in particu-
lar, dealing with constructs such as correlations, transactions, properties and
others, that have been omitted in this work.

References

[1] Bracciali, A., A. Brogi and C. Canal, A formal approach to component adaptation, Journal of
Systems and Software, Special Issue on Automated Component-Based Software Engineering
(in press) (2004), a preliminary version of this paper was published in COORDINATION 2002:
Fifth International Conference on Coordination Models and Languages, LNCS 2315, pages 88–
95. Springer, 2002.

[2] Canal, C., L. Fuentes, E. Pimentel, J. M. Troya and A. Vallecillo, Adding roles to CORBA
objects, IEEE Transactions on Software Engineering 29 (2003), pp. 242–260.

[3] Canal, C., E. Pimentel and J. M. Troya, Compatibility and inheritance in software architectures,
Science of Computer Programming 41 (2001), pp. 105–138.

A. Brogi et al. / Electronic Notes in Theoretical Computer Science 105 (2004) 73–94 93

[4] Foster, H., S. Uchitel, J. Kramer and J. Magee, Model-based verification of web service
compositions, in: Proc. of Automated Software Engineering (ASE’2003) (2003).

[5] Milner, R., “Communication and Concurrency,” Prentice Hall, 1989.

[6] Nakajima, S., Model-checking verification for reliable web service, in: Proc. of OOPSLA’02
Workshop on Object-Oriented Web Services, Seattle (USA), 2002.

[7] Narayanan, S. and S. McIlraith, Simulation, verification and automated composition of Web
Services, in: Proc. of the Eleventh International World Wide Web Conference (WWW’2002),
pp. 77–88.

[8] Nierstrasz, O., Regular types for active objects, in: O. Nierstrasz and D. Tsichritzis, editors,
Object-Oriented Software Composition, Prentice-Hall, 1995 pp. 99–121.

[9] Vallecillo, A., J. Hernández and J. M. Troya, New issues in object interoperability, in: Object-
Oriented Technology: ECOOP 2000 Workshop Reader, number 1964 in Lecture Notes in
Computer Science, Springer-Verlag, Heidelberg, 2000 pp. 256–269.

[10] W3C, “Web Service Description Language (WSDL) 1.1,” World Wide Web Consortium (2001),
available at http://www.w3.org/TR/wsdl.

[11] W3C, “Web Service Choreography Interface (WSCI) 1.0,” World Wide Web Consortium
(2002), available at http://www.w3.org/TR/wsci.

[12] Yellin, D. M. and R. E. Strom, Protocol specifications and components adaptors, ACM
Transactions on Programming Languages and Systems 19 (1997), pp. 292–333.

A. Brogi et al. / Electronic Notes in Theoretical Computer Science 105 (2004) 73–9494

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsci

	Introduction
	Web Services and WSCI
	WSCI interfaces
	WSCI global model

	Formalizing WSCI
	Reasoning about Web service compatibility
	Web service compatibility
	Web service replaceability

	Web service adaptation
	Concluding remarks
	References

